Supplemental Materials

Estrogen Receptor-a in Medial Amygdala Neurons Regulates Body Weight

Pingwen Xu^{1,9}, Xuehong Cao^{1,9}, Yanlin He¹, Liangru Zhu^{1,2}, Yongjie Yang¹, Kenji Saito¹, Chunmei Wang¹, Xiaofeng Yan¹, Antentor Othrell Hinton Jr.¹, Fang Zou¹, Hongfang Ding¹, Yan Xia¹, Chunling Yan¹, Gang Shu¹, San-Pin Wu³, Bin Yang⁴, Yuxin Feng⁵, Deborah J. Clegg⁶, Richard DeMarchi⁴, Sohaib A. Khan⁷, Sophia Y. Tsai³, Francesco J. DeMayo³, Qi Wu¹, Qingchun Tong⁸, Yong Xu^{1, 3*}

¹Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; ²Department of Gastroenterology , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China; ³Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; ⁴Department of Chemistry, Indiana University, Bloomington, IN 47405;⁵Cincinnati Children's Hospital Medical Center, Cincinnati, OH; ⁶Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; ⁷Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, Cincinnati, OH 45267; ⁸Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030.

⁹These authors equally contributed to this work.

*Correspondence should be addressed to: 1100 Bates Street, Rm 8070, Houston, Texas 77030. E-mail: yongx@bcm.edu, Telephone: (713)-798-7199, Fax: (713)-798-7187.

Running Title: MeA ERa regulates physical activity & body weight

Supplemental Figure 1. Validation of selective deletion of ERα in SIM1 neurons in SIM1-ERα-KO mice.

(A-B) Dual immunofluorescence for GFP (green) and ER α (red) in the MeA in SIM1-Cre/Rosa26-GFP mice (control, A) and in ER $\alpha^{lox/lox}$ /SIM1-Cre/Rosa26-GFP mice (SIM1-ER α -KO, B). Left panel: ER α immunoreactivity; middle panel: GFP immunoreactivity; right panel: merged images. Arrows point to double-labeled neurons. MeA, medial amygdala; opt, optic tract. Scale bars = 100 µm.

(C-D) Numbers of SIM1 (GFP) neurons, ER α neurons, and double-labeled neurons in the MeA in female (A) and male (B) SIM1-Cre/Rosa26-GFP or ER α ^{lox/lox}/SIM1-Cre/Rosa26-GFP mice. Data are presented as mean±SEM. N=3 in each group.

Supplemental Figure 2. Gene expression in the amygdala and hypothalamus.

(A-B) Relative mRNA levels of indicated genes in the MeA from chow-fed male (A) or female (B) control and SIM1-ER α -KO mice. Data are presented as mean±SEM. N=6 in each group.

(C-D) Relative mRNA levels of indicated genes in the hypothalamus from chow-fed male (C) or female (E) control and SIM1-ER α -KO mice. Data are presented as mean±SEM. N=6 in each group.

Supplemental Figure 3. Open field tests. Anxiety-related responses in open field tests in male and female control and SIM1-ER α -KO mice (8 weeks of age). (A-B) Distance travelled in male (A) and (B) mice. (C) Time spent in the center region of the open field. (D) Numbers of fecal boli. N=7-12/group. Results are shown as MEAN \pm SEM.

Supplemental Figure 4. Light-dark tests. Anxiety-related responses in light-dark tests in male and female control and SIM1-ER α -KO mice (8 weeks of age). (A) Time spent in the light chamber. (B) Latency to enter the dark chamber. (C) The total number of transitions between the light and dark chambers. (D) Ratio of time spent in the light chamber vs the dark chamber. N=7-12/group. Results are shown as MEAN \pm SEM.

Supplemental Figure 5. Elevated plus maze tests. Anxiety-like behavior measured in male and female control and SIM1-ER α -KO mice (8 weeks of age). (A) Open time ratio. (B) Open entry ratio. N=7-12/group. Results are shown as MEAN \pm SEM.

Supplemental Figure 6. Reproductive functions in female SIM1-ERα-KO mice.

(A) Appearance of vaginal opening. Data are presented as mean±SEM. N=18 in each group.

(B) Appearance of the first estrus. Data are presented as mean±SEM. N=16 or 18 in each group.

(C) Length of diestrus, proestrus and estrus relative to the entire estrous cycles. Data are presented as mean±SEM. N=14 or 20 in each group.

(D) Percentage of mice that successfully delivered pups. Data are presented as mean±SEM. N=8 or 20 in each group.

(E) Averaged litter size. Data are presented as mean±SEM. N=20 or 6 in each group.

(F) Averaged time period between mating day and birth day of pups. Data are presented as mean±SEM. N=18 or 6 in each group.

Supplemental Figure 7. Metabolic profiles of PVN-ERα-KO mice.

(A) Post hoc visualization of GFP in the PVN in an $ER\alpha^{lox/lox}$ mouse receiving AAV-Cre-GFP stereotaxic injections. 3V, 3rd ventricle; PVN, paraventricular nucleus of the hypothalamus. The scale bar = 200 μ m.

(B) Gains in body weight after virus injections. Note mice were fed with regular chow for the first 7 days and then with HFD for the rest period. Data are presented as mean \pm SEM. N=4 in each group. * P<0.05 in two-way ANOVA analysis followed by post hoc Bonferroni tests.

(C) Cumulative food intake. Data are presented as mean±SEM. N=4 in each group. * P<0.05 in two-way ANOVA analysis followed by post hoc Bonferroni tests.

(D) Feeding efficiency calculated as the ratio between changes in body weight (B) and cumulative food intake (C).

(E) 24-hour physical activity. (F) Sum physical activity during the light or dark cycles. Data are presented as mean±SEM. N=4 in each group.

(G) 24-hour body temperature. (H) Averaged body temperature during the light or dark cycles. Data are presented as mean±SEM. N=4 in each group.

Supplemental Figure 8. Co-localization of glutamate and SIM1 in the MeA. Immunofluorescence for glutamate (green in A), TOMATO red fluorescence (B), and the merge (C) in the MeA in SIM1-Cre/Rosa26:tdTOMATO mice. Arrows point to double-labeled neurons. MeA, medial amygdala; opt, optic tract. Scale bars = 50 µm.

Supplemental Figure 9. Co-staining of GABA and SIM1 in the MeA. Immunofluorescence for GABA (green in A), TOMATO red fluorescence (B), and the merge (C) in the MeA in SIM1-Cre/Rosa26:tdTOMATO mice. Note that there is no double-labelled neuron. MeA, medial amygdala; opt, optic tract. Scale bars = $50 \mu m$.

Supplemental Figure 10. Anterograde tracing of MeA SIM1 neurons. (A-B) Injection tract showing accurate stereotaxic delivery of Ad-IN/W virus into the MeA of SIM-Cre mice. (C-F) Immunofluorescence for WGA in the Red N (C-D), DRN (E-F) and MRN (E). Aq, aqueduct; DRN, dorsal Raphe nuclei; MeA, medial amygdala; MRN, median Raphe nuclei; Red N, red nucleus. Values of scale bars are indicated for each panel.

	N	ſale	Female			
Parameter	Control	SIM1-ERa-KO	Control	SIM1-ERa-KO		
T3 (ng/mL)	0.51 ± 0.05	$0.4{\pm}0.05$	0.31±0.05	0.3 ± 0.04		
T4 (ng/mL)	34.28 ± 1.65	32.01±2.29	25.46±1.99	26.31±2.15		
Norepinephrine (pg/mL)	16002.5 ± 758.55	15298.75±741.29	23611.88±1352.62	23361±2834.8		
Epinephrine (pg/mL)	3315.25±695.79	5195.25 ± 1377.85	13324.13±3952.6	16838.25 ± 5029.73		
Testosterone (ng/mL)	$9.94{\pm}5.42$	6.32±5.19				
17β-estradiol (pg/ml)			50.86±3.95	62.82 ± 7.07		
Leptin			2.15±0.40	5.87±1.60*		
All data and an example of the second secon						

Supplemental Table 1: Serum hormones in male and female mice

All data are presented as mean \pm SEM. *, P<0.05 between control and SIM1-ER α -KO in t-test.

Supplemental Table 2: Primer sequence (add BAT gene primers)

			PCR	GenBank
Target gene		Primer sequences	products	accession
Androgen receptor (Ar)	Ar F	TCTTTCAAGGGAGGTTACGC	101bp	NM_013476.3
	Ar R	GAGGACGGGATCTCAAGTGTC		
Aromatase	Cyp19a1 F	ACGTGGATGTGTTGACCCTC	93bp	NM_007810.3
	Cyp19a1			
	R	TCACAATAGCACTTTCGTCCAG		
Glutamate decarboxylase 1	a 11 5			
(Gad1)	Gad1 F	AGCCAGACAAGCAGTATGACG	126bp	<u>NM_008077.4</u>
	Gadi K	GGIIIICAAAICCCACGGI		
Glutamic acid decarboxylase 2	C- 12 E		751	NIM 000070 2
(Gad2)	Gad2 F		/30p	<u>INIM_008078.2</u>
	Gau2 K	IUICAACCAUICIUCIUCIAAI		NM 001081081
Glutaminase (Gls)	Gls F	GCACAGACATGGTTGGGATAC	126hn	<u>19191_001081081.</u> 2
Olutaniniase (Ols)	GIS P GIS R	TTTCACCAGTAATTGGGCAGA	1200p	<u>2</u>
Glutamate-ammonia ligase	OIS K	meneenommioodenom		
(Glul)	Glul F	TCATCTTTGGATAGCCCGTTTT	132bp	NM 008131.3
	Glul R	GCCTTGGTGCTGAAGTTGGTA	- 1	
Melanocortin 4 receptor				
(MC4R)	MC4R F	GGTCGGAAACCATCGTCA	132bp	<u>NM_016977</u>
	MC4R R	AAAGCAGGCTGCAAATGG		
Nitric oxide synthase 1 (Nos1)	NOS1 F	GATTGGCGTTCGTGATTACTG	69bp	NM_008712.2
	NOS1 R	TCCATTTTCTTGGCTACTTCCT		
				<u>XM_006512632.</u>
Single-minded 1 (SIM1)	SIM1 F	TGTCTCCCTTTGATGGAT	219bp	<u>1</u>
	SIM1 R	CATGCACGTGTAGGTACA		
			c 7 1	<u>NM_001271806.</u>
Agouti related peptide (AgRP)	AGRP F	CGGCCACGAACCICIGIAG	65bp	<u>1</u>
Estrogen recentor alpha (FPa)	AGKP K		222hn	NM 0070564
Estrogen receptor alpha (ERa)	ЕКА Г ЕРо Р	AGAAGAGIGCCAGGCIII GGAACCGACTTGACGTAG	2250p	<u>INIVI_007930.4</u>
	EKaK	UUAACCUACTIUACUTAU		NM 001122800
Leptin receptor (Lepr)	Lenr F	GGAGCCATTACCTAAGAACCC	156hn	<u>1</u>
Leptin receptor (Lept)	Lepr R	TGACATTCACATCCCCGAAG	1900р	<u>1</u>
Neuropeptide (NPY)	NPY F	TCCGCTCTGCGACACTAC	230bp	NM 023456.2
	NPY R	GGGACAGGCAGACTGGTT	F	
Cyclophilin (CYCLO)	CYCLO F	TGGAGAGCACCAAGACAGACA	66bp	<u>NM_011149.2</u>
	CYCLO R	TGCCGGAGTCGACAATGAT		
Tripartite motif-containing 25	Trim25 F	TGATGTGGCTGTGCATGATA	91bp	NM_009546.2

(Trim25)				
	Trim25 R	AAGACCTGCTCCCCTACGAC		
Pro-opiomelanocortin (POMC)	POMC F POMC R	GAGGCCACTGAACATCTTTGTC	252hz	<u>NM_001278581.</u>
		GCAGAGGCAAACAAGATTGG	2320p	1
Uncoupling protein 1 (UCP1)	UCP1F UCP1R	GAGGTGTGGCAGTGTTCATTG GGCTTGCATTCTGACCTTCA	59bp	NM_009463
CCAAT/enhancer binding protein alpha (CEBP α)	00111			
·····, ···· (···· ·)				<u>NM_001287514.</u>
	CEBP α F CEBP α R	GCGCAAGAGCCGAGATAAAG CGGTCATTGTCACTGGTCAACT	81bp	<u>1</u>
Estrogen related receptor, alpha				
$(ERR\alpha)$	ERRα F ERRα R	AGCAAGCCCCGATGGA GAGATGCCTGGGATGCTCTT	105bp	NM_007953
Peroxisome proliferative				
activated receptor, gamma,	DCC 1 F		721-	NN 000004 2
coactivator 1 alpha (PGC-1a)	PGC-1a F PGC-1a R	TCTTCGCTTTATTGCTCCATGA	/30p	INM_008904.2
Peroxisome proliferator	100 101			
γ	PPAR γ F	CGTACGGCAATGGCTTTATC	55hn	NM 011144.6
17	PPAR γ R	AACGGCTTCCTCAGGTTCTT	eeep	1001_01111000
Nuclear receptor interacting		TTCTCAGGACATAATCCTTTAACAT		
protein 1 (RIP140)	RIP140 F	TC	72bp	NM_173440.2
	RIP140 R	CGGGCCTCCTCAGTCAAC		
Uncoupling protein 3 (UCP3)	UCP3 F UCP3 R	TTTCTGCCACTGGGAGCTT GGCCCTCTTCAGTTGCTCAT	63bp	NM_009464.3
Adrenergic receptor, beta 3				
(ADRB3)	ADRB3 F	GACTACAGACCATAACCAACGTG	82bp	NM_013462
	ADRB3 R	CCTGGTGGCATTACGAGGA		
PR domain containing 16	PRDM16	CCACCAGCGAGGACTTCAC		
(PRDM16)	F		107bp	NM_027504
	PRDM16 R	GGAGGACTCTCGTAGCTCGAA		