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ABSTRACT Polyglutamine (polyQ) peptides are a useful model system for biophysical studies of protein folding and aggrega-
tion, both for their intriguing aggregation properties and their own relevance to human disease. The genetic expansion of a polyQ
tract triggers the formation of amyloid aggregates associated with nine neurodegenerative diseases. Several clearly identifiable
and separable factors, notably the length of the polyQ tract, influence the mechanism of aggregation, its associated kinetics, and
the ensemble of structures formed. Atomistic simulations are well positioned to answer open questions regarding the thermo-
dynamics and kinetics of polyQ folding and aggregation. The additional, explicit representation of water permits deeper inves-
tigation of the role of solvent dynamics, and it permits a direct comparison of simulation results with infrared spectroscopy
experiments. The generation of meaningful simulation results hinges on satisfying two essential criteria: achieving sufficient
conformational sampling to draw statistically valid conclusions, and accurately reproducing the intermolecular forces that govern
system structure and dynamics. In this work, we examine the ability of 12 biomolecular force fields to reproduce the properties of
a simple, 30-residue polyQ peptide (Q30) in explicit water. In addition to secondary and tertiary structure, we consider generic
structural properties of polymers that provide additional dimensions for analysis of the highly degenerate disordered states of the
molecule. We find that the 12 force fields produce a wide range of predictions. We identify AMBER ff99SB, AMBER ff99SB*, and
OPLS-AA/L to be most suitable for studies of polyQ folding and aggregation.
INTRODUCTION
Molecular simulations have become an increasingly useful
tool for studying the dynamics and thermodynamics of
protein folding and self-assembly. The generation of mean-
ingful results from simulation relies on two principal ele-
ments, both of which are areas of active research. First,
the simulation must sample the relevant regions of phase
space in a manner sufficient to reach statistically valid
conclusions—the sampling problem (1–19). Second, the
potential energy functions used to represent interactions in
the simulated system must provide a reasonable approxima-
tion to the behavior of the real system—the force field
problem (20–24).

Several recent studies, empowered by the ability to simu-
late over long timescales and thoroughly sample configura-
tional space, have revealed inaccuracies in atomistic force
fields designed to simulate biomolecules in explicit water
(25–30). Such inaccuracies include incorrect secondary
and tertiary structures, folding mechanisms, and NMR
chemical shifts and couplings. The functional form and
parametrization of the backbone torsional potential have at-
tracted special interest because of their central, cooperative
role in the formation of secondary structure. Benchmark
molecules for the aforementioned studies included small
oligopeptides and proteins with a well-defined native fold,
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such as ubiquitin, the villin headpiece, and the FiP35 WW
domain (26–29). Relatively few studies, however, have
investigated whether atomistic force fields with explicit
water models can reproduce the structural properties of
proteins that lack a unique native conformation, known as
intrinsically disordered proteins or intrinsically disordered
polypeptides (IDPs) (31). As a result, it remains difficult
to determine a priori which force field, if any, is best suited
for modeling IDPs.

In this work, we evaluate the ability of 12 atomistic force
fields to reproduce the structural properties of a 30-residue
polyglutamine (polyQ) peptide in dilute solution. The
appearance of aggregates rich in polyQ-containing peptides
is associated with the onset of symptoms in nine neurode-
generative diseases, notably Huntington’s disease (32–34).
Some of the relevant aggregation behavior has been repro-
duced in vitro using synthetic peptides containing only the
polyQ tract and solubilizing or labeling residues, known
as simple polyQ peptides (35–45). Identifying a force field
that faithfully models simple polyQ peptides in solution is
directly relevant to ongoing efforts by multiple research
groups to model the dynamics and thermodynamics of its
folding and aggregation.

More generally, simple polyQ peptides are an archetypal
IDP for which there is sufficient experimental data in
the literature to validate candidate force fields. In vitro
studies have repeatedly shown that polyQ repeats of lengths
5 to 44 natively populate a heterogeneous ensemble of
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collapsed, disordered conformations (35,40–48). Circular
dichroism experiments on simple polyQ peptides, and
NMR experiments on a polyQ tract fused to a larger protein,
indicate a lack of regular, stable secondary structure in the
polyQ tract. It is important to note that neither circular di-
chroism nor NMR is capable of resolving individual confor-
mations that interconvert on the microsecond timescale or
faster; the signals measured represent only an average
over the conformational ensemble. To the best of our knowl-
edge, experimental studies have not reported the precise
proportions of various secondary structure elements in
simple polyQ chains; the consensus, however, is that any
regular secondary structure is metastable (35,40,42,46,48).
Because polyQ does not exhibit a marked preference for
any particular secondary structure, we believe that the simu-
lated peptide might be particularly sensitive to biases in the
torsional potentials that overstabilize particular combina-
tions of the Ramachandran angles.

Simple polyQ peptides exhibit a particular type of disor-
der that is quantified by the scaling of polymer size with
length. Fluorescence correlation spectroscopy experiments
(49) indicate that water is a poor solvent for simple polyQ
peptides of lengths 15 to 53—a surprising finding, given
that the glutamine monomer is highly soluble in water.
The driving force for collapse is favorable self-solvation
by intramolecular hydrogen bonding and the concomitant
tendency to minimize the high-tension peptide-water inter-
face. Given the lack of sequence specificity and the similar-
ity between backbone and side chain functional groups,
there is no unique fold that minimizes the solvent-accessible
surface. In other words, a large number of collapsed struc-
tures contribute to thermodynamic stability, and the forma-
tion of an extended conformation is thermodynamically
unfavorable. The poorness of water as a solvent for polyQ
also suggests a generic driving force for aggregation. There-
fore, the accurate computational modeling of polyQ requires
a realistic representation of collapse and extension in dilute
solution.

PolyQ has been the subject of numerous in silico studies
at the atomistic/explicit-solvent (50–55), atomistic/implicit-
solvent (56–58), and coarse-grained (59–61) levels of
description. The most extensive data on aggregation pro-
cesses has emerged from simulations using a coarse-grained
protein model and/or an implicit solvent, because those sim-
ulations can more easily access the long timescales charac-
teristic of aggregation. Still, there are important problems
for which simulations in explicit solvent are appropriate
and necessary. One is to better understand the dynamics
of solvent reorganization, which have been suggested as
a rate-limiting phenomenon for amyloid aggregation in
general (62) and for polyQ aggregation in particular (63).
Another is to facilitate the interpretation of two-dimensional
infrared spectroscopy (2D IR) experiments, which provide
structural and dynamic information with single-residue
specificity and on subnanosecond timescales (64). The accu-
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rate theoretical modeling of 2D IR spectra from classical
molecular dynamics (MD) simulations requires that both
protein and solvent be represented in atomistic detail. More-
over, the classical force field and water model determine the
parametrization of so-called frequency maps, which bridge
simulation and theory and enable the direct comparison of
simulations and IR experiments (65,66).

To date, it is unclear which atomistic force field and com-
panion water model are most appropriate for MD simula-
tions of polyQ and other IDPs. OPLS-AA/L (67) and
TIP3P (68) predicted an ensemble of disordered, collapsed
conformations for the Q20 peptide (50). The polymer phys-
ics approach described therein inspired parts of our analysis
in this work. The combination of OPLS-AA/L and TIP4P
also predicted results consistent with experiment for the
Q5 and Q15 peptides (52). For other systems, OPLS-AA/L
has been variously reported to overstabilize disordered con-
formations (69) or overstabilize b-sheets (70). Given those
findings, it is worthwhile to verify OPLS-AA/L for a longer
polyQ peptide, which ought to form b-hairpins and b-sheets
more easily because there are more locations for potential
turn element(s). Our previous work on Q54 used AMBER
ff99 (71) and TIP3P, which performed poorly in a recent sur-
vey of force fields (28). The AMBER ff03w force field (31),
which was optimized for the TIP4P/2005 water model (72),
is also of special interest here, because TIP4P/2005 repre-
sents water dynamics more accurately than its predecessors.
Such a model is promising for simulations of IDPs, and our
study investigates whether the successes of an earlier study
(31) transfer to polyQ.

In the following section, we describe the model system
and the simulation techniques employed in this study. We
then present measures of secondary and tertiary structure,
and polymer size, shape, stiffness, and scaling in aqueous
solution, as predicted by the 12 force fields we considered.
Three force fields predict structural properties for polyQ in
qualitative agreement with experiments: AMBER ff99SB,
AMBER ff99SB*, and OPLS-AA/L.
MATERIALS AND METHODS

Simulated system and force fields

The model system considered in this study consists of a single 30-residue

polyglutamine oligopeptide (hereafter denoted Q30) surrounded by 8,192

water molecules, which are represented explicitly. To match conditions at

physiological pH, the amino and carboxy termini of the peptide are as-

signed charges of þ1 and –1, respectively. Glutamine has zero net charge

at physiological pH; therefore, the zwitterionic peptide has zero net charge,

and the system contains no additional counterions or salts. The system was

placed in a cubic simulation box measuring 6.3 nm on each side. Periodic

boundary conditions were enforced in all three dimensions.

The simulations described in the next subsection were performed in 12

independent runs. In each run, the protein was modeled using one of 12

force fields. For each force field, the companion water model was the

same used in the original publication that introduced the force field. The

12 force fields are listed in Table 1.



TABLE 1 Force fields and companion water models

Force Field Water Model References

AMBER ff99 TIP3P (68,71)

AMBER ff99SB TIP3P (73)

AMBER ff99SB* TIP3P (74)

AMBER ff03 TIP3P (75)

AMBER ff03* TIP3P (74)

AMBER ff03w TIP4P/2005 (31,72)

CHARMM27 TIP3P for CHARMM (76,77)

CHARMM22* TIP3P for CHARMM (27)

CHARMM36 TIP3P (78)

GROMOS96 53a6 SPC (79,80)

GROMOS96 54a7 SPC (81)

OPLS-AA/L TIP4P (67,68)
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In every force field except GROMOS96 53a6 and GROMOS96 54a7, all

atoms were represented. GROMOS96 53a6 and GROMOS96 54a7 are

united-atom force fields, meaning that each nonpolar methylene group

was coarse-grained into a single interaction site.

Coulombic forces were calculated using the particle mesh Ewald algo-

rithm (82,83). During equilibration, annealing, and replica exchange molec-

ular dynamics (REMD) simulations, temperature and pressure coupling

were achieved using the Nosé-Hoover thermostat algorithm (84) and the

Parrinello-Rahman barostat algorithm (85,86), respectively. To generate

an initial structure, we extracted a disordered peptide conformation from

our previous REMD simulations of Q54 and shortened it to Q30 (53). Steric

clashes were relaxed via a conjugate gradients energy minimization

scheme. Water molecules were then added to fill the remainder of the

box, and the energy was minimized a second time. All subsequent simula-

tions were performed with a time step of 2 fs. Equilibration of velocities, of

temperature to reference 298 K, and of pressure to reference 1 bar was

achieved in a series of short MD simulations of order 10 ps in length. Dur-

ing production simulations, all bond lengths were constrained to their equi-

librium values by the linear constraint solver algorithm (87). To generate

initial configurations for REMD simulations, the equilibrated peptide-water

system was annealed from 298 K to 478 K at a rate of 4 K/ns, at a constant

pressure of 1 bar.
Replica exchange molecular dynamics

REMD, also known as parallel tempering molecular dynamics, is a method

for accelerating the sampling of configurational space in an MD simulation

(2,88). In a REMD simulation, multiple physical realizations, or replicas, of

the system are simulated in parallel, each at a different, constant tempera-

ture. Periodically, a Monte Carlo move is attempted. The move consists of

exchanging the coordinates of replicas that are adjacent in temperature

space. The attempted moves are accepted with a probability pREMD
acc defined

by the following modified Metropolis criterion (89):

pREMD
acc ¼min

�
1; exp

��
bðjÞ � bðiÞ��U�

XðiÞ�� U
�
XðjÞ��

þ �
bðjÞPðjÞ � bðiÞPðiÞ��VðiÞ � VðjÞ���;

(1)

where the indices of the lower- and higher-temperature replicas are i and j,

respectively; the inverse temperatures of replicas i and j are b(i) and b(j),
respectively; the pressures of replicas i and j are P(i) and P(j), respectively;

the volumes of replicas i and j are V(i) and V(j), respectively; the potential

energy as a function of atomic coordinates is U; and the atomic coordinate

vectors of replicas i and j are X(i) and X(j), respectively. The exchange cri-

terion satisfies detailed balance. Consequently, at each temperature a cor-

rect Boltzmann energy distribution is generated, but with a discontinuity

in the dynamics at the instant of each accepted exchange move. Put another
way, each spatially continuous trajectory performs a stochastic walk in the

temperature space spanned by the replicas. Potential energy barriers are

more easily surmounted at high temperatures, providing for a more efficient

sampling of configurational space than is possible in a brute-force MD

simulation. REMD is an especially valuable tool for the study of systems

whose ergodicity is inhibited by the roughness of the underlying free energy

hypersurface. Biomolecules, and instrinsically disordered peptides such as

polyQ in particular, constitute one such class of systems. Unlike umbrella

sampling and density-of-states-based methods that also accelerate configu-

rational sampling, REMD does not require a priori knowledge of the collec-

tive variables or reaction coordinates that describe conformational changes.

In our simulations, temperatures were chosen in an exponential distribu-

tion (90) to achieve an exchange acceptance rate of 0.2 to 0.3, which is

believed to optimize the efficiency of the method (91). For AMBER ff99,

60 replicas spanned 298–459 K, for GROMOS96 53a6 and GROMOS96

54a7, 72 replicas spanned 298–459 K, and for all other force fields, 72 rep-

licas spanned 298–478 K. The temperatures are listed in Table S1 in the

Supporting Material. For each temperature, a corresponding configuration

was extracted from the temperature annealing simulation described in the

previous subsection. All 72 replicas were then run in parallel for 150 ns

each, at a constant pressure of 1 bar and each at a different, constant tem-

perature in the distribution. The equations of motion were integrated using

the leap-frog algorithm. Coordinate exchanges were attempted every 2 ps.

Configurational snapshots containing particle positions and velocities were

saved every 20 ps. Production statistics were gathered from the last 100 ns

of simulation of each replica. For each force field, the total simulated time

was 10.8 ms, and the total simulated production time was 7.2 ms. REMD

simulations were carried out using the GROMACS 4.5.3 simulation pack-

age (10,92,93) built on PBS clusters at the University of Wisconsin–Mad-

ison and the University of Chicago, and on a Cray cluster at the University

of Chicago and Argonne National Laboratory. We assessed the convergence

of our simulations by unmixing the REMD trajectories and calculating the

conformational relaxation time (see Table S4).
RESULTS

Secondary and tertiary structure

As discussed earlier, polyQ is an attractive model system
for force field evaluations because it possesses no unique,
native conformation, nor does it exhibit regular secondary
structure. We hypothesized that inaccuracies in the force
fields, particularly in the torsional potentials, might be
more readily apparent for polyQ than for other polypeptides
previously studied. The fractional secondary structure for
all 12 force fields, calculated from REMD simulations, is
shown in Fig. 1.

Our REMD simulations reveal significant discrepancies
among the predictions of the chosen force fields. Nine of
12 force fields predict a mostly disordered conformational
ensemble for Q30 in water at 298 K: AMBER ff99, AMBER
ff99SB, AMBER ff99SB*, AMBER ff03*, AMBER ff03w,
CHARMM22*, CHARMM36, GROMOS96 54a7, and
OPLS-AA/L. Those nine predict average disordered frac-
tions ranging from 0.584 5 0.007 (GROMOS96 54a7) to
0.9655 0.007 (CHARMM36), although there is significant
variance in the proportions of helical and strand content in
the remainder (for instance, compare AMBER ff99 with
GROMOS96 54a7). In contrast, the AMBER ff03 and
CHARMM27 force fields predict average helix fractions
Biophysical Journal 109(5) 1009–1018



FIGURE 1 Average fractional secondary structure of Q30 in water,

computed for 12 biomolecular force fields. The disordered (fd), strand-

like (fs), and helix-like (fh) fractions are plotted for 298 K (solid circles),

for the highest-temperature replicas in each simulation, 478 K (open

circles) or 459 K (open diamonds), and for the intervening temperatures

(lines). For every snapshot saved during the production REMD simulations,

each residue was assigned one of the eight secondary structure states

defined by the DSSP criteria, which are based on hydrogen bond energy

and curvature of the backbone chain (94). We grouped the DSSP assign-

ments into broader categories: disordered (coil, bend, and turn), strand-

like (b-sheet and b-bridge), and helix-like (a-helix, 310-helix, and p-helix).

At each temperature, the corresponding secondary structure fractions were

averaged over all 5000 production snapshots. The 459 K symbol of

AMBER ff99 is hidden beneath the 478 K symbol of CHARMM27, and

the 459 K symbol of GROMOS96 54a7 is hidden beneath the 298 K and

478 K symbols of CHARMM36. By construction, fd þ fs þ fh ¼ 1. Esti-

mates of the sampling errors are provided in Tables S2 and S3 and in

Fig. S1.
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of 0.6015 0.053 and 0.7075 0.015, respectively, at 298 K.
GROMOS96 53a6 predicts an average strand fraction of
0.648 5 0.008 at 298 K.

The temperature dependence of secondary structure con-
tent is also plotted in Fig. 1. All models, with the exception
of AMBER ff99, predict increasing structural disorder as
temperature increases. The b-sheet structures that dominate
the conformational ensemble predicted by GROMOS96
53a6 (and that comprise a significant fraction of the ensemble
predicted by GROMOS96 54a7) at 298 K are largely
unfolded at 459 K. AMBER ff03 and CHARMM27 also pre-
dict smaller fractions of helix at 478 K than at 298 K, but the
difference is less pronounced than it is for GROMOS96 53a6.
AMBER ff99 predicts a small increase in helical content
with increasing temperature, but at no temperature does
that model predict any significant b-sheet content.
Biophysical Journal 109(5) 1009–1018
We note that our simulation protocol quenches the liquid-
vapor phase transition at 373 K—i.e., the water is super-
heated—because the formation of a liquid-vapor interface
in a microscopic system incurs a significant thermodynamic
penalty. In Figs. S6 and S7 we plot the density and pressure,
respectively, of the replicas as functions of temperature. The
Metropolis exchange criterion (Eq. 1) satisfies detailed bal-
ance at each temperature and thus guarantees a Boltzmann
distribution of states—including at 298 K, which is of prime
interest in this study. We do not attempt to establish any
physical relevance of results at high temperatures because
1) to our knowledge, there is no experimental data with
which to compare, and 2) in general, the models were
parameterized to reproduce the correct physics under stan-
dard laboratory conditions, and are not necessarily reliable
at higher temperatures. Still, the results provide some
insight into the stability of the conformations identified in
simulations.

Residue contact maps are plotted in Fig. 2. Persistent con-
tacts between pairs of residues are indicated by gray. Gray
lines offset from the main diagonal by three to five residues
represent helices, gray lines parallel to the antidiagonal
represent antiparallel b-sheets, and gray lines parallel to
the diagonal represent parallel b-sheets. Based on the
absence of persistent contacts other than those correspond-
ing to the secondary structure preferences illustrated in
Fig. 1, the Q30 peptide appears to have little, if any, regular
tertiary structure. Note, however, that nonspecific contacts
between distant residues are prevalent in some force fields
(e.g., AMBER ff99SB, ff99SB*, OPLS-AA/L) and virtually
nonexistent in others (e.g., AMBER ff03w, CHARMM36).
Such an observation suggests that different force fields pre-
dict varying degrees of polymer swelling or collapse in so-
lution. This idea is treated more rigorously in the following
section.
Polymeric properties

The force fields can be further differentiated according to
generic measures of polymer size, shape, and stiffness.
These measures act as additional dimensions for analysis
of the highly degenerate disordered states that dominate
the conformational ensembles predicted by 9 of 12 force
fields. Our approach is in the spirit of a previous in silico
study of polyQ that characterized the collapse of the mole-
cule in aqueous solution (50). The radius of gyration, Rg, is
defined by the following:

Rgh

"PN
i¼ 1mi

�ðxi � xCMÞ2
	

PN
i¼ 1mi

#1=2

; (2)

where the number of atoms is N, the mass of atom i is mi,
the position of atom i is xi, and the position of the center of
mass is xCM. The radius of gyration may also be calculated



FIGURE 2 Residue contact maps for Q30 in water at 298 K. The shade measures the average smallest distance between the indicated residues over 5000

production snapshots from REMD simulations. All distances greater than or equal to 1.5 nm are shaded black. By construction, the maps are symmetric

across the diagonal. Estimates of the sampling error are provided in Fig. S2.
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from the gyration tensor T, according to the following
equations:

T ¼ 1

N

XN
i¼ 1

ðxi � xCMÞ5ðxi � xCMÞ; (3)

Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ l2 þ l2

q
; (4)
1 2 3

where the eigenvalues of T are l1, l2, and l3. The aspheric-

ity, d, which ranges from d ¼ 0 for a perfectly spherical
object to d ¼ 1 for an infinitely long rod, is defined by the
following:

d ¼ 1� 3

"
l1l2 þ l2l3 þ l3l1

ðl1 þ l2 þ l3Þ2
#
: (5)

In Fig. 3 we plot the values of Rg and d for all production

snapshots at 298 K. Owing to the high secondary structure
content, AMBER ff03, CHARMM27, and GROMOS96
53a6 predict significant populations of elongated structures.
More surprisingly, the nine force fields that predict a pre-
dominantly disordered conformational ensemble give vary-
ing distributions of size and shape. AMBER ff99SB,
AMBER ff99SB*, and OPLS-AA/L exhibit a tight cluster
of nearly spherical conformations with Rg z 1.0. AMBER
ff03*, AMBER ff03w, CHARMM22*, and CHARMM36
exhibit more diffuse distributions and sample many more
elongated conformations. The distributions predicted by
AMBER ff99 and GROMOS96 54a7 are intermediate be-
tween these two classes. Among those force fields that pre-
dict mostly disordered conformations for Q30 in water, some
(but not all) of the variance in the radius of gyration and as-
phericity is attributable to the following differences in the
persistence length lp:

lp ¼
�
1

l
~l1 ,~h

�
; (6)

where the bond length is l, the first bond vector is~l1, and the
end-to-end vector is ~h. The persistence length and end-to-

end distance are shown in Table 2. Both measures vary
significantly across the 12 force fields. Note that because
the backbone changes direction constantly within an a-helix
and comparatively little within a b-strand, secondary struc-
ture propensities are embedded in the value of the per-
sistence length. It is not trivial to separate the two.
Therefore, the value of the persistence length is most infor-
mative for force fields in which the proportions of regular
secondary structure are low.

The balance of peptide-peptide and peptide-solvent in-
teractions influences whether a polymer adopts predomi-
nantly collapsed or expanded structures in solution. The
scaling of a polymer’s three-dimensional size as a function
of length is an indicator of solvent quality that can be quan-
titatively compared with experimental data. If the radius of
gyration follows the scaling law RgfNn

r, where the number
of monomers is Nr, then the value of the exponent n de-
pends on the solvent quality. In a poor solvent, n ¼ 1/3;
in a neutral (theta) solvent, n ¼ 1/2; in a good solvent,
n z 0.588. The value of n for simple polyQ peptides in
dilute solution was determined from experiments to be
0.32 5 0.02 (49).
Biophysical Journal 109(5) 1009–1018



FIGURE 3 Histograms of radius of gyration and asphericity for Q30 in water at 298 K. Each point corresponds to one production snapshot. Block histo-

grams, which are an indicator of convergence, are provided in Figs. S3 and S4.
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The single chain form factor P(q), defined to be the ratio
of the scattering intensity of the polymer solution Is to the
Rayleigh scattering intensity Is0 as a function of scattering
wavelength q, captures polymer scaling behavior across
all relevant length scales. In the limit of infinite molecular
weight, the value of nmay be extracted from the single chain
form factor. The Q30 peptide, which contains fewer than 100
bonds along the backbone, falls well short of that limit and,
as shown below, the value of n cannot be determined. Still,
this analysis provides a useful summary of polymer struc-
ture across multiple length scales. Given an ensemble of
conformations, the single chain form factor is modeled by
the following equation:

PðqÞh Is
Is0

¼ 1

N2
r

XNr

k¼ 1

XNr

l¼ 1

�
eiq , rkl

	
(7)

1 XNr XNr
�
sin qr

�

¼

N2
r k¼ 1 l¼ 1

kl

qrkl
: (8)
TABLE 2 Polymeric measures of Q30 in water and estimates of the

Force Field Radius of Gyration (nm) Asphericity

AMBER ff99 1.025 5 0.017 0.135 5 0.01

AMBER ff99SB 0.982 5 0.003 0.073 5 0.00

AMBER ff99SB* 0.986 5 0.005 0.081 5 0.00

AMBER ff03 1.127 5 0.017 0.185 5 0.02

AMBER ff03* 1.179 5 0.025 0.162 5 0.01

AMBER ff03w 1.299 5 0.014 0.167 5 0.00

CHARMM27 1.170 5 0.014 0.218 5 0.04

CHARMM22* 1.255 5 0.018 0.165 5 0.00

CHARMM36 1.397 5 0.022 0.160 5 0.00

GROMOS96 53a6 1.294 5 0.006 0.301 5 0.00

GROMOS96 54a7 1.125 5 0.006 0.172 5 0.00

OPLS-AA/L 0.951 5 0.030 0.072 5 0.01

Biophysical Journal 109(5) 1009–1018
The sums run over all Ca atoms in the peptide. The scat-

tering wavevector is q, the number of residues is Nr, the vec-
tor distance between atoms k and l is rkl, and the scalar
distance between atoms k and l is rkl.

For each force field, the single chain form factorwas calcu-
lated by evaluating Eq. 8 on the interval q ˛½0:01; 100�nm�1

and averaging over 5000 production snapshots from the
REMD simulations. The results are plotted in Fig. 4, with
each curve scaled horizontally by the average value of Rg

in the corresponding force field.
The plot includes analytical curves (i.e., infinite molecu-

lar weight) for selected values of n, according to the
following equation:

P ¼ 1

n

"
G
�
1


2n; 0; qRg

�
�
qRg

�1=2n � G
�
1


n; 0; qRg

�
�
qRg

�1=n
#
; (9)

where G(a,z1,z2) is the generalized incomplete gamma func-
tion with exponent a and lower and upper limits of integra-
tion z1 and z2, respectively (95–97).
sampling error

Persistence Length (nm) End-to-End Distance (nm)

3 0.244 5 0.001 1.815 5 0.119

2 0.448 5 0.011 1.334 5 0.052

3 0.344 5 0.010 1.537 5 0.111

8 0.223 5 0.005 2.698 5 0.078

2 0.718 5 0.021 1.854 5 0.085

5 0.761 5 0.043 2.353 5 0.091

3 0.197 5 0.005 3.019 5 0.120

5 0.670 5 0.017 2.247 5 0.198

4 0.496 5 0.014 3.311 5 0.073

3 1.124 5 0.009 1.043 5 0.031

5 0.595 5 0.011 1.109 5 0.030

9 0.511 5 0.076 0.975 5 0.033



FIGURE 4 Single chain form factor of Q30 in water at 298 K. Solid lines

indicate REMD data. Dashed lines indicate analytical predictions (Eq. 9)

for collapsed globule (n ¼ 1/3), theta coil (n ¼ 1/2), and swollen coil

(n ¼ 0.588) of infinite molecular weight. Estimates of the sampling error

are provided in Fig. S5.
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The force fields exhibit a variety of scaling behaviors. For
qRg < 2, all curves from simulation follow the analytical
prediction for n ¼ 1/2. On longer length scales, the curves
diverge, reflecting the varied degrees of collapse described
earlier. As qRg continues to increase, the scattering wave-
length approaches the length of covalent bonds, and no use-
ful information about macromolecular structure is available.
As mentioned earlier, the curves calculated from simulation
cannot be fit well by the analytical curves for any single
value of n. The difficulty appears to be related to the fact
that in all of the models, the radius of gyration is within
an order of magnitude of the persistence length. Our data
are insufficient to determine a value for the polymer scaling
coefficient. Nevertheless, the marked differences in the de-
gree of collapse aid our ability to discriminate among force
fields.
DISCUSSION

The simulated structural and thermodynamic properties of a
simple polyQ peptide in solution have been examined for 12
atomistic force fields for biomolecules and their companion
water models. We carried out extensive REMD simulations
to thoroughly sample the equilibrium phase space of the Q30

peptide. The models chosen for evaluation included at least
one from each of the four major families of atomistic force
fields for biomolecules. They included recent versions as
well as older ones that have been used extensively in the
literature. Our simulations revealed substantial differences
in the predicted equilibrium properties of Q30 in water,
including the secondary and tertiary structure, radius of
gyration, asphericity, persistence length, and single chain
form factor. In several cases, significant discrepancies
were observed between the predictions of a particular force
field and experiment.

Three force fields—AMBER ff99SB, AMBER ff99SB*,
and OPLS-AA/L—yield predicted conformational ensem-
bles for polyQ in qualitative agreement with experimental
findings regarding secondary structure and collapse in
solution (35,41,42,46). All three predict predominantly
disordered, collapsed conformations in water. Four
others—AMBER ff03*, AMBER ff03w, CHARMM22*,
and CHARMM36—exhibit no obvious biases in secondary
structure but do exhibit larger persistence lengths, leading to
more extended, aspherical, and diffuse conformations in
water. AMBER ff99 appears to understabilize b-sheets but
does not severely overstabilize helical structures, and
predicts a distribution of collapsed and extended conforma-
tions that is intermediate between the two aforementioned
classes. In analogy to AMBER ff99, GROMOS96 54a7 ap-
pears to understabilize a-helices and overstabilize b-sheets.
Of the remaining three force fields, AMBER ff03 and
CHARMM27 predict a large fraction of helical secondary
structure in Q30 and GROMOS96 53a6 predicts a large frac-
tion of b-strand content. It is especially difficult to reconcile
the results produced by the latter three models with the
available experimental data on simple polyQ peptides.

Our results confirm some of the biases reported in the
literature, shed light on others that have not been discussed
(to our knowledge), and put in perspective their importance
with regard to the simulation of polyQ and IDPs in general.
AMBER ff99, AMBER ff03, and CHARMM27 have been
repeatedly observed to overstabilize a-helices and understa-
bilize b-sheets (25–30,69,70,74,98–100). AMBER ff99 also
performed poorly in simulations of the native state of ubiq-
uitin in comparison with NMR data (28). In our simulations,
the bias toward the a-helix is more pronounced in AMBER
ff03 and CHARMM27. It has been suggested that AMBER
ff99SB understabilizes b-sheets (74). Based on our data,
AMBER ff99SB is appropriate for simulations of the
natively disordered state of simple polyQ peptides, but if
the reported bias is significant, this force field may perform
suboptimally in calculations of the stability of candidate
nuclei that are rich in b-sheet. GROMOS96 53a6 was re-
ported to understabilize a-helices (69). In the case of polyQ,
the apparent bias in favor of b-sheets is more damaging,
because calculations of the stability of candidate nuclei
are meaningless if the b-sheet is purported to be the domi-
nant native conformation. OPLS-AA/L has been reported
to understabilize both a-helices and b-sheets and over-
stabilize disordered conformations (30,69,100). A different
study suggested that OPLS-AA/L overstabilizes the b-sheet
conformation (70). In our simulations, however, OPLS-
AA/L performs favorably—especially so in light of its age
and relative simplicity.
Biophysical Journal 109(5) 1009–1018
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AMBER ff03*, AMBER ff03w, and CHARMM22* are
more recent models and have not been evaluated as thor-
oughly in the literature, but some existing benchmarks do
exist. AMBER ff03* and AMBER ff03w performed reason-
ably well in matching the NMR structures of ubiquitin
and various oligopeptides (28). In another study that incor-
porated simulations of the native states of ubiquitin
and GB3, temperature-dependent conformational properties
of the (AAQAA)3 and CLN025 peptides, and folding
simulations of villin and the WW domain, CHARMM22*
exhibited good agreement with experiment and outper-
formed all other force fields tested except AMBER
ff99SB*-ILDN, according to a scoring system designed
by the authors (29). All three appear to have repaired the
biases that plagued their predecessors, AMBER ff03 and
CHARMM27; these three also retain the stiff backbones
that hinder polyQ collapse in dilute solution.

AMBER ff99SB, AMBER ff99SB*, and OPLS-AA/L
replicate the essential properties of polyQ observed in exper-
iments, namely, a lack of regular secondary structure and
highly collapsed structures in water. The former property is
necessary for studying folding energetics, and the latter is
necessary for studying collapse, extension, and aggregation.
In the absence of additional experimental data, we conclude
that any of these three models is appropriate for folding and
aggregation studies of simple polyQ peptides.

The nature of polyQ’s conformational preferences (or
lack thereof, depending on one’s perspective) dictates that
the experimental data available for validating candidate
force fields are coarse and generic. They simply lack the
precision offered by RMSD structural variation or NMR
chemical shifts, to name two metrics frequently employed
in this type of study. This is not a failure of the experiments,
but a consequence of polyQ’s enigmatic, heterogeneous
structural ensemble. Yet, a majority of the force fields in
this study fail even to qualitatively reproduce experimental
findings. We hope that the results we present will serve as
a guide—and a caution—to researchers interested in study-
ing IDPs by way of MD simulations.
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SIMULATION DETAILS

Force field(s) Replica temperatures (K)
AMBER ff99 298.00; 300.31; 302.63; 304.96; 307.31; 309.67; 312.05; 314.43; 316.84; 319.25; 321.68; 324.12;

326.58; 329.05; 331.54; 333.79; 336.30; 338.82; 341.37; 343.92; 346.49; 349.08; 351.68; 354.30;
356.93; 359.58; 362.24; 364.91; 367.61; 370.31; 373.04; 375.78; 378.54; 381.31; 384.09; 386.90;
389.72; 392.56; 395.41; 398.28; 401.17; 404.08; 406.99; 409.93; 412.89; 415.86; 418.85; 421.86;
424.89; 427.93; 430.96; 434.04; 437.14; 440.26; 443.39; 446.55; 449.71; 452.90; 456.11; 459.34

GROMOS96 53a6,
GROMOS96 54a7

298.00; 299.88; 301.77; 303.67; 305.58; 307.50; 309.43; 311.40; 313.35; 315.30; 317.27; 319.25;
321.24; 323.23; 325.24; 327.26; 329.29; 331.33; 333.38; 335.44; 337.50; 339.58; 341.68; 343.78;
345.89; 348.02; 350.15; 352.30; 354.44; 356.60; 358.78; 360.97; 363.17; 365.38; 367.61; 369.85;
372.10; 374.35; 376.62; 378.90; 381.19; 383.50; 385.81; 388.13; 390.47; 392.83; 395.19; 397.57;
399.96; 402.36; 404.77; 407.20; 409.66; 412.11; 414.58; 417.05; 419.55; 422.05; 424.56; 427.09;
429.63; 432.18; 434.74; 437.32; 439.92; 442.52; 445.14; 447.78; 450.43; 453.09; 455.76; 458.58

All others 298.00; 300.08; 302.17; 304.28; 306.39; 308.52; 310.66; 312.81; 314.97; 317.14; 319.33; 321.52;
323.73; 325.96; 328.19; 330.43; 332.70; 334.97; 337.25; 339.54; 341.85; 344.18; 346.51; 348.86;
351.21; 353.58; 355.97; 358.36; 360.77; 363.20; 365.63; 368.09; 370.55; 373.03; 375.53; 378.04;
380.56; 383.09; 385.64; 388.20; 390.78; 393.37; 395.97; 398.59; 401.22; 403.87; 406.53; 409.21;
411.90; 414.61; 417.33; 420.07; 422.82; 425.59; 428.37; 431.17; 433.98; 436.81; 439.66; 442.52;
445.39; 448.29; 451.20; 454.12; 457.06; 460.02; 463.00; 465.99; 469.00; 472.02; 475.06; 478.12

Table S1: Replica temperatures in REMD simulation.

ESTIMATES OF SAMPLING ERROR

Estimates of the sampling error, where provided, were calculated by a block averaging approach. Each production MD sim-
ulation was 100 ns in length. For a given quantity (e.g. Rg), block averages of the quantity were computed over the first and
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second 50-ns halves of the simulation. The mean absolute deviation of the two block averages with respect to the total average
was taken as the sampling error.

Figure S1: Average fractional secondary structure of Q30 in water. Left to right, the disordered (fd), strand-like (fs), and
helix-like (fh) fractions are plotted for all temperatures.

Force field fd fs fh

AMBER ff99 0.712± 0.009 0.001± 0.000 0.287± 0.009
AMBER ff99SB 0.820± 0.028 0.117± 0.019 0.063± 0.009
AMBER ff99SB* 0.789± 0.015 0.045± 0.010 0.166± 0.019
AMBER ff03 0.399± 0.056 0.000± 0.000 0.601± 0.053
AMBER ff03* 0.681± 0.039 0.209± 0.021 0.109± 0.014
AMBER ff03w 0.772± 0.018 0.136± 0.037 0.091± 0.018
CHARMM27 0.293± 0.015 0.000± 0.000 0.707± 0.015
CHARMM22* 0.809± 0.011 0.167± 0.010 0.023± 0.010
CHARMM36 0.965± 0.007 0.014± 0.005 0.020± 0.003
GROMOS96 53a6 0.352± 0.008 0.648± 0.008 0.000± 0.000
GROMOS96 54a7 0.584± 0.007 0.390± 0.007 0.026± 0.005
OPLS-AA/L 0.780± 0.041 0.198± 0.035 0.023± 0.006
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Table S2: Fractional secondary structure of Q30 in water at 298 K.

Force field Temperature (K) fd fs fh

AMBER ff99 459 0.634± 0.005 0.003± 0.001 0.363± 0.005
AMBER ff99SB 478 0.890± 0.004 0.037± 0.023 0.073± 0.004
AMBER ff99SB* 478 0.854± 0.005 0.020± 0.003 0.125± 0.006
AMBER ff03 478 0.670± 0.011 0.000± 0.000 0.322± 0.013
AMBER ff03* 478 0.847± 0.005 0.050± 0.005 0.103± 0.004
AMBER ff03w 478 0.910± 0.005 0.015± 0.003 0.075± 0.006
CHARMM27 478 0.637± 0.014 0.002± 0.000 0.361± 0.014
CHARMM22* 478 0.936± 0.013 0.022± 0.002 0.042± 0.003
CHARMM36 478 0.966± 0.002 0.007± 0.001 0.026± 0.002
GROMOS96 53a6 459 0.898± 0.006 0.010± 0.006 0.002± 0.001
GROMOS96 54a7 459 0.958± 0.002 0.021± 0.002 0.021± 0.002
OPLS-AA/L 478 0.906± 0.005 0.040± 0.003 0.054± 0.003

Table S3: Fractional secondary structure of Q30 in water at elevated temperatures.
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Figure S2: Sampling error in residue contact maps for Q30 in water at 298 K.
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Figure S3: Block histograms of radius of gyration of Q30 in water at 298 K: first 50 ns (red), last 50 ns (blue).

Figure S4: Block histograms of asphericity of Q30 in water at 298 K: first 50 ns (red), last 50 ns (blue).
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Figure S5: Single chain form factor of Q30 in water at 298 K: first 50 ns (red), last 50 ns (blue). Dashed lines indicate
analytical predictions for (left to right) ν = 1/3, ν = 1/2, ν = 0.588.

Force field 〈τ〉 (ns)
AMBER ff99 3.0
AMBER ff99SB 3.6
AMBER ff99SB* 3.3
AMBER ff03 5.5
AMBER ff03* 3.5
AMBER ff03w 0.9
CHARMM27 8.7
CHARMM22* 2.4
CHARMM36 1.5
GROMOS96 53a6 1.4
GROMOS96 54a7 5.7
OPLS-AA/L 2.2

Table S4: Conformational relaxation time of Q30 in water. In each set of simulations, the trajectories were unmixed (i.e., the
configurational swaps were undone). For each unmixed trajectory, we calculated the structural RMSD autocorrelation

function (RMSD calculation over all atoms of Q30 and with respect to the initial configurations for production simulations)
and fit it to a function of the form y = exp (−x/τ). The values in the table are averaged over all replicas for each force field.
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SUPERHEATING OF WATER

Figure S6: Average density of the system as a function of temperature.

Figure S7: Average pressure of the system as a function of temperature.
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SOLVATION THERMODYNAMICS

Force field Water model Propionamide N-methylamide Zwitterionic glutamine Neutral glutamine Ref.

AMBER ff94 (1) TIP3P –32.2 (2)
AMBER ff99 TIP3P –42.2 (3)
AMBER ff03 TIP3P –43.9 (4)
CHARMM22 (5) TIP3P –31.4 (2)
CHARMM22 TIP3P for CHARMM –49.4 (6)
GROMOS96 53a6 SPC –42.3 (3)
OPLS-AA (1996) (7) TIP3P –35.1 (2)
OPLS-AA/L TIP4P –35.5 (8)
OPLS-AA/L TIP4P –32.9 (3)
OPLS-AA/L TIP4P –249.4 –79.9 (9)

Table S5: Hydration free energies (in kJ/mol) of propionamide, the analog of the glutamine side chain; N-methylacetamide,
an analog of the peptide backbone; zwitterionic glutamine; and neutral (uncharged) glutamine.
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