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SUPPLEMENTARY INFORMATION 
Iyer et al, 
Bak apoptotic pores involve a flexible C-terminal region and juxtaposition of the C-terminal 
transmembrane domains  

 
 
Figure S1. Most cysteine substitutions in Bak and Bax do not alter protein expression or pro-
apoptotic function. (Relates to Figs 1-7) 
(a) Cell death induced by etoposide is apoptotic. Bak-/-Bax-/- MEFs stably expressing hBak, hBax or 
hBaxS184L were untreated or treated with etoposide (10 µM) for 24 h and cell death assessed by 
uptake of propidium iodide. Note that samples pre-incubated for 1 h with Q-VD-OpH (pan-caspase 
inhibitor; 50 µM) prevented propidium iodide uptake indicating etoposide-induced death is 
apoptotic.  
(b-g) Etoposide-induced cell death. Bak-/-Bax-/- MEFs stably expressing the indicated Bak (b), 
BaxS184L (c), Bax (d), Bak C-segment extensions (e), Bak loss-of-function (f) or Bak double and 
triple cysteine (g) variants were incubated with etoposide (10 µM) for 24 h and apoptosis assessed 
by uptake of propidium iodide.  
Data are mean ± SD of three independent experiments. Protein expression levels were assessed by 
immunoblotting whole cell lysates for Bak or Bax, and for HSP70 as loading control. 
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Figure S2. Possible membrane topology of the Bak C-terminus after pore formation. (Relates 
to Fig 2)  
Diagram of changes in the Bak C-terminus after tBid-induced activation and pore formation, as 
discussed in the text. After Bak activation and pore formation, the most significant change in α9 
labeling (apart from decreased labeling due to greater insertion) was increased labeling of four 
residues (Q202C-V205C) at the carboxy terminus. Increased labeling of these 4 residues might be 
explained by (i) the α9-helix becoming shorter, by (ii) IASD penetrating further into the inner 
leaflet of the MOM as a consequence of pore formation, or by α9 dissociating from neighbouring 
proteins (not shown). The labeling is not consistent with (iii) α9 positioning deeper in the 
membrane, as labeling of the amino-terminus (G186C-N190C) did not decrease after tBid. In 
addition, (iv) membrane thinning as observed in Bax-permeabilized vesicles	
   1	
   is also unlikely as 
G201C labeling did not increase. Finally, as the center of α9 did not label along one edge after tBid 
treatment, it is unlikely that (v) α9 lines the apoptotic pore formed by Bak. The C-terminus is 
modeled as in Figure 2C. Cartoon of Bak α1-α8 (aa21-183) is from the structure of nonactivated 
Bak (2IMT	
  2). 
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Figure S3. Intermolecular α9:α9 linkage can be captured in activated Bax at membranes. 
(Relates to Fig 3) 
Bak-/-Bax-/-MEFs expressing the indicated Bax cysteine variants were cultured with etoposide (10 
µM), and were able to mediate cell death (Fig S1c). The cytosolic (C) and membrane (M) fractions 
were treated with CuPhe to induce disulfide bonding and then analyzed by nonreducing SDS-PAGE 
and western blot for Bax to reveal monomers (M) and linked dimers (D). Note that due to the low 
level of Bax that translocates to mitochondria during apoptosis, 4-fold membrane fraction (4M) was 
loaded. 
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Figure S4. The Bak α9:α9 interface is partially inhibited when the BH3:groove interface is 
inhibited by mutagenesis. (Relates to Fig 5) 
Membrane fractions from Bak-/-Bax-/-MEFs expressing the indicated cysteine variants were 
incubated without or with tBid. Some variants also contained a loss-of-function mutation in the 
BH3 domain (I81T) or groove (F93S) to inhibit BH3:groove dimerization 3. Aliquots were assessed 
for cysteine linkage by CuPhe as in Figure S3.  
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Figure S5. Bak α9 peptides or overexpressed Bak α9 in cells cannot block the α9: α9 interface 
(a) Sequences of α9 peptides from human and mouse Bak.  
(b) Bak α9 peptides induce cytochrome c release. Membrane fractions from Bak-/-Bax-/- MEFs or 
mitochondria isolated from Bak-/- mouse liver as described previously 3 were incubated with α9 
peptides at 30 oC for 20 min, followed by incubation with tBid for 30 min, as indicated. Aliquots 
were tested for cytochrome c release as in Figure 5. Note that peptides (Mimotopes, Victoria, 
Australia) were initially prepared as a 2 mM stock in 80% dimethylformamide, and that 
dimethylformamide alone did not release cytochrome c. Data are representative of two independent 
experiments.  
(c) Sequence of mCherry-α9-GGCK.  
(d) mCherry-α9-GGCK localizes to mitochondria. MEFs expressing the DIABLO mitochondrial 
targeting sequence fused to GFP (DIABLO-MTS-GFP	
  4) were stably transduced with mCherry-α9-
GGCK, and seeded (20,000 cells per well) on tissue culture-treated chamber slides (Ibidi). When 
analyzed by confocal microscopy (Zeiss LSM 5 LIVE), despite a range of mCherry-α9-GGCK 
expression levels, all protein becomes punctate, consistent with mitochondrial localization. 
(d) mCherry-α9-GGCK fails to block either α9 linkage in oligomerized Bak or cytochrome c 
release. Bak-/-Bax-/-MEFs expressing BakGGCK and low, medium or high levels of mCherry-α9-
GGCK (based on mCherry expression) were permeabilized and incubated with tBid. Samples were 
assessed for BakGGCK:BakGGCK linkage (D) and cytochrome c release as in Figure 6.  
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