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Estimation of the effect of the membrane curvature on the distance-dependent viscous drag 

 

FIGURE S1   Estimated effect of the cell’s curvature on the viscous drag (d) close to interfaces. (A) The 

curvature is modeled by a stepped function with heights h and step widths a and b = R-a, respectively. 

This leads to different distances of the projected bead center to the curved surface, indicated by the red 

and yellow shaded regions. (B) Sketch of the actual geometry, cell and bead are drawn to scale. (C) The 

step height h defines the step width a with regard to the cell’s radius of curvature Rcell. 

Although the cell’s radius of curvature is large compared to the bead radius, the cell membrane is 

not perfectly flat but exhibits a certain, albeit marginal, curvature. Here, an estimation of the 

effect of the curvature on the measured distance-dependent viscous drag is made. In a very 

simple approach, the curved cell membrane is approximated by a stepped function consisting of 

two steps with widths a and b = R-a, respectively, separated by a vertical distance h, as depicted 

in Fig. S1 A. For better visibility, the sketch in Fig. S1 A is not drawn to scale, a properly scaled 

sketch is shown in Figure S1 B with Rbead = 0.5 µm and Rcell = 9.5 µm as deducted from Fig. 2 in 

the main text. The step height h and its width 2a are related to each other via the cell’s radius of 

curvature Rcell and can be calculated by the Pythagorean theorem 2 2 2( )cell cellR h a R   , see 

Fig. S1 C. If the step is chosen to intersect the circular arc representing the cell membrane at its 

half height h/2, it immediately follows that a = 354 nm and h = 12.5 nm. This leads to the 

approach of superposed distances weighted by the geometrical overlap (projection) of the bead 

diameter with the cell surface. In terms of the spatially varying viscous drag (d), the measured 

viscous drag has to be considered as an average of different (d’) corresponding to superposed 

distances d’ between bead center and surface, each weighted by the part of the bead that sees the 

respective distance d’.  
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In our step-like approximation, the relation for the averaged 
,  reads as follows: 
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The weighting factors a/R and b/R = 1-a/R correspond to the ratio of twice the surface of a 

spherical cap with height b (Acap = 2Rb) and the surface of the remaining sphere (Arest = 4R
2
 – 

2Acap): 
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The bead fluctuations 
,  = 9.5 nm, which are only 1 % of the bead’s diameter, are neglected in 

this calculation. 

In the following, sample curves 
, ( )d  that are corrected according to Eq. S1 are presented and 

the deviation from the uncorrected curves is discussed. In Fig. S2 A, theoretical curves 
, ( )d  

according to Happel’s and Brenner’s formulas (see main text) are shown together with the 

corrected curves 
, ( )d  accounting for the geometrical circumstances as shown above. The 

same analysis is performed for 
, ( )d  of a 1 µm bead close to a HT29 cell in Fig. S2 B. The 

curves were modeled according to Eq. 2 in the main text with the parameters obtained in the 

results section, i.e., 0 = 6.23×∞  and  = 0.45µm in perpendicular direction (green data) and 

0|| = 2.80×∞ and || = 0.28 µm parallel to the interface (red data). 

The original curves 
, ( )d  (solid lines) and the curves 

, ( )d  (dotted lines) corrected for the 

curvature of the interface can hardly be separated in the left part of Fig. S2, indicating that the 

effect of the curvature on the measured 
, ( )d  is small. The insets with numbers 1 and 2 show 

magnifications of both curves close to the contact point at d = R, where the small deviation of 

both curves becomes apparent. To quantitatively estimate this effect, the 
, ( )d R   values and 

, ( )d R   values are given in the figure insets together with the deviation  of these numbers 

in percent. It can be seen that the deviation in the given geometry is in the range of 0.5% for the 

HT29 cell model curve and 2.5% for the stiff glass interface. Due to the fact that ( )d  diverges 

for d R  in the latter case, a mathematical estimation for  is only available for the parallel 

data.  

 



 

 

FIGURE S2   Distance-dependent viscous drag (d) close to a flat (solid lines) and a curved surface 

(dotted lines). Both curves can hardly be separated, in the insets showing the last 20 nm before contact 

(d=R) the deviation of both curves of only 0.38% - 2.5% becomes apparent. (A) Case of a bead 

approaching a stiff planar wall according to Happel’s and Brenner’s formula. Blue curves correspond to 

the direction perpendicular to the interface, red to the parallel direction. (B) (d) for a bead approaching a 

HT29 modeled by the parameters from the results section. Green data = perpendicular, red = parallel 

direction. The corrected data represents our estimate for a slightly curved cell surface. 

 

Note that due to the oversimplification of the actual geometry as discussed above, these 

calculations represent only an estimate of the effect of the cell’s curvature rather than a 

mathematically exact formulation. Nevertheless, the observed order of magnitude of this effect 

suggests that the curvature of the cell membrane has only a minor effect on the measured viscous 

drag and can therefore be neglected. For the vertical cell radius of about Rcell = 7.5 µm, the 

deviation of the corrected curve would be  = 3.1% instead of 2.5% and, e.g., Rcell = 2 µm would 

result in  = 7.9% (not shown). 
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QPD data recording in the proximity of the cell membrane 

 

FIGURE S3   Fluctuation data close to a cell membrane. (A) Distance-dependent position trajectories 

bx(d,t), by(d,t), bz(d,t) of a 1 µm sized bead approaching the membrane of a HT29 cell, calculated from the 

QPD data after calibration. y data correspond to scan direction. Bead surface and cell membrane are in 

contact for d ≤ R (masked by semi-transparent boxes). (B) QPD voltage signals of a laser focus without 

trapped bead are recorded upon approaching the same cell at the same site with the same parameters. 

The acquisition of the QPD voltage signals and their conversion into bead position trajectories 

bx(t), by(t), bz(t) via calibration is described in the main text. Figure S3 A shows the same data as 

Fig. 3 A together with voltage signals of an empty trap approaching the same cell on the same 

approach line, see Fig. S3 B. This control measurement allows us to estimate purely optical 

effects as no bead fluctuations are measured. The decrease in the y signal before cell contact, 

apparent in Figs. 3 A and S3 A, respectively, is also visible in Fig. S3 B and confirms the signal 

slope in Fig. 3 A (green curve) and the theoretical approach in Eq. 8. It furthermore proves that 

this effect must not be confused with the (small) shift of the bead trajectory’s mean position due 

to mechanical interaction (contact) with the cell interface. The latter occurs on a much shorter 

length scale, namely one fluctuation width before surface contact (approximately 9 nm), 

compared to roughly 0.7 µm before contact deduced from Figs. 3 A and S3. The mechanical 

effect is revisited in the discussion in the main text and in the context of Fig. S5.  



Computer simulations of a 1 µm bead’s Brownian motion close to an interface 

To study the influence of the interface on the bead’s fluctuation data, Brownian dynamics (BD) 

simulations based on the Langevin equation were performed in addition to the experiments 

presented in this study. Details of the simulation algorithm can be found in (1). In brief, the 

bead’s diffusive motion is simulated by adding a random displacement to the bead’s trace bj(t) at 

each time step (j = x,y,z). The random numbers are chosen such that their temporal mean value 

equals zero and that the mean squared displacement (bj(t+) - bj(t))
2
 = 2D  grows linearly as 

expected for the free diffusion of the particle (2). 

The motion of a 2R = 1 µm polystyrene bead in a harmonic optical trap potential with isotropic 

force constants j = 50 pN/µm for all j = x,y,z in watery solution at temperature T = 37°C was 

simulated. The theoretical fluctuation width according to the equipartition theorem is j = 

(kT/j)
0.5

 = 9.2 nm. An obstacle in form of a rigid, infinitely large surface was introduced in y 

direction and subsequently approached toward the trap center in distinct steps (y = 4 nm for 

d-R ≤ 40 nm, y = 10 nm for d-R > 40 nm). For the sake of simplicity, the distance-dependent 

change in viscous drag as described by Happel and Brenner was neglected in the simulation, 

such that j(d) = ∞ = 8.0×10
-9

 Ns/m remained constant. All simulation parameters were chosen 

to meet the experimental conditions. The standard deviation y(t) of the bead’s fluctuations in 

perpendicular direction was roughly 9 nm as also measured in the experiments.  

 

FIGURE S4   BD simulation: The mean position value by(t) of a 2R = 1 µm bead’s diffusive motion 

hardly changes close to a rigid surface. 

Due to short contacts of the fluctuating bead with the interface, the fluctuation volume becomes 

slightly asymmetric and shifts the mean value of the position histogram. Figure S4 reveals that 

the presence of the interface leads to a slight decrease of the mean bead’s displacement by(t), 

which, however, only appears at distances smaller than the bead’s fluctuation width, i.e., 

d-R < 9 nm. For any larger distance, the mean value remains constantly zero. This effect must 

not be confused with the shift of the signal that occurs due to additional light scattering at the 

cell, as it was discussed following Eq. 8 in the main text. Since the piezo step size in the 
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experiments was chosen larger than y(t) and only data points at distances d-R > 0 were 

considered for data analysis, this effect does not affect the data presented in this study. 

 

FIGURE S5   BD simulation: Distance-dependent variance by(t)
2
 = AC(=0) of a 2R = 1µm bead’s 

diffusive motion perpendicular to a rigid surface. 

 

FIGURE S6   BD simulation: Distance-dependent viscous drag (d) of a 2R = 1 µm bead’s diffusive 

motion perpendicular to a rigid surface, calculated from the slope of the autocorrelation on time scales 

 ≤ 30 µs. (d) is increased to about 1.1×∞ = 8.8×10
-9

 Ns/m for d-R < 9 nm. 

The AC(0) = by(t)
2
 value, which affects the slope kT/ used for the calculation of the viscous 

drag (see Eq. 4 in the main text), experiences qualitatively the same slight distortion for distances 

d-R < 9 nm, see Fig. S5. This immediately leads to a slight miscalculation of (d), also only 

apparent for d-R < 9 nm, as shown in Fig. S6. As explained above, this systematic, but very 

small error does not impact the data presented in this study. The effects discussed here are only 

present in the fluctuation data perpendicular to the interface, i.e., y direction, the parallel 

directions however remain completely undisturbed (not shown). 

In conclusion, we see that a systematic overestimation of (d) of maximum 10 % occurs only at 

distances as small as the bead’s fluctuation width, i.e., below 9 nm given the experimental 

parameters in this study. This is smaller than the chosen step size in our experiments and thus 

does not affect any data points presented in this paper. 
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Distance-dependent histogram width 

 

FIGURE S7   BD Simulation: (A) Distance-dependent fluctuation width y(d) = (d) of a 2R = 1 µm 

bead’s diffusive motion perpendicular to a rigid surface, calculated as the standard deviation of the 

fluctuation data. The histogram width (d) decreases to 50% of its bulk value at d = R. (B) From left to 

right: Schematic illustration of the bead trapped by an undisturbed laser focus, histogram in y 

(perpendicular) direction along the white dotted line in the two-dimensional histogram (x-y-plane). (C) 

Illustration, one-dimensional and two-dimensional histograms for the case of an interface obstructing the 

bead’s diffusive movement inside the optical trap. 

Figure S7 A shows the distance-dependence of the histogram width perpendicular to an interface. 

An interface is successively brought closer to an optically trapped bead. As soon as the surface’s 

distance to the trap center is smaller than one bead radius plus its fluctuation width, i.e., d – R < 

, the diffusive motion of the bead inside the optical trap is obstructed by the presence of the 

interface, as seen in Fig. S7 C. This results on the one hand in a shift of the bead’s mean position 

by(t), which has been shown and discussed in the context of Fig. S4, and on the other hand in a 

decreasing fluctuation width y as seen in Fig. S7 C, compared to the undisturbed case illustrated 

in Fig. S7 B. The simulation data show that the decrease at d = R, i.e., when the bead’s surface 

and the obstacle’s surface coincide, is y(d=R) = 50% ×, with   being the undisturbed 

histogram width in the absence of interfaces. This criterion has been used throughout this study 

to determine contact point of the bead and the cell membrane.  



Results of alternative contact point analysis 

As discussed in the main text, the membrane contact point cannot be precisely specified due to 

the optical influence of the pericellular matrix (PCM) on the fluctuation data. Two criteria to 

determine the contact point have been established and discussed, hereafter referred to as 0/2 and 

min criterion, respectively. The alternative contact point obtained by the min criterion is located 

in average (0.22 ± 0.09) µm behind the 0/2 contact point. The following Tables S1-S3 display 

the results of the fluctuation analysis, first by application of the 0/2 criterion (black numbers), 

then by application of the min criterion (bold red numbers), for all cell types that were 

investigated. 

 

 TABLE S1   Comparison of hydrodynamic decay lengths j (mean values ± standard deviation) for 

various cell types depending on the choice of the membrane contact point criterion.  

 J774 MDCK HT29  

 0.49 ± 0.03 0.65 ± 0.07 0.45 ± 0.03 (value at 0/2) 

0.43 ± 0.08 (-12%) 0.57 ± 0.13 (-12%) 0.40 ± 0.08 (-11%) (value at min) 

|| 0.27 ± 0.02 0.34 ± 0.02 0.28 ± 0.01 (value at 0/2) 

0.24 ± 0.06 (-11%) 0.31 ± 0.05 (-9%) 0.28 ± 0.05 (±0%) (value at min) 

 

TABLE S2   Comparison of maximum friction coefficient j (mean values ± standard deviation) for 

various cell types depending on the choice of the membrane contact point criterion. 

 J774 MDCK HT29  

 5.11 ± 0.32 5.64 ± 0.28 6.23 ± 0.41 (value at 0/2) 

11.82 ± 0.84 (+131%) 9.16 ± 0.55 (+62%) 12.03 ± 0.94 (+93%) (value at min) 

|| 2.81 ± 0.59 2.83 ± 0.14 2.80 ± 0.27 (value at 0/2) 

3.92 ± 0.17 (+40%) 4.62 ± 0.18 (+63%) 4.47 ± 0.28 (+60%) (value at min) 

 

TABLE S3   Comparison of mean first passage times tj for various cell types depending on the choice of 

the membrane contact point criterion. 

 J774 MDCK HT29  

t 0.340s  

(= 1.453×t0) 

0.384s 

(= 1.642×t0) 

0.326s 

(= 1.392×t0) 
(value at 0/2) 

0.745s  

(= 3.182×t0) 

(+119%) 0.827s  

(= 3.354×t0) 

(+115%) 0.694s  

(= 2.965×t0) 

(+113%) (value at min) 

t|| 0.259s 

(= 1.107×t0) 

0.277s 

(= 1.182×t0) 

0.262s 

(= 1.119×t0) 
(value at 0/2) 

0.281s  

(= 1.205×t0) 

(+8%) 0.341s  

(= 1.457×t0) 

(+23%) 0.316s  

(= 1.349×t0) 

(+21%) (value at min) 

 



A graphical comparison of the results of Tables S1 – S3 is displayed in Figs. S8 – S10. It 

becomes obvious that the measurement of the hydrodynamic decay lengths are hardly influenced 

by the choice of the exact membrane contact point, see Fig. S8. A slight overall decrease of j in 

the range of 10% can be seen for all cell types. The maximum viscous drags 0 and 0exhibit a 

distinct increase of 0 and 0, most pronounced in perpendicular direction, see Fig. S9. The 

change in 0j und j also affects the diffusion times tj, which are significantly enlarged when the 

membrane is located further away from the 50% 0 point, see Fig. S10. 

 

 

FIGURE S8    Hydrodynamic decay lengths  and || for all cell types. The results obtained by the min 

criterion are displayed in light red and green bars (mean values ± standard deviation in italics), bold 

numbers ± standard deviation and rich red/green bars correspond to membrane location estimated by 0/2. 

 

 

FIGURE S9   Maximum friction coefficient 0 and 0for all cell types. The results obtained by the min 

criterion are displayed in light red and green bars (mean values ± standard deviation in italics), bold 

numbers ± standard deviation and rich red/green bars correspond to membrane location estimated by 0/2. 



 

Figure S10   Mean first passage times t0 and t0for all cell types, considering the diffusion of a 2R = 

1 µm sized bead from d1 = 3R toward d2 = 2R. The results obtained by the min criterion are displayed in 

light red and green bars (labels in italics), bold labels and rich red/green bars correspond to membrane 

location estimated by 0/2. Note the axis break between 1.9×t0 and 2.5×t0. 

  



Data recording and fluctuation analysis of a bead approaching a glass interface 

 

FIGURE S11   Fluctuation data of a 1 µm bead approaching a stiff glass coverslip in z direction. 

Distance-dependent position trajectories bx(d,t), by(d,t), bz(d,t) calculated from the QPD data after 

calibration. z data correspond to scan direction. Contact between bead and coverslip at d = R is indicated 

by the black dotted line and the shaded region at d ≤ R. 

The experiments with glass coverslips as obstructing interfaces were performed under slightly 

different geometrical and experimental conditions. In contrast to the cell experiments, where the 

surface was approached in lateral (y) direction, the glass coverslip was approached in -z 

direction, i.e., in reverse propagation direction of the laser light. The scan was performed over a z 

range of 5 µm, of which roughly 2.5 µm are shown in Fig. S11, with z = 20 nm steps as in the 

cell experiments. To account for the intrinsically weaker trap stiffness in z direction compared to 

x and y, the laser power was increased to 60 mW compared to 40 mW in cell experiments. This 

results in increased overall trap stiffnesses compared to the cell experiments, as seen in Fig. S12. 

Figure S11 displays the distance-dependent fluctuation data calculated from QPD signals via 

calibration upon approaching the glass coverslip with an optically trapped 1 µm bead. Blue data 

points (z data) correspond to scan direction. The mean signal shift, noticeable already at 

distances of roughly 1 µm before contact in all cell experiments, is not observed in this 

experiment due to the different geometrical circumstances: Whereas the cell is placed only at one 

side of the optical trap, thus asymmetrically scattering the laser light and leading to a shift of the 

mean signal due to destructive interferences, the glass coverslip is practically infinitely extending 

to both sides of the laser focus, thus having no optical effect on the QPD signals. The narrowing 

of the fluctuation data in scan direction becomes apparent as d approaches d = R (contact 

between bead and coverslip). 

 



 
 

FIGURE S12   The bead’s distance d to the glass coverslip is subsequently decreased in z direction (blue 

data), as illustrated in the schematic sketch. Contact between the bead surface and coverslip is marked by 

a vertical dotted black line at d = 0.5 µm. (A) The stiffness parameter j(d) and (B) the viscous drag j(d) 

are plotted as a function of d. Solid lines indicate fits to the data points according to Happel’s & Brenner’s 

formula. 

Figure S12 shows that all components j (j = x,y,z) of the stiffness parameter remain constant 

until mechanical contact between the bead and the coverslip is established, as indicated by 

additional line fits. The friction coefficients j(d) increase as the bead approaches the interface. 

The increase of the friction component perpendicular to the glass coverslip, i.e., z(d) displayed 

in blue, is significantly higher than x(d) and y(d) in parallel direction (red and green circles). 

Happel’s and Brenner’s formula allows to quantify the distance-dependent behavior of j(d) close 

to a stiff, infinitely large flat interface and was fitted to the data points. Measurement and fit 

results are in excellent agreement. 
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Data recording and fluctuation analysis of a bead approaching a GUV 

 

FIGURE S13   Distance-dependent stiffness and viscous drag of a 1 µm bead approaching a GUV. The 

bead’s distance d to the GUV membrane is subsequently reduced in y direction (green data), as illustrated 

in the schematic sketch. Contact between the bead surface and membrane is marked by a vertical dotted 

black line at d = 0.5 µm. (A) The stiffness parameter j(d) and (B) the viscous drag j(d) are plotted as a 

function of d. Solid lines indicate fits to the data points. 

The distance-dependent stiffness and viscous drag upon approaching a GUV membrane are 

displayed in Fig. S13. Again, a constant j(d) can be seen at d ≥ R, while at the same time j(d) 

increases exponentially. The overall increase in j(d) is much smaller than in the cell 

experiments, regardless of the spatial dimension j = x,y,z and no anisotropic behavior of the 

hydrodynamic decay length is observed. These results are discussed in detail in the main text. 

Due to the weaker laser power in the GUV experiment, the overall stiffnesses j(d) are smaller 

than in the cell experiments. However, as the viscous drag j(d) is independent of the choice of 

experimental parameters like laser power, results for j(d) are comparable with those obtained 

from cell experiments.  
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FIGURE S14   Bead displacement by(d) upon approaching a GUV membrane. Light red data show the 

bead’s trajectory in scan direction while the piezo stage (coordinate yp) was successively moved towards 

the GUV membrane. The dark red curve shows the smoothed trajectory. Contact between bead surface 

and membrane of the unfixed GUV at d=R, corresponding to yp = 2 µm in this experiment, is indicated by 

the dotted black line and the yellow arrow. Illustration was taken from (3) with the author’s permission. 

 

Figure S14 shows the calibrated bead’s trajectory in scan direction upon approaching the 

membrane of an unfixed GUV. After contact, the 20 µm large GUV is dragged to the side by the 

moving bead. The method to determine the contact point d = R is described in (3) and shall not 

be explained here. 

  



Frequency-dependence of the viscous drag 

In general, the viscosity in direction j = ,|| is frequency-dependent. Fourier transformation of 

the overdamped Langevin (Eq. 1 in the main text) yields: 

  , , ,
( ) ( , ) ( , ) ( )j j opt j cell j th j

b i d d F            (S3) 

As long as no binding to the membrane or to cellular protrusions occurs, the system consisting of 

bead and surrounding fluid is in thermal equilibrium. Thus, the fluctuation-dissipation-theorem 

and the Kramers-Kronig relations can be applied to extract the storage and loss moduli (G'   

and (G''   from the fluctuation data (2). In this case, the loss modulus ( ) =1 ( )6G'' R        

increases with the frequency-dependent drag coefficient    , but amplifies higher frequencies 

by the multiplication with . Details of the calculation procedure can be found in (4, 5).  

 

FIGURE S15   Frequency-resolved viscous drag j() (j = ,||) for two different distances to the 

membrane of a MDCK cell. Hollow circles denote data recorded far away from the membrane 

(d-R >> ), full circles represent a distance of approximately d-R = 0.3 µm. The solid lines indicate fits to 

the data points. 

Figure S15 displays the frequency-dependent viscous drag     for two different distances d 

between bead and cell. Here, hollow circles represent a distance 
,d R   much larger than 

the measured hydrodynamic decay length and solid circles represent a small distance 

0 3µm ,d R .    . Red and green colors denote parallel and perpendicular particle motions, 

respectively. It is apparent from Fig. S15 that     remains approximately constant over the 

whole frequency range under investigation (/2 ≤ 10 kHz), both for parallel and perpendicular 

data. Nearby the cell membrane, the mean value ||() increases only modestly by 18%, whereas 

the mean () increases by 51%. Again, it can be seen that the rise of the mean value of  for 

short particle-cell distances is higher than the rise of the mean ||. The slow drop-off at high 

frequencies is ascribed to numerical artifacts during calculation, resulting from a finite upper 

frequency limit (6). Also, reliable results are only obtained up to a maximum frequency of about 

10 kHz due to the finite maximum frequency. The results exemplarily presented in this chapter 

agree with  and || obtained from the procedure described in Eq. 2 and presented in Fig. 6 in the 

main text. Furthermore, it can be seen that j(d) has no frequency-dependent contribution and 

that averaging over all frequencies  is justified.  



Visco-elastic analysis of the fluctuation data via passive microrheology 

 
 

 

FIGURE S16   Analysis of the fluctuation data of a 1 µm bead approaching a HT29 cell membrane via 

passive microrheology. (A) The distance-dependent stiffness parameter j(d) was calculated from the real 

part of the complex shear modulus, G’() = Re(G()). (B) The imaginary part Im(G()) = G’’() was 

used to calculate the viscous drag j(d).  

The fluctuation data that was shown in Fig. 4 in the main text was analyzed with the help of the 

microrheology toolbox, that has been shortly introduced in the previous paragraph and, e.g., in 

(4, 5). 

In brief, the linearized response function  of a spherical particle with radius R displaced by 

( )b   reacts to a driving force such that ( ) ( ) ( )b F     .  is inversely proportional to 



the complex shear modulus 1( ) (6 ( ))G = R     . For a thermal driving force , ( )th jF   it 

follows from Eq. S3 that 
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resulting in the complex shear modulus 
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with real and imaginary parts 
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Eq. S6 shows that the real part (accounting for elastic components) and the imaginary part 

(viscous component) of the complex shear modulus are independent of each other. Therefore, the 

increase in y(d) on the last 0,2 µm before contact, as seen in Fig. 4, does not lead to a 

miscalculation of (d). This increase is probably due to transient binding to the glycocalyx 

surrounding the cell membrane.  

Figure S16 shows the stiffness j(d) and viscous drag j(d) of the very same data presented in 

Fig. 4, calculated by Eqs. S4-S6. The resulting noise is inherent to passive microrheological data 

analysis via Kramers-Kronig transform. Nevertheless, the rather constant behavior of j(d) 

(j=x,y,z) can be observed, as indicated by the line fits from Fig. 4. Also, the smooth increase in 

j(d) can still be seen in Fig. S16, visualized by least-square fits which reveal the same result as 

those plotted in Fig. 4.  

In conclusion, we have shown that the transient binding, be it to the glycocalyx or to any other 

structure surrounding the cell membrane, does not corrupt the correct measurement of j(d). 

Figure S16 confirms the theoretical concept presented above despite the relatively strong 

scattering of the data points. 
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