A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma

Ji Hoon Park¹, Naresh Kumar¹, Dae Hoon Park¹, Maksudbek Yusupov², Erik C. Neyts², Christof C. W. Verlackt², Annemie Bogaerts², Min Ho Kang¹, Han Sup Uhm¹, Eun Ha Choi¹, Pankaj Attri¹

¹Plasma Bioscience Research Center / Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Korea 139-701. ²Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium

Figure S1: (a) Voltage and current graph for NPP; (b) Voltage and current graph for Ar-DBD; (c) Temperature and (d) pH of the saline solution after the 4^{th} discharge of NPP and 5 min Ar-DBD treatment. All values are expressed as \pm SD in triplicates.

Figure S2: Determination of (a) H_2O_2 concentration, (b) OH radical, (c) NO radical in 1 ml saline after the 4th discharge of NPP and 5 min Ar-DBD treatment. All values are expressed as

 \pm SD in triplicates. Students't-test was performed to control (* denotes P<0.05 and ** denotes P<0.01)

Figure S3: Shockwaves analysis by calculating the voltage as function of time.

Figure S4: SEM image of the Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant S. aureus bacteria after the 4th discharge of NPP and 5 min Ar-DBD treatment.

Figure S5: C 1s XPS data of the wild type S. aureus (a) control, (b) after the 5 min Ar-DBD treatment and (c) after the 4th discharge of NPP.

Figure S6: O 1s XPS data of the wild type S. aureus (a) control, (b) after the 5 min Ar-DBD treatment and (c) after the 4th discharge of NPP.

Figure S7: C 1s XPS data of the Penicillum-resistant S. aureus (a) control, (b) after the 5 min Ar-DBD treatment and (c) after the 4th discharge of NPP.

Figure S8: O 1s XPS data of the Penicillum-resistant S. aureus (a) control, ((b) after the 5 min Ar-DBD treatment and (c) after the 4th discharge of NPP.

Figure S9: C 1s XPS data of the Methicillin-resistant S. aureus (a) control, (b) after the 5 min Ar-DBD treatment and (c) after the 4th discharge of NPP.

Figure S10: O 1s XPS data of the Methicillin-resistant S. aureus (a) control, (b) after the 5 min Ar-DBD treatment and (c) after the 4th discharge of NPP.

Figure S11: C 1s XPS data of the Gentamicin-resistant S. aureus (a) control, (b) after the 5 min Ar-DBD treatment and (c) after the 4th discharge of NPP.

Figure S12: C 1s XPS data of the Gentamicin-resistant S. aureus (a) control, (b) after the 5 min Ar-DBD treatment and (c) after the 4th discharge of NPP.

Figure S13: Inactivation of wild type and multidrug resistance bacterial strains of S. aureus by the different pH solution. All values are expressed as \pm SD in triplicates.

Figure S14: Inactivation of wild type and multidrug resistance bacterial strains of S. aureus by the Ozone treatment for 30 s (inside the solution and 10 mm above the solution). All values are expressed as \pm SD in triplicates.

Figure S15: Amount of Ozone produced for 5 min in Ar-DBD. All values are expressed as \pm SD in triplicates.

Figure S16: Inactivation of wild type and multidrug resistance bacterial strains of S. aureus by the pH 4 solution with 50 μ M H₂O₂. All values are expressed as \pm SD in triplicates.

Table S1. Finners used in expression analysis		
Name	Forward sequence	Reverse sequence
MecA	ATGAGATTAGGCATCGTTC	TGGATGACAGTACCTGAG
	С	CC
MecI	CTGCAGAATGGGAAGTTA	TTACAAGTGAATTGAAACC
	TG	GCAGA
mecRI	CAAAAGCACCGTTACTATC	GAGTAAATTTTGGTCGAAT
	TGC	GCTA
femA	ACAATGATGGCGAGATTA	ACC GCTAAAGGTACTAAC
	CAGGA	AACAT
16S	AGAGCAAGCGGACCTCAT	TTCATGGAGTCGAGTTGCA
	AA	G

Table S1. Primers used in expression analysis

Figure S1

Figure S2

Figure S3

Figure S4.

Figure S5.

Figure S6.

Figure S14.

Dielectric Barrier Discharge (DBD) plasma

Figure S15.

Figure S16.