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The Ras G Domain Lacks the Intrinsic Propensity to Form Dimers
Elizaveta A. Kovrigina,1 Azamat R. Galiakhmetov,1 and Evgenii L. Kovrigin1,*
1Chemistry Department, Marquette University, Milwaukee, Wisconsin
ABSTRACT Ras GTPase is a molecular switch controlling a number of cellular pathways including growth, proliferation, dif-
ferentiation, and apoptosis. Recent reports indicated that Ras undergoes dimerization at the membrane surface through pro-
tein-protein interactions. If firmly established this property of Ras would require profound reassessment of a large amount of
published data and modification of the Ras signaling paradigm. One proposed mechanism of dimerization involves formation
of salt bridges between the two GTPase domains (G domains) leading to formation of a compact dimer as observed in Ras crys-
tal structures. In this work, we interrogated the intrinsic ability of Ras to self-associate in solution by creating conditions of high
local concentration through irreversibly tethering the two G domains together at their unstructured C-terminal tails. We evaluated
possible self-association in this inverted tandem conjugate via analysis of the time-domain fluorescence anisotropy and NMR
chemical shift perturbations. We did not observe the increased rotational correlation time expected for the G domain dimer. Vari-
ation of the ionic strength (to modulate stability of the salt bridges) did not affect the rotational correlation time in the tandem
further supporting independent rotational diffusion of two G domains. In a parallel line of experiments to detect and map
weak self-association of the G domains, we analyzed NMR chemical shifts perturbations at a number of sites near the crystal-
lographic dimer interface. The nearly complete lack of chemical shift perturbations in the tandem construct supported a simple
model with the independent G domains repelled from each other by their overall negative charge. These results lead us to the
conclusion that self-association of the G domains cannot be responsible for homodimerization of Ras reported in the literature.
INTRODUCTION
Small monomeric GTPases of Ras superfamily operate as
molecular switches in multiple regulatory and signaling cas-
cades (1–3). Ras and its closest homologs are involved in
cell signaling cascades controlling mainly growth and pro-
liferation but also involved in differentiation and apoptosis
(4–6). Ras contains a soluble N-terminal GTPase domain
(G domain) and the posttranslationally lipidated C-terminal
tail. Addition of lipids localizes Ras to the membrane sur-
face, which is a required condition for function (7–9).

In the current paradigm, Ras and its homologs function
strictly as monomers in contrast to the mechanism of
GTPases activated by dimerization (3,10,11). In solution,
dimerization of the Ras G domain (lacking C-terminal tail
and lipidation) has never been reported; yet, recent studies
of the full-length Ras mimics attached to the membranes
indicated that the dimerization might be possible at the
membrane surface (12).

The earliest proposal that Ras functions at the membrane
in an oligomeric form came from observations of radiation
inactivation (target size analysis) (13). In the later cross-
linking study by Inouye and others (14), Ras dimers were
proposed to form on liposomes and facilitate activation of
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Ras effector Raf-1. Recently, Güldenhaupt analyzed 71
crystal structures of Ras G domains in the Protein Data
Bank and pointed out that as many as 50 of them feature
an extensive conserved crystal contact between two adjacent
Ras molecules forming a conserved crystallographic dimer
(15). Based on this observation, the authors proposed a
structural model of N-Ras dimers at the membrane surface
supported by their experimental Infra-Red polarization
data and Förster resonance energy transfer measurements.
Fig. S1 in the Supporting Material, top panel, illustrates
these dimers as observed in Ras crystals. The extensive crys-
tal contact between two G domains from the neighboring
crystallographic units (red and blue in Fig. S1) involves he-
lices 4 and 5 and b2–3 loop. Güldenhaupt and coworkers
noted that the this protein-protein interface is mediated by
a set of salt bridges involving residues D47, E49, H131,
K135, D154, R161, and R164 in both G domains (see
Fig. 5 in (15)). These residues are identical or conserved
amino acids in all three human Ras isoforms (Fig. S1, bot-
tom panel) indicating that this protein-protein interface is
not isoform specific. Most recently, Lin reported observa-
tion of the dimeric species of H-Ras detected via the sin-
gle-molecule tracking and step photobleaching analysis in
fluorescence microscopy of supported lipid bilayers (16).
Basing their argument on a limited mutational analysis
(Y64A substitution) and relative independence of diffusion
coefficients on the lipidation pattern (one versus two lipid
anchors), the authors arrived at a conclusion that the dimer
http://dx.doi.org/10.1016/j.bpj.2015.07.020
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formation is mediated by protein interactions and does not
require lipid anchor clustering (16).

In summary, one plausible interpretation of the reported
data implies Ras dimerization through the direct contact
of N-terminal G domains of two Ras molecules as exempli-
fied by the crystallographic dimers. In both reports (15,16),
the membrane is thought to play a passive role of a diffu-
sional restraint—preventing translational diffusion in the di-
rection normal to the membrane plane and increasing local
concentration of the G domains. If this hypothesis is correct
one should be able to stimulate formation of Ras dimers by
merely sequestering G domains close enough in space to re-
move entropic penalty of translational diffusion. To test this
hypothesis, we created tandem H-Ras constructs via joining
two G domains with flexible linkers of variable lengths. We
specifically assessed contribution of the salt-bridge forma-
tion to the dimerization (15) by varying the ionic strength
in the samples. Measurements of rotational diffusion (via
time-domain fluorescence anisotropy) and NMR chemical
shift perturbation analysis enabled probing the intrinsic pro-
pensity of G domains for dimerization. Based on our obser-
vations we concluded that the G domains, when brought into
close proximity, do not interact to any significant extent and
do not form a dimeric species. Consequently, Ras dimeriza-
tion reports by Güldenhaupt (15) and Lin (16) cannot be ex-
plained by tendency of Ras molecules to self-associate via
their conserved G domains; instead, the Ras-Ras dimeriza-
tion models must include direct interaction with the phos-
pholipids (beyond mere tethering of the G domain to the
surface of the membrane).
MATERIALS AND METHODS

Protein constructs

The untagged genetic construct encoding for the wild-type H-Ras, residues

1–166, was engineered in our earlier work (17). The full-length gene of

thewild-typeH-Ras (a kind gift ofDr.RobertDeschenes,University of South

Florida) was subcloned into the pET vector (EMDMillipore, Billerica, MA)

for untagged expression. To create an expression construct for the truncated

H-Ras ending with the cysteine 181 (residues 1–181), we introduced a stop

codon in place of the methionine 182. An additional mutation, C118S, was

introduced to remove the only exposed cysteine on the G domain, which

may spuriously react with maleimido groups of the cross-linkers (see next

section). The C118Smutation has been shown not to have any adverse effect

on H-Ras function (18). All mutagenesis steps were performed using the

QuikChange Site-Directed Mutagenesis Kit (Life Technologies, Grand Is-

land, NY). The C118S H-Ras protein construct, residues 1–181, (Ras181

in the following text) and the wild-type H-Ras, residues 1–166, (Ras166 in

the following text) were expressed and purified using a published protocol

(17). The Ras181 protein was expressed in a minimal medium with uniform
15N-labeling to enable both fluorescence and NMR measurements on the

protein originating from the same preparation.
Preparation of the inverted tandem conjugate

To prepare the inverted tandem conjugates of Ras181, we used cross-link-

ing of C-terminal cysteines with bis-maleimide-polyethyleneglycols with
two and 11 ethyleneglycol units (Ras-2-Ras and Ras-11-Ras in Fig. S2

A). The cross-linkers were BM(PEG)2 (Thermo Fisher Scientific, Waltham,

MA) and BM(PEG)11 (Conju-Probe, San Diego, CA). The BM(PEG)2 cre-

ates an ~1.5 nm spacer, whereas the BM(PEG)11 ends are separated by

~5 nm. The polyethyleneglycol spacer is hydrophilic and inherently flex-

ible. The maleimide moiety irreversibly reacts with sulfhydryl groups at

neutral pH with high specificity (19). To ensure that the cysteine 181 in

Ras181 is fully reduced before the conjugation reactions, we added DTT

to 5 mM and incubated the protein sample in the desiccator under vacuum

for 30 min at room temperature. To completely remove DTT from the pro-

tein sample, we injected the protein solution into the XK16/40 size-exclu-

sion column packed with Ultrogel Aca54 (Sigma, St. Louis, MO)

equilibrated with the reaction buffer containing 20 mM HEPES pH 7.2,

1 mM MgCl2, and 100 mM NaCl. The protein sample eluted as two peaks

with the maxima at 22 and 34 ml. Sodium dodecyl sulfate polyacrylamide

gel electrophoresis (SDS-PAGE) analysis showed that the second peak con-

tains Ras181, whereas the first peak consisted of residual contaminating

proteins. The Ras181 peak was concentrated to 46 mM using Centriprep

YM-3 centrifugal filters (EMD Millipore). At this stage, ~1/3 of the total

protein was set aside for preparation of Ras181 samples for fluorescence

and NMR spectroscopy. The rest of the Ras181 concentrate was mixed

with the cross-linkers in 3:1 ratio (protein: BM(PEG)); the protein excess

over the cross-linker ensured complete use of the cross-linker. Reactions

with each cross-linker were stopped after 24 h at room temperature by

the addition of b-mercaptoethanol. The inverted tandem conjugates,

Ras181-BM(PEG)2-Ras181 (Ras-2-Ras) and Ras181-BM(PEG)11-Ras181

(Ras-11-Ras), were isolated from the reaction mixtures using the Ultrogel

Aca54 size-exclusion column. The representative size-exclusion chroma-

tography profile of the reaction mixture and its SDS-PAGE analysis are

shown in Fig. S2, B and C; the shaded fractions were pooled and concen-

trated to obtain the purified Ras-2-Ras conjugate sample. Fig. S2 D shows

the final purity of all samples and confirms that contamination of conjugates

with Ras181 monomers did not exceed 5%.

The molecular mass of the uniformly 15N-labeled Ras-2-Ras conjugate

has been determined by matrix-assisted laser desorption/ionization time-

of-flight mass spectrometry to be 41,700 5 30 Da, which is consistent

with the theoretical value of 41,668 Da. The 15N-labeled Ras-11-Ras con-

jugate exhibited a molecular mass of 42,229 Da with the theoretical value of

42,205 Da. The electrophoretic mobilities of Ras conjugates are anoma-

lous—in agreement with the anomalous electrophoretic mobility of the

Ras monomer due to its acidic pI of 5.0 (calculated using the ExPASy Prot-

Param tool (20,21)). The final yield of the Ras-2-Ras conjugate in this pro-

cedure was 3 mg; Ras-11-Ras yield was significantly lower. Protein

concentrations were determined using Bradford assay (Thermo Fisher Sci-

entific). The pure Ras181, Ras-2-Ras, and Ras-11-Ras conjugate prepara-

tions were dialyzed in a 3.5 kDa molecular weight cutoff (MWCO)

dialysis bags against the working buffer containing 20 mM Hepes pH

7.2, 5 mMMgCl2, 1 mM DTTwith 1.5 mM NaN3 added as an antibacterial

agent.
Preparation of protein samples for fluorescence
measurements

To prepare for the nucleotide exchange, the Ras181 and Ras conjugate sam-

ples were concentrated to 50 mM (in units of Ras monomers). The GDP

nucleotide associated with the GTPase site in Ras was replaced with the

(20-(or-30)-O-(N-methylanthraniloyl) guanosine 50-diphosphate (mant-

GDP; Life Technologies) using the EDTA-assisted method. In brief, to in-

crease the rate of spontaneous nucleotide exchange (22), the magnesium

ions in the protein samples were chelated with EDTA added to 6 mM along

with the 0.8 mM mant-GDP and additional 10 mM DTT. The reaction mix-

tures were incubated for 1 h at room temperature, and further separated us-

ing the illustra NAP-5 Columns (GE Healthcare Bio-Sciences, Pittsburgh,

PA) packed with G-25 size-exclusion resin and equilibrated with the work-

ing buffer. Protein concentration was determined by Bradford assay to be
Biophysical Journal 109(5) 1000–1008
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0.34 mg/ml (16 mM) for Ras181, 0.26 mg/ml (12 mMmonomers) for Ras-2-

Ras, and 0.11 mg/ml (5 mM monomers) and 0.40 mg/ml (18 mM) for two

separate preparations of Ras-11-Ras. Adjustment of salt content in both

fluorescence and NMR samples (next section) was done by direct addition

of calculated aliquots of 5 M NaCl solution. The effect of ionic strength on

pH was tested by addition of an equivalent amount of NaCl to the buffer and

found to be negligible: pH was reduced by as little as 0.03 pH units in

300 mM NaCl.
Preparation of protein samples for NMR
measurements

The 10% D2O was added to protein solutions to allow for spectrometer

locking, and protein samples were concentrated to ~150 mM (Ras181)

and 300 mM (Ras-2-Ras conjugate; in moles of Ras monomers); obtained

quantity of Ras-11-Ras conjugate was not sufficient for NMR experiments.

The protein samples were thoroughly degassed (1 h under vacuum in the

desiccator) and loaded into Shigemi tubes.
Dav ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdHN; Ras181 � dHN; Ras�2�RasÞ2 þ

�
dN; Ras181 � dN; Ras�2�Ras

5

�2
s

;

Fluorescence spectroscopy experiments

The time-dependent polarization anisotropy measurements were performed

using the QM40 QuantaMaster system manufactured by Photon Technol-

ogy International (HORIBA Scientific, Edison, NJ) equipped with Pico-

Master 1 time-correlated single-photon counting (TCSPC). The pulsed

excitation was provided by 365 nm LED; the emission was detected at

440 nm with either 5 or 24 nm slit widths. Temperature of the sample

was controlled using Peltier-based Turret 400 (Quantum Northwest, Shore-

line, WA). The G-factor at 440 nm was measured using the steady-state

Xenon lamp excitation. The polarized fluorescence decays were recorded

with the motorized Glan-Thompson polarizers and the emission slits at

24 nm. The typical TCSPC counting rate was kept below 2%. The instru-

ment response functions were recorded using a solution of a generic scat-

terer at 1–2% TCSPC counting rate. In all measurements, we used 30–

60 min acquisition time per one emission polarizer orientation. Experi-

ments were repeated multiple times for averaging. The polarized fluores-

cence decays were recorded for three sample temperatures (20, 25, and

37�C) and three concentrations of NaCl in solutions (0, 150, and

300 mM). The polarized decays of Ras166 were recorded at 20�C, 0 mM

NaCl in the same buffer.

Fluorescence anisotropy decays were analyzed using AniFit software

(kindly shared by Søren Preus; available from www.fluortools.com). The

software performed global fitting of parallel and perpendicular components

to optimize parameters in the intensity and anisotropy decay laws. In the first

step of the optimization algorithm the isotropic fluorescence decay is recon-

structed and fitwith themultiexponential law.Next, the anisotropy decay law

is assumed and the fitted isotropic decay is split into parallel and perpendic-

ular components that are further reconvoluted with the instrument response

function to simulate the polarized decays. Finally, these simulated decays are

compared to the experimental decays obtained with the parallel and perpen-

dicular orientations of the emission polarizer. To compensate for a small

contribution of scattered light in the earliest times of the decay, the instru-

ment response function is added to the simulated data with an adjustable co-

efficient. Multiple rounds of optimization resulted in the best-fit parameters

of intensity and anisotropy decay laws along with the 95% confidence inter-

vals estimated from the Jacobianmatrix. The fits were performedwith either

single- or double-exponential laws of anisotropy decay and did not yield a

significant difference in the slow rotational correlation times. Therefore,
Biophysical Journal 109(5) 1000–1008
the single-exponential anisotropy decay with a contribution from scattered

light was used for analysis of all polarized decays.
NMR spectroscopy experiments

Two-dimensional 15N-1H heteronuclear single-quantum correlation

(HSQC) NMR spectra were obtained using an Agilent Technologies

VNMR-S spectrometer (Santa Clara, CA) with the Cold Probe operating

at the magnetic field strength of 14.1 Tesla corresponding to 600 MHz Lar-

mor frequency of 1H nuclear spins. Spectral processing was performed us-

ing NMRPipe (23) and Sparky (24). The NMR signal assignment of the

G-domain residues in Ras181 and Ras-2-Ras conjugate was achieved by

analyzing spectral overlays with the HSQC spectra of the wild-type

H-Ras sample, residues 1–166, complexed with GDP (recorded in the iden-

tical buffer conditions at 20�C and assigned in our earlier work (25)). Aver-

aged chemical shift differences between Ras181 and Ras-Ras samples, Dav,

were calculated according to the following equation (26):
where d stands for chemical shifts of the 1H (dHN) or
15N (dN) in the amide

group in Ras181 and Ras-2-Ras spectra; the factor of 5 is a weight reflecting

greater relative sensitivity of nitrogen-15 chemical shift on theppmscale (26).
Control of Ras-Ras sample stability

To confirm that the Ras conjugates did not hydrolyze in the course of exper-

iments, we performed SDS-PAGE analysis of the protein samples after the

measurements were completed. Fig. S3 shows unchanged molecular masses

indicating that Ras conjugates remained intact.
RESULTS

Experimental strategy to detect dimerization

The goal of this study was to evaluate probability of direct
binding of two G domains to form a dimer under physiolog-
ically relevant solution conditions. Specific self-association
of the G domains would have two major consequences for
biophysical properties of the sample. First, rotational diffu-
sion would slow down due to doubling of the mass and
increased molecular dimensions. Second, formation of an
extensive dimer interface would change environment of a
significant number of atoms in the vicinity of such an inter-
face. To detect these effects, we evaluated the rotational
correlation time of different Ras constructs through the
time-dependent fluorescence anisotropy measurements,
and investigated the possible dimer interface by analyzing
the NMR chemical shift perturbations.
Protein models

To sensitively isolate effects due to dimer formation from
influences of overall protein structure and solution

http://www.fluortools.com
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environment, we prepared a set of three protein models
shown in Fig. S2 A. The isolated G domain of H-Ras, resi-
dues 1–166, (Ras166) serves as a reference for rotational
diffusion and chemical shifts of the G domain. Ras166
was reported to be strictly monomeric in solution in a num-
ber of studies (17,27–29). The elongated H-Ras construct,
residues 1–181, (Fig. S2 A, Ras181) ending at the site of
the first lipid modification, Cys-181 (30), represents a
portion of Ras polypeptide exposed to the cytosol in vivo.
The Ras181 is identical to the H-Ras construct used for
conjugation to the membranes by a number of research
groups to mimic the native state of Ras (16,31,32). In our
study, Ras181 serves to assess the effect of the unstructured
C-terminal tail, residues 167–181, on the rotational diffu-
sion and chemical shifts of the G domain (cysteine 181 re-
mains reduced and unlipidated in the experiments).

Protein-protein interactions are enhanced at high concen-
trations due to the bimolecular nature of the binding reaction.
To create high local concentration of the G domain, we teth-
ered two Ras181 proteins through their Cys-181 side chains
using the bis-maleimido cross-linkers BM(PEG)2 and
BM(PEG)11 (producing Ras-2-Ras and Ras-11-Ras con-
structs, respectively). The resulting inverted-tandem conju-
gates restrict a pair of G domains in the close proximity of
each other connected by a flexible unstructured chain
comprising the residues 173–181 of two Ras181 molecules
and the cross-linker (the helix 5 is known to extend to residue
172 (18,29,33)). The C-termini of the two G domains in the
crystallographic dimer are oriented in a V-shaped fashion to-
ward one side of the dimer (Fig. S2 A). The Ras-Ras conju-
gates with both 1.5 and 5 nm linker lengths allow for the
crystallographic dimer conformation as well as other
possible interaction modes. The linkage of cysteine side
chains with bis-maleimido cross-linkers is irreversible (19);
in addition, the Ras conjugates were shown to remain intact
throughout all the experiments (Fig. S3).
FIGURE 1 Effect of ionic strength on rotational correlation times of the

G domains in Ras181 (black circles), Ras-2-Ras (red circles), and Ras-11-

Ras (blue circles) at 20�C (top) and 37�C (bottom). Dashed lines connect

data points for the same protein sample to guide the eye. The correlation

time of a monomeric G domain Ras166 at low salt and 20�C is shown in

the top panel with an open circle. Correlation times measured with two in-

dependent preparations of Ras181 at 37�C (black circles) are shown sepa-

rately to demonstrate reproducibility of the measurements. Error bars

represent 95% confidence intervals. Vertical black bars show the expected

range of rotational correlation times for the Ras conjugates if the G domains

formed tight dimers at low salt condition (see Supporting Material for de-

tails of this estimate). The arrows indicate anticipated reduction of the

dimer correlation time upon increasing the ionic strength. To see this figure

in color, go online.
Fluorescence anisotropy analysis

Comparison of the rotational correlation time expected for a
Ras dimer with the measured times for the Ras conjugates
could help assess a degree of dimerization of G domains un-
der conditions of a high local concentration. To improve
sensitivity to dimerization, we used a series of solution con-
ditionswith increasing ionic strength to disrupt salt bridges at
the crystallographic dimer interface (15) and thus favor the
monomeric species. Our fluorescence measurements were
performed at low protein concentrations (%18 mM) ensuring
that Ras166 and Ras181 served as truly monomeric controls.
Selection of the fluorophore was also critical because most
fluorophores are lipophilic and may drive weak self-associa-
tion of the fluorophore-tagged molecules. Generally, to
reduce the self-association propensity one needs a smaller
fluorophore. In this study we used mant-GDP, the guanine
diphosphate modified with N-methylanthraniloyl group
(mant) at the position of 20 or 30 of ribose (34). Mant group
is a small ultraviolet-range fluorophore (lex ¼ 360 nm;
lem ¼ 440 nm) minimizing a chance of fluorophore-driven
association and causing little perturbation to Ras functions
(35). We performed all experiments with the diphosphate
nucleotide because both dimerization reports from Lin (16)
and Güldenhaupt (15) involved Ras-GDP, and the crystallo-
graphic dimers are observed in Ras complexed with either
GDP or GTP mimics. Representative time-domain fluores-
cence decays are shown in Fig. S4 and all fitted rotational
correlation times are given in the Table S1.

Fig. 1 shows dependence of the rotational correlation
times of Ras181 and Ras conjugates on the NaCl
Biophysical Journal 109(5) 1000–1008
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concentration. The rotational correlation time of Ras181 is
increased relatively to the isolated G domain Ras166 likely
due to the extended helix 5 (18) (truncated in Ras166
construct) and unstructured C-terminal residues 173–181
producing additional hydrodynamic drag (36). With the
addition of salt we observe little to no change in the rota-
tional correlation time of Ras181 (black circles); a weak up-
ward trend at 20�C may be attributed to the nonspecific
effects such as increased viscosity of the solution and a
larger size of the solvation shell of the G domain due to pres-
ence of ions. The joining of two Ras181 molecules to form
Ras-2-Ras and Ras-11-Ras inverted-tandem conjugates (red
and blue circles, respectively) results in a modest increase in
the rotational correlation times. Increasing ionic strength af-
fects Ras-2-Ras and Ras-11-Ras similar to Ras181.

The first test for the dimer formation is to compare the
correlation times for Ras conjugates with the expected rota-
tional correlation times of the tight dimer of Ras G domains.
We estimated that the dimeric species should exhibit corre-
lation times 2.0- to 2.7-fold greater than the values observed
for the monomer (see Supporting Material). Considering the
correlation time of Ras181 at 20�C of 13 ns at the lowest
ionic strength (most favorable for the salt-bridge formation),
the dimerized Ras-Ras conjugate should exhibit correlation
times from 26 to 35 ns. Similar calculation for 37�C pro-
duces expected correlation times of 17 to 23 ns for the
dimer. These expected ranges are shown as vertical black
bars in Fig. 1—both far outside the error range of the corre-
sponding measured values for Ras181 (solid black circles)
at 0 mM NaCl.

The second test for the crystallographic dimer formation
employs variation of the ionic strength because the dimer-
ization interface (15) features multiple salt bridges. Long-
range electrostatic interactions are strongest at a low ionic
strength, whereas the high ionic strength disrupts salt
bridges due to ionic shielding. Therefore, one would expect
the rotational correlation time of the G domain in Ras con-
jugates to be greatest at the low salt concentration (due to
enhanced stability of G domain dimers) and to gradually
reduce with increasing ionic strength (due to a gradual shift
of populations toward dissociated independently tumbling
G domains in Ras conjugates). This anticipated trend is
schematically illustrated by arrows in Fig. 1. Contrary to
these expectations, we observe the variation of rotational
correlation times of the G domains in Ras conjugates closely
tracking the trends displayed by the monomeric Ras181
construct.
FIGURE 2 Localization of the assigned 1H and 15N amide nuclear spins

expected to experience chemical shift perturbation due to formation of the

Ras dimer. Blue and white spheres indicate amide groups of the following

residues: G48, E49, T50, S127, R128, R135, S136, Y137, I139, Y141, I142,

E143, G151, D154, A155, Y157, T158, R161, and E162 (some are labeled

for a visual guidance). One G domain is shown as a cartoon; another—with

the van der Waals surface. Switch I, magenta; switch II, yellow; GDP, green

sticks; and active site magnesium ion, a red sphere. To see this figure in co-

lor, go online.
NMR chemical shift perturbations

NMR spectroscopy is particularly suitable for detecting and
mapping weak interactions between proteins because bind-
ing events often lead to perturbation of resonance fre-
quencies of multiple nuclear spins, which are
simultaneously detected in the NMR spectrum (37). In addi-
Biophysical Journal 109(5) 1000–1008
tion, the isotopic labeling required for NMR detection is
nonperturbing (relative to the effect of extrinsic labeling
in fluorescence measurements) thus further reducing chan-
ces of artifacts.

Examination of the dimer structure observed in Ras crys-
tals indicates that many nuclear spins in the G domain are
likely to have their magnetic environments significantly
altered due to 1) desolvation of the protein surface upon
the dimer formation, 2) establishing of the new van der
Waals contacts, and 3) formation of electrostatic pairs
(salt bridges) between the monomers. The amide groups
of ~26 amino acid residues lie within 5 Å from the surface
of the neighboring G domain in the dimer structure or have
their respective side-chains involved in the interaction. Out
of these sensor residues, we were able to assign as many as
20 1H-15N amide HSQC peaks in the Ras181 and Ras-2-Ras
NMR spectra. Localization of these amide groups in the Ras
crystallographic dimer is shown in Fig. 2—with the dimer
surface well covered by the NMR probes the dimerization
event should be difficult to miss.

To measure chemical shifts of amide nitrogen-15 and pro-
ton nuclear spins, we recorded 1H-15N HSQC spectra of
Ras181 and Ras-2-Ras at 20 and 25�C in the buffer condi-
tions and ionic strengths matching the ones employed in
our fluorescence anisotropy measurements. An overlay of
Ras181 and Ras-2-Ras spectra at low ionic strength (to favor
crystallographic dimer formation) is shown in panel A of
Fig. 3, whereas panel B summarizes chemical shift differ-
ences for the residues of the G domain. A typical averaged
chemical shift change due to association of polypeptides is
expected to be in excess of 0.05 ppm up to 0.2–0.3 ppm (for
example, see (26)); in our data, the maximum difference
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FIGURE 3 Lack of significant chemical shift differences between

amide resonances of the G domain in Ras181 and Ras-2-Ras. (A) Over-

lay of 15N-1H HSQC NMR spectra for Ras-2-Ras (red) onto the Ras181

(blue) at low ionic strength at 20�C. Peak assignments are shown for res-

onances of the G domain; labels in crowded regions were removed for

clarity. Signals from the C-terminal peptide affected by the conjugation

reaction are indicated by black ovals. (B) Averaged chemical shift differ-

ences, Dav, plotted versus the residue number in the G domain. The

C-terminal extensions were not included in analysis. Residues at the

dimer interface (their NH groups indicated by spheres in Fig. 2) are indi-

cated as shaded areas. Intervals without black bars correspond to gaps in
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between Ras181 and Ras-2-Ras amounts to 0.015 at G48.
Panel C illustrates two examples of peaks in the G domain
experiencing the largest chemical shift change suggesting
the source of these variations being the random noise in
the line shape. Insignificant chemical shift differences be-
tween the G domain amide resonances in Ras181 and
Ras-2-Ras indicate that no detectable dimerization takes
place in the inverted tandem conjugate. Increasing the salt
content to 300 mM did not induce any additional chemical
shift differences between Ras181 and Ras-2-Ras spectra
(Fig. S5), which could be anticipated if G domains in the
Ras conjugate remained unassociated at all ionic strengths.
DISCUSSION

In this work, we tested a hypothesis that protein-protein in-
teractions between G domains of Ras molecules are promi-
nent enough to drive specific dimerization of Ras as
suggested in recent reports (15,16). The key approach in
our study was to create conditions of high local concentra-
tion of G domains to favor their self-association thus
revealing their intrinsic dimerization propensity. In the
native membrane-bound state, this propensity would be
enhanced by the increased local concentration due to mem-
brane attachment (38,39) and further modulated by direct
protein-lipid interactions (preferred orientations (32)). In
our reductionist approach, we focused on the self-associa-
tion driven solely by the G domains (in absence of the mem-
brane) because crystallographic dimers noted by
Güldenhaupt (15) occur in absence of the membrane in
the crystal; in addition, Ras dimerization reported by Lin
(16) did not depend on the number of lipid anchors at the
C-terminal peptide suggestive of a passive role of the mem-
brane in the self-association process.

Biomolecular interactions typically include favorable en-
thalpic component (formation of noncovalent bonds) and
unfavorable entropic component due to reduction of transla-
tional freedom of binding partners. We reasoned that teth-
ering the two G domains using a flexible irreversible
linker should reduce the entropic penalty of dimerization
thus increasing the thermodynamic self-association con-
stant. Flexibly tethering the binding partners together to
reveal weak binding modes and trap transient protein-pro-
tein interactions is an established approach to produce stable
protein-protein complexes and protein dimers suitable for
detailed interrogation by structural and biophysical methods
(for review, see (40)). For example, transient interaction be-
tween T cell receptor and peptide/major histocompatibility
complex was effectively stabilized to allow crystallization
by connecting the binding partners with the peptide linker
the assignment or unresolved spectral overlap. (C) Enlarged spectral

views of the two peaks indicated with an asterisk in (B).To see this figure

in color, go online.
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(41); in another example, the native dimeric structure HIV
protease was stabilized by preparation of a tethered dimer,
which helped reveal a crucial contribution of dimerization
to the enzyme function (42). In all cases, it is important
that the linker provides for sufficient conformational
freedom to the binding partners to assume productive
mutual orientations.

To ensure that the tethering method in our study does not
restrict available mutual orientations of the G domains, we
cross-linked two molecules of Ras, residues 1–181, at their
C-terminal cysteine 181 distanced from the folded G
domain by approximately eight-residue-long C-terminal
peptide, which lacks any stable structure (3,18). To make
our experiments further less sensitive to the specific struc-
ture of the cross-linker, we created two versions of the
Ras-Ras conjugate using flexible polyethylene glycols
spacers of two different lengths: 1.5 and 5 nm (Fig. S2 A).
Comparative analysis of monomeric and conjugated Ras
preparations established that the Ras G domain is not
capable of forming a stable dimer via the direct protein-pro-
tein interaction in a temperature range from 20 to 37�C both
in the absence and presence of electrolytes (up to 300 mM
NaCl) at the cytosolic pH 7.2.

Consideration of protein electrostatics lends further sup-
port to the argument against the direct contact of G domains
in Ras dimers reported in the literature. The overall charge
of the G domain is negative at the cytosolic pH because
the theoretical pI of Ras166 polypeptide is 4.9 (the overall
charge will become even more negative if the charges of
the GDP phosphates are considered). Therefore, the transla-
tional diffusion of G domains may be significantly biased by
their mutual repulsion thus favoring the monomeric state.
Similar electrostatic repulsion is expected to keep the G
domain at a distance from the membrane surface because
the inner leaflet of the plasma membrane is also strongly
negatively charged (43).

Mazhab-Jafari and coworkers recently investigated Ras
homolog Rheb GTPase chemically linked to the membrane
surface (lipid nanodisc) via C-terminal cysteine side chain
and reported that Rheb retained the same three-dimensional
structure and only transiently associated with the nanodisc
surface (32). In their paramagnetic relaxation enhancement
NMR experiments the authors identified that there are two
preferred orientations of the G domain of Rheb at a time
when it contacts the lipid surface, and proposed that these
preferred orientations may enhance specific protein-protein
interactions. Yet, Mazhab-Jafari and coworkers stressed that
these pre-oriented membrane-bound states were minor con-
formations of the protein-nanodisc complex with a majority
of the protein exhibiting a high degree of freedom (dy-
namics) despite being tethered to the membrane (32). These
observations are in line with the report by Werkmüller and
coworkers that rotational diffusion of N- and K-Ras was
only modestly retarded by tethering these proteins to large
liposomes (44).
Biophysical Journal 109(5) 1000–1008
It is possible that preferred orientations of Ras induced by
themembrane proximity enhance the hypothetical weak pro-
pensity of G domains to form dimers. However, thermody-
namics requires such preoriented states to constitute the
majority of the protein population to contribute significant
Gibbs energy to the further binding process. In reports
from both Mazhab-Jafari and Werkmuller the nearly free
diffusion of G domains near the membrane surface was
consistent with a small minority of G domains being in direct
contact with the membrane implying that their contribution
to the overall sample properties was respectively small.

In addition to this analysis, we would like to argue that
although preferred orientations may certainly improve pro-
ductive interactions, capability for noncovalent bonding be-
tween two G domains must exist in the first place. As such
it should be detectable in other settings, for example, by
creating high local concentration in the absence of the mem-
brane surface. If the interaction remains only transient even in
such a favorable thermodynamic condition one could right-
fully doubt biological significance of this interaction mode.

Concluding our analysis we need to note that there are
other studies of Ras tethered to the membrane surfaces
that did not require dimerization to explain experimental ob-
servations. One example is the work published nearly at the
same time with Güldenhaupt’s dimerization report (15)
where Kapoor and coworkers (45) investigated N-Ras (and
K-Ras) tethered to the supported phospholipid bilayers.
The authors, however, did not detect the same signatures
in the infrared spectra that made Güldenhaupt propose
dimerization in their samples. It is important to note that,
in the previously mentioned studies, Ras constructs were
anchored or chemically tethered to the membranes of vari-
able lipid composition, which may be one of the sources
of reported differences.

In summary, we demonstrated that the protein-protein in-
teractions between H-Ras G domains alone cannot stabilize
G domain dimers and the crystallographic dimer does not
form in solutions. High sequence identity between H-, N-,
andK-Ras G domains allows for extending these conclusions
to all three human Ras isoforms. We suggest that in all cases
in vivo and in vitro where dimerization of Ras is suspected
one should focus on other possible causes such as the direct
interaction of G domains with the lipid bilayer, involvement
of lipid anchors of the C-terminal peptides, or membrane-
induced conformational changes in the G-domain structure.
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Figure  S1.  Illustration of the "crystallographic" dimers in Ras and analysis of sequence 
conservation at the dimer interface. 
(Top panel) Alignment of crystal structures of Ras illustrating the conserved "crystallographic" 
dimer. The backbone alignment of 17 structures (PDB ID: 5p21, 1gnr, 1jah, 1jai, 1rvd, 2cl0, 3l8y, 
3l8z, 3v4f, 4l9s, 4l9w, 121p, 221p, 421p, 621p, 721p, and 821p) is shown in blue; in red—the 
observed crystallographic neighbor (generated using symmetry operations in Pymol(46)). C-
alpha trace is shown as a tube. C-termini of each monomer are indicated. Atoms of the guanine 
nucleotides are represented as spheres (one nucleotide for each group of structures). Six crystal 
structures belong to the H 3 2 space group; the rest—to P 32 2 1.  
(Bottom panel) Multiple sequence alignment of human Ras isoforms H-Ras, N-Ras, and K-Ras 
(NCBI accession # AAM12630, AAM12633, and NP_004976, respectively) performed with 
ClustalW(47). The residues involved in salt bridges at the crystallographic dimer interface are 
boxed. 
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Figure S2. (A) Protein models utilized in this study: Ras166, the truncated G domain of H-Ras, 
residues 1-166; Ras181, the cytosolic portion of the full-length H-Ras, residues 1-181; Ras-2-Ras 
and Ras-11-Ras, the inverted-tandem conjugates of two Ras181 molecules. Nucleotides are 
shown as spheres; C-terminal cysteines are sticks. The model of Ras166 is based on PDB ID 
5P21 (residues 1-166; contains "crystallographic dimer"). The Ras181 is modeled using 1Q21 
(residues 1-171 with extended helix 5; no "dimer"). To create the full-length model of the 
"crystallographic dimer", two 1Q21 structures were aligned to the dimeric structure from 5P21. 
The unstructured C-terminal peptides, residues 172-181, were added to 1Q21 in Pymol and 
modeled in conformations to show that there are no steric restrictions to form the dimeric 
structure with either 1.5 or 5 nm distance between C-terminal cysteines. The BM(PEG) linkers 
are schematically shown with dashed lines. Drawing is approximately to scale. (B) The size-
exclusion chromatography profile of the conjugation reaction mixture utilizing BM(PEG)2. The 
conjugate and monomer peaks are labeled with 'Ras-2-Ras' and 'Ras181', respectively. The 
profile for the Ras-11-Ras reaction was qualitatively similar. (C) SDS-PAGE analysis of the 
reaction mixture prior to injection on the size-exclusion column (lane 1), and fractions from the 
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elution profile (lanes 3-8) in panel A. Lane 2, PageRuler Prestained Protein Ladder (Fermentas, 
SM0671). The Ras-2-Ras fractions (lanes 4, 5, and 6) were further concentrated to prepare Ras-
2-Ras samples; the Ras181 fractions (lanes 7 and 8) were discarded. (D) Analysis of purity of the 
final protein preparations. The lanes were intentionally overloaded to visualize residual 
contaminating proteins. Lane 1, PageRuler Prestained Protein Ladder; Lane 2, first R181 
preparation; Lane 3, second R181 preparation; Lane 4, Ras-2-Ras sample; Lane 5, Ras-11-Ras 
sample. 

 
 
 
 

 
 

Figure S3. Confirmation of integrity of the fluorescence and NMR samples after all 
measurements. The NMR samples were loaded directly; the samples from the anisotropy decay 
measurements were concentrated by precipitation with trichloroacetic acid to allow for 
visualization with the Coumassie staining. Lane 1, Ras-2-Ras fluorescence sample; lane 2, 
Ras181 fluorescence sample; lanes 3, 6, and 8; PageRuler Prestained Protein Ladder as in Figure 
S2; lane 4, Ras-11-Ras fluorescence sample; lane 5, Ras181 fluorescence sample from the 
second protein preparation; lane 7, Ras166 fluorescence sample; lane 9; Ras-2-Ras NMR 
sample; lane 10, Ras181 NMR sample.  
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Figure S4. Representative analysis of time-domain fluorescence measurements of Ras-2-Ras 
conjugate (Panels A-D), Ras181 (Panel E), and Ras-11-Ras conjugate (Panel F). The proteins 
were complexed with mant-GDP. Excitation was provided by pulsed LED at 365 nm; polarized 
decays were detected at 440 nm with 24 nm slits. Buffer conditions: 20 mM HEPES pH 7.2, 5 
mM MgCl2, and 1 mM DTT at 20oC. (A) Polarized intensity decays of Ras-2-Ras at 11 µM: 
parallel component, red circles; perpendicular component, blue circles; best-fit curves, black 
lines. Acquisition time was 40 minutes per polarizer orientation. Instrument response function is 
shown with black circles. (B) Residuals from fitting of the parallel and perpendicular 
components. The best fit parameters for the reconstructed isotropic decay were: a1 = 1.59,  t1 = 
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0.056 ns, a2 = 0.69,  t2 = 5.55 ns, a3 = 1.16, t3 = 8.88 ns. The goodness-of-fit parameter χ2 is 
1.95—slightly elevated due to the hardware artifact, a high-frequency oscillation with the 2.5 ns 
period, observable in the early time points. (C) Representation of the fitting results for Ras-2-Ras 
in the form of anisotropy decays: experimental anisotropies calculated using the parallel and 
perpendicular decay data, red circles; anisotropy decay model including contribution of scattered 
light and one rotational correlation time, black line. Instrument response function, a blue line, is 
shown for time referencing. Best-fit parameters: r0 = 0.29 [0.27 - 0.30], θ = 16.2 [14.9 - 17.6] 
ns; the 95% confidence intervals are shown in parentheses. (D) Deviation of the anisotropy 
decay model from the experimental anisotropy decay. (E) Anisotropy decay of Ras181 at 8 µM, 
averaged from 23 hours of total acquisition time. Best fit parameters: r0 = 0.33 [0.32 - 0.34], θ 
= 14.9 [14.2 - 15.5] ns. (F) Anisotropy decay of Ras-11-Ras conjugate at 5 µM, 17 hours total 
acquisition time. Best fit parameters:  r0 =  0.30 [0.28 - 0.30], θ = 15.4 [14.5 - 16.2] ns. 

 

 
Figure S5. Overlay of 15N-1H HSQC NMR spectra for Ras-2-Ras (red) onto the Ras181 (blue) at 
high ionic strength (300 mM NaCl) at 20oC. 
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Table S1. Summary of fitted rotational correlation times of Ras181 and Ras conjugates 
complexed with mant-GDP. Buffer conditions: 20 mM HEPES pH 7.2, 5 mM MgCl2, and 1 mM 
DTT with variable concentrations of NaCl. Best-fit values of the rotational correlation time are 
given along with the 95% confidence intervals obtained from the Jacobian matices. 
Determination of the error intervals using χ2 surfaces was not possible due the hardware artifact 
(Figure S4.B) that resulted in inflated χ2 values not adequately sensitive to variation of the model 
parameters. 
 
Temperature   θRas181, ns  θRas-2-Ras, ns θRas-11-Ras, ns 

no NaCl 

20 oC 
13.1 [12.3 - 13.9]1 
14.9 [14.2 - 15.5]2 

12.5 [12.0 - 13.1]3 

 
16.2 [14.9 - 17.6] 15.4 [14.5 - 16.2] 

25 oC 11.4 [10.7 - 12.1]1 13.1 [12.0 - 14.1]  

37 oC 8.5 [8.0 - 9.1]1 
8.5 [8.1 - 8.9]2 

10 [9 - 12] 9.8 [9.2 - 10.3] 
 

150 mM NaCl 

20 oC 13.5 [12.6 - 14.5]1 17.1 [15.7 - 18.6] 18.3 [16.9 - 19.8]  

25 oC 11.8 [10.9 - 12.6]1 15.5 [14.2 - 16.8]  

37 oC 8.7 [8.1 - 9.3]1 
9.2 [8.6- 9.8]2 

10.4 [9.5 - 11.2] 9.8 [9.2 - 10.3] 
 

300 mM NaCl 

20 oC 15.8 [14.6 - 17.0]1 18.2 [16-20] 20.7 [18.6 - 22.7]  

25 oC 13.0 [12.0 - 14.0]1 16.2 [13.9 - 18.5]  

37 oC 8.6 [8.3 - 9.3]1 

8.9 [8.4 - 9.3]2 
10.0 [9.0 - 11.0] 10.5 [9.9 - 11.1]  

 
1) The first preparation of Ras181, which served as a source for Ras-2-Ras preparation; 
2) The second preparation of Ras181, which served a source for Ras-11-Ras preparation; 
3) Repeated measurement using the sample from the first preparation of Ras181. 
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Estimation of rotational correlation times for the Ras conjugates 

Anisotropy decays of ellipsoids of revolution 

The calculation of rotational correlation times outlined below is based on theory of anisotropy 
decays reviewed by Kawski (48) and Lakowicz (49). The anisotropy decay of the ellipsoid of 
revolution is composed of three contributions corresponding to decays of anisotropy projections 
onto the principal axes of the ellipsoid, ri (50, 51). Each contribution decays with its 
corresponding rotational correlation time, : 

     Eq. S1 
 

The rotational correlation times are related to coefficients of rotational diffusion of the ellipsoid 
around long and short axes,  and :   

        Eq. S2 

 
Coefficients of rotational diffusion of ellipsoids of revolution with the axial ratio  are 
given by the following equations: 

    Eq. S3 

where D is the rotational diffusion coefficient of a sphere of equivalent volume, and S is 
expressed as 

      Eq. S4 

for the prolate ellipsoid ( ), and  

      Eq. S5 

for  the oblate ellipsoid ( ), respectively.  
 

Technical note Expression for S of a prolate ellipsoid (Eq. S4) comes from (48) (Eq. 157) and 
was incorrectly reproduced in (49) (Eq. 12.23). In turn, the equation for S of the oblate ellipsoid 
(Eq. S5) contains a typo in (48) (Eq. 156), which was corrected by Lakowitz (Eq. 12.24). 
Equations S4 and S5 represent correct versions of the expressions. 
 
Rotational diffusion coefficient of a spherical protein particle is calculated using Stokes-Einstein 
equation: 

         Eq. S6 

where M is a molecular weight of the protein in gram/mol,  - viscosity of solvent in centipoise 
(cP),  - specific volume, ml/gram, h - hydration in ml/gram. Typical values of the specific 
volume and hydration parameters for proteins are   and h = 0.4 ml/gram (49). 
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Viscosity of water at the experimental temperatures was estimated using data from (52) to be 
 cP at 20oC ,  0.89 cP at 25 oC, and 0.69 cP at 37 oC. 

 

Rotational correlation times of the G domain 

Based on the crystallographic structure the Ras G domain may be represented as a prolate 
ellipsoid of revolution with the axial ratio of approximately 1.3. Using Equations S2-S6 we can 
estimate rotational correlation times for Ras166 (Table S2). 
 
 Table S2. Expected rotational correlation times of the prolate ellipsoid of revolution with the 
molecular weight of the isolated G domain (residues 1-166, 18.9 kDa) and axial ratio of  
as well as for the sphere of equivalent volume. 
Temperature     

20 oC 9.34 ns 8.49 ns 9.67 ns 8.8 ns 
 
The important observation here is that the axial ratio of 1.3 represents a small degree of 
asymmetry giving rise to very closely spaced correlation times, which would be difficult to 
resolve by fitting experimental anisotropy decays (49). Therefore, we should expect the G 
domain to be reasonably characterized by a single rotational correlation time of approx. 9 ns. 
 
Experimental anisotropy decay for the isolated G domain of H-Ras (residues 1-166) is shown in    
Figure S6. The data only supported fitting of one correlation time—fitting with two correlation 
times resulted in statistically insignificant values. The best-fit correlation time was 9.0 ns (95% 
confidence interval of 8.5 to 9.4 ns). This is remarkably similar to the predicted correlation times 
in Table S2. 
 

  
Figure S6. The anisotropy decay of the mant-GDP in complex with H-Ras residues 1-166 at 
20oC in presence of 20 mM HEPES pH 7.2, 5 mM MgCl2, and 1 mM DTT. (A) Experimental 
anisotropy values are red circles; fitted curve is black line; IRF is shown as blue line for time 
referencing. (B) Residuals of fit. 
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Calculations of rotational correlation times for the Ras181 construct (G domain + unstructured 
C-terminal tail) are not straightforward because the C-terminal tail is flexible. Comparison of the 
isolated G domain value of 9.0 [8.5,  9.4] ns with experimental values of 13-15 ns for Ras181 at 
the same temperature and salt indicates that extended helix 5 and the unstructured C-terminal 
peptide add hydrodynamic drag. However, addition of the C-terminal peptide did not 
significantly increase degree of asymmetry based on our observations that anisotropy decays for 
Ras181 did not support fitting with more than one rotational correlation time.  
 
We may offer a speculation why Ras181 is still well approximated by a sphere of slightly bigger 
size than Ras166 despite the C-terminal tail. It is important to note that rotational diffusion 
should not be pictured as spinning in one direction. Instead, rotational diffusion is a sequence of 
reorientations with frequently changed directions and random angles induced by vigorous 
collisions with solvent molecules. A flexible chain extending from the rigid core of the protein 
may be expected to "wrap around" multiple ways thus impacting the hydrodynamic size but 
less—asymmetry of the overall structure. 
 

Relationship between rotational diffusion of monomeric and dimeric Ras structures  

Similar reasoning may be applied to the Ras-Ras dimer to anticipate that the flexible loop 
connecting the C-terminal residues of the G domains will also slow down rotational diffusion. 
Since the "tail" in Ras181 and the "loop" in Ras conjugates have similar hydrophilic character 
and lack stable structure, they are likely to impact rotational diffusion to a similar degree.  
 
We hypothesized that we can estimate the expected relative increase of rotational correlation 
times from Ras181 to Ras-2-Ras or Ras-11-Ras by evaluating the increase of calculated 
correlation times from Ras166 to the "crystallographic dimer". Using the axial ratio of 2 
estimated from the dimers in crystal structures, we calculated their rotational correlation times 
and the corresponding ratios to the correlation times of a single G domain (Table S3).  
 
Table S3. Rotational correlation times of the prolate ellipsoid of revolution approximating 
"crystallographic" Ras dimer (37.8 kDa, axial ratio of ) at 20 oC. Dimer/monomer ratios 
are calculated using corresponding values from Table S2. 
 

    
Rotational 
correlation 

time, ns 

23.17  16.81  26.52  

Ratios to 
monomer's 

values 

2.5 2.0 2.7 

Conclusion 

If Ras-2-Ras and Ras-11-Ras constructs, indeed, contain G domains forming the 
"crystallographic dimer" the measured rotational correlation time should exceed the one 
measured for the Ras181 monomer by a factor ranging from 2 to 2.7.  Using the experimental 
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value of 13 ns for Ras181 at 20oC, we expect the rotational correlation times of the Ras dimers to 
be in the range from 26 to 35 ns. At 37oC, we expect Ras dimers tumble with 17 to 23 ns 
correlation times. These ranges are depicted in Figure 1 with black bars. 
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