1	Title: Parallel molecular routes to cold adaptation in eight genera of New Zealand stick
2	insects
3	
4	Authors: Alice B. Dennis ^{a,b,c,d*} , Luke T. Dunning ^{a,b,e,f} , Brent J. Sinclair ^g , Thomas R.
5	Buckley ^{a,b,e}
6	
7	
8	SUPPLEMENTARY MATERIAL
9	
10	
11	
12	Details of Supplementary Information
13	Supplementary Information
14	Supplementary Methods: More detailed descriptions methods in the main manuscript.
15	Supplementary Table 1: Summary of species ranges, reproductive mode, and collection sites.
16	Supplementary Table 2: Full collection details for both RNA-seq and Physiology tests.
17	Supplementary Table 3: Summary of physiological testing.
18	Supplementary Table 4: Location and dates placed of environmental data loggers.
19	Supplementary Table 5: Summary of RNA-seq sequence data and de novo assemblies.
20	Supplementary Data 1: Summary of differential expression results from 3 statistical packages
21	Supplementary Data 2: Summary of a priori genes in all datasets, chosen based on best blast
22	hit. Including, differential expression results and full details of blast results.
23	Supplementary Data 3: Summary of Fisher's Exact tests, and lists of all significantly
24	differentially expressed GO terms for each species
25	Supplementary Data 4: Details of cuticular genes depicted in Fig. 3 and their blast results.
26	

28 Supplemental Methods

These supplementary methods include additional information to the methods detailed in the main article. Citation numbers refer to the main article, and additional citation are named in text and listed alphabetically at the end of this section (Supplementary References).

32

33 Collections

34 Insects were collected at sites throughout New Zealand between January and April of 2011 and 2012. Locales, altitudes and Crosby Codes (Crosby et al. 1998) for all collections are in 35 36 Tables S1 and S2, and are mapped in Figure 1. Collections were made by either finding individual animals by eye or by beating vegetation. In all cases we used only mature, adult 37 females. Animals whose RNA was extracted for Illumina sequencing were transported to 38 39 Auckland in insulated containers and maintained in the lab at room temperature with an 40 approximately 12:12 h light:dark cycles prior to treatment. During this time, insects were feed ad libitum on fresh Rubus sp., Muehlenbeckia sp., Metrosideros excelsa, Lophomyrtus 41 42 *bullata* or *Hoheria sp.*, and were regularly misted with fresh water. For physiological trials, animals were transported live to the University of Otago in insulated containers and 43 maintained for a minimum of seven days prior to treatment. Throughout these trials, they 44 were maintained under controlled conditions at 18°C under 13:11 h light:dark cycle and fed 45 46 Rubus sp. ad libitum.

47

48 <u>Environmental Temperatures</u>

Data loggers (iButton thermochron data loggers; CD1992L, Maxim-Dallas Semiconductor)
were housed in rain covers made of c.40 mm deep plastic cups open at one end and placed at
each collecting site to measure temperature at 1.5 h intervals during at least one winter season
(Fig. 2, Supplementary Table 4 and detailed in Ref 24). Where leaf litter >10 cm deep was

present, loggers were placed in both the litter and in the canopy. Leaf litter has been shown to buffer temperature in these habitats and reduce the number of freezing events²⁴, but these differences are not as great as those seen between sites. Thus, to broadly compare temperatures experienced at each site, we averaged all data loggers at each site. To depict winter lows in Figure 2, boxplots were constructed from all data recorded in the winter months (June- August). All calculations were performed in R⁶⁸.

59

60 <u>Cold tolerance measurements: SCP and 6 h frozen</u>

61 We determined the temperature at which ice formation was spontaneously initiated (the supercooling point SCP) in n = 105 individuals of ten species (n = 4 - 40 per species, 62 Supplementary Tables 2, 3). A 30-gauge Type-K thermocouple (Omega, Laval, QC, Canada) 63 64 was held against the thorax of each individual between the middle and hind legs with a piece of flexible polymer putty (Blue Tack, Bostik, Auckland, New Zealand). The insect was then 65 placed in a glass tube (ID 2cm) in a double-jacketed acrylic chamber cooled by a methanol-66 67 water mix circulated from a refrigerated circulator. The insects were held at +5 °C until their body temperature stabilized, and were then cooled at 0.25 °C/min. The thermocouple was 68 connected to an electronic thermometer (HH309A, Omega), which interfaced to a computer 69 which recorded data at 1 s intervals. The SCP was identified as the lowest temperature 70 71 reached by each individual before the beginning of the exotherm (a measurable temperature 72 rise) indicating the release of the latent heat of crystallization and freezing. Individuals were removed from the glass tube to room temperature (c. 20 °C) within 30 s of the initiation of 73 freezing, marked individually and returned to plastic containers (1 L) for monitoring; the 74 75 chamber was designed for individual removal upon freeze onset so that the period of freezing was not longer for some individuals, nor were neighbours disturbed by this removal. During 76 this period, insects were maintained under the same controlled conditions and fed Rubus sp. 77

ad libitum. Survival was assessed after seven days and used to indicate whether individualscould survive a small amount of internal ice formation.

Because it can take several hours for ice formation to reach equilibrium in insects⁵¹, 80 we determined whether individuals of each species could survive 6 h of the progression of 81 internal ice formation (Figure 2, Supplemental Table 2, 3). Individuals (n=4 per species per 82 run) were held in contact with a thermocouple and placed in a glass tube in a double-jacketed 83 84 acrylic chamber cooled with circulating methanol-water solution, as above. Insects were held at +5 °C and then cooled at 0.25 °C/min until the initiation of freezing in the first individual; 85 86 these batches were grouped by species and all individuals froze within a relatively short period (<5 minutes). The temperature ramp on the refrigerated circulator was then halted (the 87 temperature of the stick insects then continued to decline for a few minutes), and insects were 88 89 held at that temperature for 6 h before rewarming at 0.25 °C/min. Survival was monitored as 90 above. During these runs, 93 of the 95 individuals we tested froze; the two exceptional individuals were M. nov. sp. 2 collected from Mt. Arthur and were excluded from further 91 92 analyses.

To calculate the SCP for each locale/species, we used both the specific tests to measure supercooling point and the supercooling points observed during the 6 h trials, but only in instances where supercooling was observed during the bath's temperature decline.

97 <u>Cold treatments for RNA-seq</u>

Cold-chock treatments of all individuals used in RNA sequencing were conducted at
Landcare Research, Auckland, New Zealand. Cold treatments were conducted in a Sanyo
MIR-154 (Sanyo Scientific, Bensenville, IL, USA) cooled incubator and have been
previously described by Dunning *et. al.*²¹. In all treatments, stick insects were placed in
empty, dry plastic containers and left to settle for about one hour. Cold shocked individuals

were placed in a +21 °C incubator and held for 10-15 minutes prior to cooling to -5 °C at
approximately 1 °C per minute. The one hour treatment began when the air temperature in the
incubator reached -5 °C, and was followed by a period of warming to +21 °C. Once the
incubator had reached +21 °C, insects were held for one hour before immediate snap freezing
at -80 °C freezer. Control individuals were treated on the same day by placing containers in
the incubator at 21 °C for two hours before immediate freezing at -80 °C.

109

110 <u>RNA extraction and library preparation</u>

111 All samples were stored at -80 °C until extraction. For all species, cDNA libraries were constructed from between 6 and 12 individual stick insects (Supplement Table 5). RNA was 112 extracted from the head, prothorax and antennae only. Tissue was ground in liquid nitrogen 113 114 and extracted using Trizol reagent (Invitrogen, Carlsbad, CA, cat #15596) according to the manufacturer's instructions, with the following modifications: ground samples were 115 incubated overnight at room temperature in Trizol, and ethanol precipitations were incubated 116 117 overnight at +4 °C. Products of Trizol extraction were subsequently spin column purified using the RNeasy mini kit (Qiagen, Venlo, Netherlands, cat # 74104). Purified total RNA was 118 verified on an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) and 119 quantified with a Nanodrop 2000 spectrophotometer (Thermo Scientific, Wilmington, DE, 120 USA). 121

All cDNA libraries were prepared using the Illumina TruSeq RNA kit (v1/ Cat# FC-123 121-1001 for *Micrarchus*²¹, v2/ Cat # RS-122-2001 for all other species) with an input of 124 approximately 2.5 μ g of total RNA. In all cases, the PCR amplification step of the protocol 125 was performed for 12 cycles. Library quality was verified using a Bioanalyzer prior to sample 126 quantification and sequencing at the High Throughput Genomics Core Facility at the 127 Huntsman Cancer Institute, University of Utah, with 8 – 18 individuals per flow cell lane.

128 <u>Sequence clean-up and assembly</u>

Prior to assembly, raw Illumina reads were filtered to retain only high quality sequences in several steps. To remove sequences more likely to contain errors, all reads containing an 'N' were discarded using ShortRead v1.16.3⁵⁵ implemented in R. Low quality (phred score < 30) and Illumina primer sequences were then trimmed using Cutadapt v1.1⁵³. Lastly, polyT stretches on sequence ends were trimmed using PRINSEQ lite v 0.6^{54} and remaining reads shorter than 25bp were discarded. The quality of each individual library before and after clean-up was verified using FastQC v $0.10.1^{56}$.

136 For each species, *de novo* assembly was conducted separately using Trinity $v10.05.2012^{57}$ with the default settings and the -REDUCE flag. The two populations of M. 137 nov sp. 2 (Mt. Arthur and Sewell Peak) were aligned separately because of their higher levels 138 of divergence and different mitochondrial DNA background²¹. The alignment for *N. annulata* 139 was jointly constructed using 6 individuals from the Remarkables, 6 individuals from 140 Dunedin, and 9 individuals from Nevis Rd. (manuscript containing these data in prep). In all, 141 142 this resulted in 11 de novo transcriptome assemblies, each constructed from between 6 and 21 individuals (Supplemental Tables 5). 143

To reduce an apparent overabundance of called splice variants, the resulting 144 transcripts were clustered using CD-HIT-EST⁵⁸, which combined all contigs with > 95%145 similarity. During library preparation, removal of ribosomal RNA could be both incomplete 146 and unequal among samples. To remove this bias among libraries, ribosomal sequences were 147 removed by Ribopicker online⁵⁹. However, not all sequences were removed and in some 148 cases 12S, 16S and 28S were manually identified by blast and removed from the assembly. 149 The resulting number of contigs, as well as their N50 and N90, are listed in Supplemental 150 Table 5. 151

Assemblies were annotated by a $BlastX^{60}$ sequence search (e-value threshold $1e^{-10}$) 152 against the National Centre for Biotechnology Information (NCBI) non-redundant (*nr*) 153 database. Approximately 10% of all contigs were annotated this way, but that number was 154 higher (~25%) when only contigs > 200 bp were retained. However, to maximize 155 comparisons among datasets, 100-200bp long contigs were retained in all analyses. Gene 156 ontology (GO) terms were assigned using Blast2GO³⁸ based on the BlastX results. 157 To determine the overall similarity among the transcripts sequenced across species, 158 pairwise blasts with 1e⁻¹⁰ e-value threshold were conducted among each of the Trinity 159 160 alignments. Based on this, all alignments shared more than 99% of their transcripts with one another (results not shown). To search for a priori genes (Supplementary Dataset 3), we 161 assembled a list of candidate genes from several sources³⁵⁻³⁸ and retrieved all matches to 162 163 these in the top blast hit from the Blastx results (above). 164 Phylogenetic relationships among NZ stick insects 165 Orthologs used in phylogenetic analyses were extracted from each species' Trinity assembly 166 using HaMStr⁶¹, which was kindly run by I. Ebersberger using a core ortholog set containing 167 2,423 orthologs built based on reference genomes in six arthropod taxa: Daphnia pulex, 168 Acyrthosiphon pisum, Pediculus humanus, Bombyx mori, Apis mellifera, and Drosophila 169 melanogaster. Recovery of orthologs was high across taxa; 2,336 of core orthologs were 170 171 detected in at least one dataset. Of these, 1,485 were found in all 11 datasets. However, many of these genes were not full length across all taxa, so we retained only genes which were 172 missing less than 2% of their nucleotides (due to both gaps and missing data). The remaining 173 genes were aligned using MAFFT v.7.047beta⁶² with a maximum of 1000 iterations and the -174 -localpair setting. This resulted in 274 genes (200,379 base pairs, bp) that were concatenated 175 used for phylogenetic analysis. 176

177 These 274 genes were concatenated, providing a total 200,279 bp for analysis. Concatenating the sequences made analysis of this large dataset possible, it is also unlikely to 178 affect the species-level relationships we are interested in here^{65,66}. Bayesian phylogenies were 179 180 constructed separately for both nucleotide sequences, partitioned by codon, and amino acid sequences using Markov-chain Monte Carlo (MCMC) sampling in MrBayes v. 3.2.1^{63,64} for 3 181 million generations, sampled every thousand. A relative burn-in of 25% was used with the 182 following priors: exponentially distributed substitution rates, unconstrained branch lengths, 183 empirically estimated state frequencies, exponential gamma shape parameter set to five for 184 185 among-site rate variation and proportion of invariable sites uniformly distributed between zero and one. Each data set was analysed in three independent runs for both the nucleotide 186 and amino acid dataset. Likelihood bootstrap values were generated in Garli⁶⁵ using a 187 partitioned model with separate GTR+I+G models for each codon position and 100 bootstrap 188 replicates with one search replicate per bootstrap. 189

190

191 <u>Differential expression analysis of Illumina data</u>

As in all analyses, these calculations were performed separately for each Trinity alignment. 192 To generate expression counts for each Trinity contig, raw reads for each individual were 193 mapped back onto the assemblies using Bowtie2⁶⁶ with the '-sensitive' configuration. Raw 194 counts were generated for each individual using HTSeq-count⁶⁷, run against .gff files 195 generated by Cufflinks (Trapnell et al. 2012). Calculations of differential expression were 196 similar to previously published methods²¹. Differentially expression genes were identified 197 using three packages implemented in R. First, edgeR³⁰ was run using tagwise dispersal 198 estimates and a cut-off of p < 0.05. Second, baySeq³² was run using the corrected counts 199 generated by edge R and a cut-off of likelihood < 0.7. Lastly, DESeq³¹ was run using 200 recommended settings and cut-off of p < 0.1. In all cases, contigs were only considered for 201

202 differential expression analysis if they had at least one count per million mapped reads and were present in at least half of the samples (three individuals in all cases except M. nov. sp. 2 203 Mt Arthur, where was six control and 6 treatment insects were measured). The resulting lists 204 of significantly differentially expression genes for each species (Supplement Data 2) was 205 compiled by combining the results from each package, and removing redundant contigs 206 (produced by more than one package). Contigs with infinite fold change were retained (i.e. 207 208 those with zero counts in all members of one treatment). There was generally more overlap among the outputs of baySeq and edgeR than either package with DESeq. Enrichment for GO 209 210 terms was tested using a Fisher's exact test, implemented in Blast2GO. In this, we tested for GO terms associated with the genes significantly up-regulated in the cold against all other 211 genes identified in the transcriptomes (Supplementary Data 3). 212

213

214 Orthologous cuticle genes and tests of selection

Based on the results of the Fisher's exact test, genes in the GO category "structural 215 constituent of cuticle" were the only annotated genes to be significantly (FDR < 0.05) 216 differentially expressed in more than one species. To further investigate this, we extracted all 217 genes annotated to this GO category from the individual de novo transcriptome assemblies 218 (based on their GO assignment in Blast2GO). To identify orthologs, pairwise comparisons 219 220 were made between these "structural constituent of cuticle" genes from each dataset using 221 reciprocal blast and manual curation. Particular attention was paid to sorting orthologs with the same annotation. Each ortholog was aligned in Geneious (Geneious version 6.1.7) using 222 ClustalW (Larkin et al. 2007), and the alignments were then manually inspected, phased, and 223 224 trimmed of untranslated regions (UTR). Despite their groupings using reciprocal blast, several sequences were obviously not orthologous and either some individuals or the entire 225 226 sequence was removed from the alignment. Genes were also not retained if they were present in less than 5 species, if they were < 200bp in length, or if they could not be phased. For the
remaining 17 genes, now arbitrarily named Orth 1 -17, we generated a heatmap (Figure 3)
depicting the log₂fold change of that gene each species, as calculated by DESeq.

To detect patterns of selection on structural cuticular genes, alignments of orthologous 230 genes were analysed in the CODEML package of PAML⁴². For all comparisons, we used the 231 phylogenetic tree produced by the 274 genes described above (Figure 1); in cases with fewer 232 233 than the full 11 taxa, missing branches were removed and an unrooted tree was exported in Mesquite (Maddison & Maddison 2011). We implemented two separate sets of analyses to 234 235 look for patterns of selection in these genes across the phylogeny of NZ stick insects. To detect amino acid sites under selection, we compared two site models: M1a vs. M2a and M7 236 vs M8. To identify positive selection on amino acids within a particular lineage, we 237 238 implemented the branch-site model test in four different independent runs. Each run was starred one of the following different foreground branches: to test for selection associated 239 with occurrence in montane and colder high latitudes, we tested (1) the *Micrarchus* clade, (2) 240 the N. annulata branch, and (3) the T. salebrosus branch. In association with colonization of 241 cooler habitats we tested (4) the S. annulata branch (separating S. annulata from all other 242 species). In all cases, the Bayes Empirical Bayes (BEB) method was used to identify sites 243 under selection. 244

245 Supplementary References

246

- Crosby TK, Dugdale JS, Watt JC (1998) Area codes for recording specimen localities in the
 New Zealand subregion. *N.Z. J. Zoo.* 25, 175-183.
- Geneious (version 6.1.7) Geneious v6.1.7 created by Biomatters. Available from
 http://www.geneious.com/.
- Larkin MA, Blackshields G, Brown NP, *et al.* (2007) Clustal W and Clustal X version 2.0.
 Bioinformatics 23, 2947-2948.
- Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis.
 Version 2.75 <u>http://mesquiteproject.org</u>.
- Trapnell C, Roberts A, Goff L, *et al.* (2012) Differential gene and transcript expression
 analysis of RNA-seq experiments with TopHat and Cufflinks. *Nat. Protocols* 7, 562578.
- 258

	Species		Co	ollection locale									
Species	Geographic range summary	Locale	Crosby code	Reproductive mode	Latitude	Longitude	Altitude						
North													
Spinotectarchus acornutus	Northern NI, lowland habitats ^a	Waitakere Ranges, Auckland	AK	Sex	36° 52.1	174° 28.0	0-474						
Asteliaphasma jucundum	Northern NI, lowland habitats ^a	Waitakere Ranges, Auckland	AK	Sex	36° 52.1	174° 28.0	0-474						
Clitarchus hookeri	Lowland throughout NI & eastern SI. Obligate parthenogenic populations more common in the south [16]	Auckland Botanical Gardens	AK	Sex	37° 0.0	174° 54.8	75-100						
Acanthoxyla sp.	Lowland NI & SI. Obligate parthenogen [76]	Auckland Botanical Gardens	AK	Asex	37° 00.4	174° 54.2	75						
Tectarchus ovobessus	Mid to southern NI and northern SI. Lowland to 1000 m a.s.l. ^a	Paengaroa Scenic Reserve, Taihape	RI	Sex	39° 38.8	175° 42.6	517-540						
Argosarchus horridus	Lowland NI & SI. Obligate parthenogenic populations more common in the south [17]	Paengaroa Scenic Reserve, Taihape	RI	Sex	39° 38.8	175° 42.6	517-540						
Micrarchus hystriculeus	Southern NI & northern SI. Lowland to 970 m a.s.l. [20]	Paengaroa Scenic Reserve, Taihape	RI	Sex	39° 38.8	175° 42.6	517-540						
Micrarchus nov sp 1	Northeastern SI. Lowland to 1100 m a.s.l. [20]	Puhipuhi Scenic Reserve, Kaikoura	KA	Sex	42° 14.2	173° 45.1	241						
Micrarchus nov sp 2	Obligate to altitudes at or above tree	Mt. Arthur , Kahurangi National Park	NN	Sex	41° 11.9	172° 42.7	1336- 1347						
Micrarchus nov sp 2	640 and 1400 m a.s.l. only [20]	Sewell Peak , Paparoa National Park	BR	Sex	Cartinal locale Latitude Latitude Latitude Reproductive 36° 52.1 17 Rex 36° 52.1 17 Rex 36° 52.1 17 Rex 37° 0.0 17 Rex 37° 0.0 17 Rex 37° 00.4 17 Rex 39° 38.8 17 Rex 39° 38.8 17 Rex 39° 38.8 17 Rex 42° 14.2 17 Rex 41° 11.9 17 Rex 42° 24.3' 17 Rex 43° 37.9 17		749-822						
Tectarchus salebrosus	Sea level to high altitude 1100 m a.s.l. ^a	Kennedy's Bush, Port Hills , Christchurch	MC	Sex	43° 37.9	172° 37.5	420						

Niveaphasma annulata		Ohau, Mackenzie Basin	МК	Sex	44° 14.5	169° 48.2	780- 980
Niveaphasma annulata		Remarkables, Otago*	СО	Asex	45° 01.7	168° 47.0	930- 1031
Niveaphasma annulata	occurs from sea level to above tree	Nevis, Bannockburn, Otago*	CO	Asex	45° 09.3	169° 07.6	904
Niveaphasma annulata	altitude populations are	Dunedin, Leith Valley	DN	Sex	45° 51.0	170° 30.3	49
Niveaphasma annulata	parthenogenetic [19]	Seward Moss, Southland	SL	Sex	46° 32.5	168° 26.0	9
Niveaphasma annulata		Papatowai , Old Coach Rd. Catlins	SL	Sex	46° 33.2	169° 28.5	0
South							

Supplementary Table 1. Summaries of each species' entire ranges and the specific collection locales used in this study. Latitude, longitude and altitude taken from handheld GPS devices, Crosby Codes from Crosby (Supplementary Ref 1). Range summary indicates general features of entire species range. NI = North Island, SI = South Island. Reproductive mode denotes either entirely parthenogenetic populations (asex), or those in which males have been observed (sex). Bracketed referenced refer to those in main text. ^a Records from New Zealand Arthropod Collection, Landcare Research, Auckland, New Zealand

Additional Reference:

[76] Buckley, Thomas R., Dilini Attanayake, Duckchul Park, Shanthinie Ravindran, Tony R. Jewell, Benjamin B. Normark. 2008. Investigating hybridization in the parthenogenetic New Zealand stick insect *Acanthoxyla* (Phasmatodea) using single-copy nuclear loci. Mol Phylogenet Evol. 48:335–349

		Colle	ections for RNA-	Collections for Physiology			
Species	Locale	Date collected	Date treated	n, Ilumina	Date collected	n, SCP	n, 6h
North	_						
Spinotectarchus acornutus	Waitakere Ranges, Auckland	Jan-Feb 2012	5 Apr 2012	6	Jan- Feb 2012	8	4
Asteliaphasma jucundum	Waitakere Ranges, Auckland	Jan- Feb 2012	3 Apr 2012	6	Jan- Feb 2012	8	4
Clitarchus hookeri	Auckland Botanical Gardens	9- 11 Feb 2011	15 Feb 2011	6	17 Feb 2012	7	4
Acanthoxyla sp.	Auckland Botanical Gardens	10 Apr 2012	12 Apr 2012	6	3-10 April 2012	8	4
Tectarchus ovobessus	Paengaroa Scenic Reserve, Taihape	13 Apr 2012	24 Apr 2012	6	23-26 Jan 2012	5	4
Argosarchus horridus	Paengaroa Scenic Reserve, Taihape	25 Mar 2011	1 Aug 2011	6	13-15 April 2012	5	4
Micrarchus hystriculeus	Paengaroa Scenic Reserve, Taihape	25 Mar 2011	11 May 2011	6	23-26 Jan 2012	4	4
Micrarchus nov sp 1	Puhipuhi Scenic Reserve, Kaikoura				15 Jan 2012	4	4
Micrarchus nov sp 2	Mt. Arthur , Kahurangi National Park	13 Feb 2011	17 Mar 2011	12	23 Jan 2012	4	6
Micrarchus nov sp 2	Sewell Peak, Paparoa National Park	11 Feb 2011	17 Mar 2011	6			
Tectarchus salebrosus	Kennedy's Bush, Port Hills , Christchurch	23 Feb 2012	3 May 2012	6	23 Feb 2012	8	4
Niveaphasma annulata	Ohau, Mackenzie Basin				25-26 Feb 2012		4
Niveaphasma annulata	Remarkables , Otago*	27 Feb 2011	25 Mar 2011	6	28 Feb 2012		7
Niveaphasma annulata	- Nevis, Bannockburn, Otago*				27 Feb 2012	8	4
Niveaphasma annulata	Dunedin , Leith Valley	4 Mar 2011	25 Mar 2011	6	3 Mar 2012	8	6
Niveaphasma annulata	Seward Moss, Southland				29 Feb 2012	8	4
Niveaphasma annulata South	 Papatowai, Old Coach Rd. Catlins 				1 Mar 2012	8	4

Supplementary Table 2. Full collection details of all samples used in both RNAseq following cold shock and physiological tests.

Species	Locale	Supercooling	SCP survival	Number	6 h freeze	Number
		point (SCP)	(%)	SCP	survival (%)	6 h freeze
Spinotectarchus acornutus	Waitakere Ranges	-4.4	38	8	0	4
Asteliaphasma jucundum	Waitakere Ranges	-3.7	88	8	0	4
Clitarchus hookeri	Auckland	-2.9	71	7	0	4
Acanthoxyla sp.	Auckland	-4.4	75	8	0	4
Tectarchus ovobessus	Paengaroa	-3.8	80	5	0	4
Argosarchus horridus	Paengaroa	-4.8	80	5	0	4
Micrarchus hystriculeus	Paengaroa	-5.6	50	4	25	4
Micrarchus nov sp 1	Puhipuhi	-5.8	0	4	0	4
Micrarchus nov sp 2	Mt. Arthur	-4.4	100	4	33	6
Tectarchus salebrosus	Port Hills	-4.5	100	8	75	4
Niveaphasma annulata	Ohau	-2.8	n.d.	n.d.	75	4
Niveaphasma annulata	Nevis	-2.6	88	8	75	4
Niveaphasma annulata	Dunedin	-4.8	100	8	0	6
Niveaphasma annulata	Remarkables	-2.4	n.d.	n.d.	43	7
Niveaphasma annulata	Seward Moss	-2.7	75	8	100	4
Niveaphasma annulata	Papatowai	-3.8	100	8	100	4

Supplementary Table 2: Summary of physiological measures of supercooling poing (SCP) and survival of 6 hours frozen (6hr). Survival was recorded for up to 7 days (7d); 1 indicates survival, 0 indicates death. Supercooling points reported in Figure 2 include both SCP and 6 h tests where freezing occurred during the temperature decline.

Location	Placement	Number ibuttons	Species present	Elevation (m)	Date placed	Date removed	Latitude	Longitude	Mean Temp. (°C)	Min. Temp. (°C)
North	_									
Matuku Reserve, Waitakere Ranges	Canopy and Litter	5	Asteliaphasma, Spinotectarchus, Clitarchus	0-474	2/04/2012	4/09/2013	36° 52.1 S	174° 28.0 E	13.1	-0.4
Huia, Waitakere Ranges	Canopy (3) and Litter (3)	6	Asteliaphasma, Spinotectarchus, Clitarchus	0-474	9/5/2011 & 2/4/2012	4/09/2013	36° 52.1 S	174° 28.0 E	14.5	0.6
Auckland Botanical Gardens	Canopy (4) and Litter (1)	5	Acanthoxyla	75-100	27/04/2012	4/11/2013	37° 0.0 S	174° 54.8 E	14.1	-2.4
Paengaroa Scenic Reserve, Taihape	Canopy (3) and Litter (3)	6	Acanthoxyla, Argosarchus, Clitarchus, Micrarchus hystriculeus, Tectarchus huttoni	517-540	27/3/2011	3/06/2013	39° 38.8 S	175° 42.6 E	8.3	-5.5
Puhipuhi Scenic Reserve, Kaikoura	Canopy (3) and Litter (3)	6	Micrarchus nov. sp. 1	241	19/7/11	14/01/2012	42° 14.2 S	173° 45.1 E	9.6	-2.5
Mt. Arthur , Kahurangi National Park	Canopy (3) and Litter (3)	6	Micrarchus nov. sp. 2	1336-1347	15/2/11	22/1/12	41° 11.9 S	172° 42.7 E	5.2	-5.5
Sewell Peak , Paparoa National Park	Canopy (3) and Litter (3)	6	Micrarchus nov. sp. 2	749-822	13/2/11	26/1/12	42°24.3 S	171°20.6 E	7.5	-6.0
Kennedy's Bush, Port Hills, Christchurch	Canopy and Litter	4	Tectarchus salebrosus, Argosarchus	893	24/02/2012	2/02/2013	43° 37.9 S	172° 37.5 E	9.8	-2.5

Ohau , Mackenzie Basin	In plant near ground	3	Niveaphasma annulata	780- 980	28/02/2011	25/02/2012	44° 14.5 S	169° 48.2 E	9.1	-6.0
Remarkables , Otago	In plant near ground	3	Niveaphasma annulata	930-1031	28/02/2011	3/03/2013	45° 01.7 S	168° 47.0 E	8.7	-5.0
Nevis , Bannockburn, Otago	Canopy (3) and Litter (3)	6	Niveaphasma annulata	904	28/02/2011	3/03/2013	45° 09.3 S	169° 07.6 E	7.5	-8.0
Dunedin , Leith Valley	In plant near ground	2	Acanthoxyla, Argosarchus, Clitarchus, Niveaphasma	49	5/03/2011	14/02/2013	45° 51.0 S	170° 30.3 E	9	-0.9
Seward Moss, Southland	Canopy (3) and Litter (3)	6	Niveaphasma annulata	9	1/03/2011	3/03/2013	46° 32.5 S	168° 26.0 E	9.5	-11.6
Papatowai , Old Coach Rd., Catlins	Canopy (3) and Litter (3)	6	Niveaphasma annulata	0	4/03/2011	3/03/2013	46° 33.2 S	169° 28.5 E	9.3	-2.9
South										

Supplemental Table 4: Location and placement dates of ibutton data loggers, and species that occur at that locale. Temperature was measured every 1.5 hours.

Species	Locale	Number of Individuals	Number of Clean Reads	Clean <i>de</i> <i>novo</i> contigs	Longest Contig	N50 (bp)	N90 (bp)
Spinotectarchus acornutus	Waitakere Ranges	6	57,145,451	100,486	25,298	389	120
Asteliaphasma jucundum	Waitakere Ranges	6	56,981,479	88,628	17,151	467	122
Clitarchus hookeri	Auckland	6	58,148,764	84,307	23,840	519	123
Acanthoxyla sp.	Auckland	6	67,462,015	122,965	26,075	472	121
Tectarchus ovobessus	Paengaroa	6	64,093,476	105,278	26,532	618	125
Tectarchus salebrosus	Port Hills	6	55,285,976	70,268	10,789	519	123
Argosarchus horridus	Paengaroa	6	62,510,873	86,970	25,983	588	125
Micrarchus hystriculeus	Paengaroa	6	56,471,214	116,516	16,697	370	118
Micrarchus nov. sp. 2	Mt. Arthur	12	118,263,415	177,668	14,290	439	120
Micrarchus nov. sp. 2	Sewell Peak	6	59,833,254	124,050	14,995	414	120
Niveaphasma annulata	Remarkables	6	71,340,806		a- a a a	701	
Niveaphasma annulata	Dunedin	6	60,767,621	193,845*	37,991	581	122

Supplemental Table 5: Summary of Illumina sequencing of cDNA libraries and separate *de novo* assemblies of these for each species. "Clean *de novo* Contigs" are the results of individual alignments in Trinity and subsequent processed (see Methods). *Joint *Niveaphasma* alignment includes both locales reported here (Dunedin and Remarkables), plus 94,655,424 reads from 9 individuals collected at Nevis Rd. (manuscript in prep.).

	SITE MODELS											BRA	NCH SIT	E MODE	DELS						
						2ΔΙ				Sig aa (BE	sites (B)	Spinotectarchus		Micrarchus		Niveaphasma		T. sale	T. salebrosus		
Gene	bp	n Taxa	θ	k (M0)	ω (M0)	M0:M3	M1a: M2a	M7:M8	M8:M8a	M8	M2 a	2Δ1	Sig aa sites (BEB)	2ΔΙ	Sig aa sites (BEB)	2ΔΙ	Sig aa sites (BEB)	2ΔΙ	Sig aa sites (BEB)		
Orth15	1083	11	0.03	2.24	0.27	48.32**	3.00	3.92	2.94	3*		0	0	14.87**	1*	0	0	0	0		
Orth1	162	7	02	1E-04	1.0E-04	0	0	0	5.7E-04	0				2.40E-04	0	0	0	0	0		
Orth2	126	7	0.03	13.45	0.09	4.17	0.00	3.6E-05	0	0				0	0	4.203*	2*	0	0		
Orth16	119	5	0.02	7.51	0.55	0	0	3.4E-05	0	0		0.000	0	3.00E-05	0						
Orth3	104	9	0.05	2.55	0.04	0	1.5E-04	1.5E-04	2.0E-04	0		0	0	0	0	0	0				
Orth17	444	7	0.04	2.20	0.34	39.53**	8.76**	8.90*	8.70*	2**'*	2*			0	0	0	0	0	0		
Orth4	282	11	0.03	2.62	0.06	14.34*	0	1.62	0	1		3.179 [×]	1*	0	0	0.339	1*	1.61	0		
Orth5	441	7	0.02	9.07	0.06	26.71**	6.38*	8.69*	6.81**	1**	1**			0	0	4.029*	1*				
Orth6	414	9	0.04	3.11	0.35	32.60**	11.16**	11.22**	11.22**	1**	1**			2.590	0	0	0	0	0		
Orth7	267	6	0.02	2.92	0.04	3.00	2.8E-03	5.6E-04	5.0E-04	0				0	0	0	0				
Orth8	412	8	0.05	3.05	0.07	50.80**	6.33*	2.23	1.35	1**	1**			0.883	0	0	0	0	0		
Orth9	312	8	0.03	5.76	1.90	0.59	3.45	3.45	3.45	0				0	0	4.091*	0	0.399	0		
Orth10	372	9	0.03	5.27	0.08	5.04	0	1.2E-04	0	0				0	0	0.080	0	0	0		
Orth11	258	11	0.02	1.60	0.04	10.69*	8.0E-06	0.81	1.6E-05	0		0	0	0	0	0	0	0	0		
Orth12	120	6	0.07	1.62	0.18	2.36	0.00	0.05	0.05	0		3.715 [×]	1**	0	0	0	0				
Orth13	63	5	0.03	2.06	0.09	0	2E-05	2E-05	2E-05	0		0.000	0	0	0			0	0		
Orth14	124	10	0.77	0.63	0.17	111.77**	2.04	1.02	1.01	1**		0	0	0	0	0	0	0	0		

Supplementary Table 6: Summary of Paml (codeml) tests for amino acid sites under selection. Significance: * P>90%; * P>95%; ** P>99%. ²: no variable sites in Orth1. \mathbf{n} = number of species with sequences; **bp** =sequence length; \mathbf{o} = nucleotide diversity; \mathbf{k} = ratio of transitions to transversions; $\boldsymbol{\omega}$ (M0) = ratio of

synonymous to nonsynonymous substitutions under the M0 model; $2\Delta I$ is given for each model comparison (<u>Site models</u>; MO:M3; M7:M8 and M8:M8a. <u>Branch models</u>; between a tree with a fixed ω across all branches, and one where ω is allowed to change on the focal branch), which is twice the difference between the log likelihood of the two nested site-specific models implemented in PAML. **Sig aa sites** (**BEB**) = number of amino acids detected under positive selection under a Bayes Empirical Bayes model.