Structural Dynamics and Thermostabilization of Neurotensin Receptor 1

Sangbae Lee,[†] Supriyo Bhattacharya,[†] Christopher G. Tate,[§] Reinhard Grisshammer,[‡] and Nagarajan Vaidehi^{†,*}

[†]Division of Immunology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States

[‡]Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institute of Health, Department of Health and Human Services, Rockville, Maryland 20852, United States

[§]MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, U.K.

Supplementary Information

Figure S1. The crystal structure information of the neurotensin receptor (NTSR1-4GRV). (**A**) The crystal structure of NTSR1-GW5 (called NTSR1-4GRV) including the six mutations (red box) and crystal waters within 4Å from each mutation (blue circles). (**B**) Experimental stability of single residue NTSR1 mutants measured in the presence of the full length [³H]NTS. All experimental stability measurements are with respect to the stability of wild type NTSR1 and taken from Shibata et al. (2013).⁽¹⁾

Receptor	Inactive State	Active State
β ₂ AR	11.2Å (2RH1)	17.2Å (3P0G), 18.0Å (3SN6)
A _{2A} R	7.3Å (3PWH), 9.7Å (3EML)	9.9Å (2YDO)
Rhodopsin	8.7Å (1GZM), 9.1Å (1U19)	14.5Å (2X72), 14.7Å (3PQR)
M ₂	14.1Å (3UON)	15.5Å (4MQS), 15.8Å (4MQT)
δ-Opioid	9.3Å (4N6H)	
PAR1	9.0Å (3VW7)	
NTSR1	8.0Å (4BUO)	14.0Å (4GRV)

Table S1. The C_{α} distance between $R^{3.50}$ and $E(/L)^{6.30}$ in various crystal structures of GPCRs.

Table S2. Side chain distance of $P^{5.50}$ - $F^{6.44}$ in various crystal structures of GPCRs.

Receptor	Inactive State	Active State
β ₂ AR	7.8Å (2RH1)	5.6Å (3P0G), 5.1Å (3SN6)
A _{2A} R	7.6Å (3PWH), 7.9Å (3EML)	4.7Å (2YDO)
Rhodopsin	7.5Å (1GZM), 7.9Å (1U19)	4.2Å (2X72), 3.9Å (3PQR)
M ₂	6.5Å (3UON)	5.1Å (4MQS), 5.3Å (4MQT)
δ-Opioid	12.3Å (4N6H)	
PAR1	3.8Å (3VW7)	
NTSR1	6.1Å (4BUO)	4.3Å (4GRV)

Table S3. Inter-residue distance between the alpha carbons of $R^{3.50}$ and $Y^{7.53}$ in various crystal structures of GPCRs.

Receptor	Inactive State	Active State
β ₂ AR	16.8Å (2RH1)	11.3Å (3P0G), 12.1Å (3SN6)
A _{2A} R	15.8Å (3PWH), 16.1Å (3EML)	11.6Å (2YDO)
Rhodopsin	15.8Å (1GZM), 15.5Å (1U19)	12.7Å (2X72), 12.8Å (3PQR)
M ₂	17.6Å (3UON)	11.4Å (4MQS), 11.5Å (4MQT)
δ-Opioid	15.7Å (4N6H)	
PAR1	11.7Å (3VW7)	
NTSR1	15.9Å (4BUO)	11.9Å (4GRV)

Table S4. The center of mass (COM) distance of 5 residues in intracellular TM2 and TM6 in various crystal structures of GPCRs.

Receptor	Inactive State	Active State
β ₂ AR	18.2Å (2RH1)	26.6Å (3P0G), 29.7Å (3SN6)
$A_{2A}R$	19.4Å (3PWH), 19.0Å (3EML)	21.6Å (2YDO)
Rhodopsin	17.0Å (1GZM), 16.4Å (1U19)	24.9Å (2X72), 23.2Å (3PQR)
M ₂	14.6Å (3UON)	25.8Å (4MQS), 26.0Å (4MQT)
δ-Opioid	17.7Å (4N6H)	
PAR1	17.9Å (3VW7)	
NTSR1	17.5Å (4BUO)	24.5Å (4GRV)

	Ligand	Simulation	Lipid	Mutations
	-	Time	-	
NTSR1-GW5	NTS ₈₋₁₃	2,000 ns	POPC	$A86L^{1.54}$, E166 $A^{3.49}$, G215 A^{ECL2} ,
				L310A ^{6.37} , F358A ^{7.42} , V360A ^{7.44}
wt-NTSR1	NTS_{8-13}	2,000 ns	POPC	N/A
NTSR1-GW5-H8	NTS_{8-13}	2,000 ns	POPC	A86L ^{1.54} , E166A ^{3.49} , G215A ^{ECL2} ,
		-		L310A ^{6.37} , F358A ^{7.42} , V360A ^{7.44}
wt-NTSR1-H8	NTS ₈₋₁₃	2,000 ns	POPC	N/A

Table S5. Details of the different MD simulations on NTSR1 mutants and the wild type receptor.

Figure S2. The TM3-TM6 distance between COM (center of mass) of the last 3 turns of the intracellular region of TM3 and TM6 for NTSR1-GW5 (black) and wt-NTSR1 (red) simulations.

Figure S3. Calculated potential energy of the NTSR1-GW5 mutant and wt-NTSR1 receptor. (A) The protein energy and the protein-ligand, protein-POPC, and protein-water interaction energies are listed. The energy difference between NTSR1-GW5 and wt-NTSR1 is shown in last column. (B) Population distribution of protein potential energy for NTSR1-GW5 (black) and wt-NTSR1 (red). (C) Population distribution of the calculated radius of gyration which was calculated to analyze the lipid packing around the receptor. NTSR1-GW5 (black) and wt-NTSR1 (red). (D) A view of the lipid packing around the receptor of the representative structure from the most populated conformation cluster in the NTSR1-GW5 (left) and the wt-NTSR1 (right) (Intracellular view). The corresponding radius of gyration is also shown in this figure.

Figure S4. (A) The interaction energy between the lipid bilayer and the residues located within 7Å of the position of mutations in NTSR1-GW5 (black) and in the wild type (red). About 80% (193/239 kcals/mol) of the favorable interaction is retrieved by interaction of the residues within 7Å of the mutation positions. **(B)** Non-bonded interaction energies between lipid and the residues within 7Å of each the mutation positions (wt-NTSR1 shown in red and NTSR1-GW5 in black). **(C)** Difference in the Coulombic and van der Waals components of the lipid-protein interaction

energies between the NTSR1-GW5 and the wt-NTSR1, for the residues in the vicinity of each mutation positions. **(D)** The solvent accessible surface area of the protein regions that are exposed to the lipid bilayer (calculated as described in the Methods section) in the NTSR1-GW5 and wt-NTSR1.

Table S6. Residue pairs showing interhelical hydrogen bond interactions for NTSR1-GW5 and wt-NTSR1 simulations during 2 μ s trajectories. The total number of hydrogen bond interactions is given within parenthesis in the column title.

.	NTSR1-G	iW5 (#29)	wt-NTSF	1 (#23)	
TM1-TM2	Y71-SC	E124-SC	Y71-SC	E124-SC	
	N82-SC	A110-BB			
TM1-TM7	N82-SC	S362-BB			
	N82-SC	\$362-SC			
TM2-TM3			T101-SC	E166-SC	
	H105-SC	N159-SC	H105-SC	N159-SC	
	H105-SC	S162-SC			
	S108-SC	N159-SC	S108-SC	N159-SC	
			S112-SC	C152-BB	
			S112-SC	T156-SC	
	A120-BB	Y145-SC			
	E124-SC	Y145-SC			
	E124-SC	R149-SC	E124-SC	R149-SC	
TM2-TM4	S108-SC	W194-SC	S108-SC	W194-SC	
TM2-TM7	D113-SC	\$362-SC	D113-SC	S362-SC	
	D113-SC	N365-SC			
	M121-BB	Y359-SC			
	E124-SC	N355-SC	E124-SC	N355-SC	
	E124-SC	Y359-SC	E124-SC	Y359-SC	
TM3-TM4	R143-SC	L205-BB	R143-SC	L205-BB	
	A155-BB	S197-SC	A155-BB	S197-SC	
TM3-TM5	D150-SC	N241-SC	D150-SC	N241-SC	
	Y154-SC	N241-SC	Y154-SC	N241-SC	
	164-SC	N257-SC			
TM3-TM6	R149-SC	Y324-SC	R149-SC	Y324-SC	
	D150-SC	R328-SC	D150-SC	R328-SC	
TM3-TM7	R149-SC	N355-SC	R149-SC	N355-SC	
	R149-SC	Y359-SC	R149-SC	Y359-SC	
			R167-SC	S373-SC	
TM5-TM6			N241-SC	R328-SC	
	S245-SC	H325			
TM6-TM7	R327-SC	Y347	R327-SC	Y347-SC	
	R327-SC	T354-SC	R327-SC	T354-SC	
	R327-SC	N355-SC			

The residue pairs that are within 5Å of one of the six mutated residues and forming an interhelical hydrogen bond are listed. The notation, N355-SC represents that the side chain of N355. The abbreviations SC and BB are for side-chain and backbone atoms, respectively.

		Total no. of interactions		Total no. of interactions
	NTSR1-GW5	(#69)	wt-NTSR1	(#54)
TM1-TM2	T68	L125	T68	L125
	Y71	M121	Y71	M121
	F75	L117		
	F75	M121	F75	M121
	T79	L114		
			T85	A110
	A86L	A110		
	A86L	L114		
TM1-TM7	V67	M352	V67	M352
	Y71	Y359	Y71	Y359
	174	A356	171	1333
	274	A350	17/	V350
	174	V360A	L/ 4	1333
	174	A262		
TN 42 TN 42	L74	A303	T101	T10 C
11012-11013	1/102	1102	1101	1186
	V102	L163	V102	L103
			Y104	C172
	L106	L163		
	L109	T156	L109	T156
	L109	V160	L109	V160
	L109	L163		
			L115	C152
	1116	C152	1116	C152
	L119	L148	L119	L148
	A120	Y145		
	V123	Y145	V123	Y145
TM2-TM4	Y104	1190	Y104	1190
TM2-TM7	L106	Y369	L106	Y369
			L109	Y369
			1116	Y359
	L117	Y359		
	A120	Y359		
	M121	Y359		
TM3-TM4	Y146	M204		
	F147	A198		
	F147	A201	F147	A201
	F147	1202		
	F147	1205	F147	1205
	A151	A201		
	Y154	1200	Y154	1200
	Δ155	W/194	A155	W194
	1158	1193	1158	1193
TM3_TM5	2130	1155	V1/6	1256
	V15/	N1211	V15/	ND44
	A157	D244	1134	171244
	V160	1243		
	V100	1235		1356
	V105	L230	V105	L250
	1108 V1C9	L230 V250	1100	
	1108	V259	δάτι	V259
	¥168	1260		
	11/1	L264		
T1 (0) T 1 (0)	C1/2	1260		
TM3-TM6	1153	W321	T153	W321
			Т156	W321
	V160	V313		
TM3-TM7			Y146	Y351
			V160	Y369
TM4-TM5	T207	V237	T207	V237
TM5-TM6	V234	C332		
	1238	L329	1238	L329

Table S7. Residue pairs showing interhelical van der Waals interaction in NTSR1-GW5 and wt-NTSR1 simulations during 2 µs trajectories.

Supporting Information

	1238	C332	1238	C332
	F246	F317	F246	F317
	F246	W321	F246	W321
	F246	L322	F246	L322
	M250	F317		
	M250	V318	M250	V318
	1253	V314		
	1253	F317	1253	F317
			1260	A310
	A261	V307		
	L264	L303	L264	L303
	L264	V307		
			T265	L303
	T265	V307		
TM6-TM7			V309	L371
			V309	V372
			V313	L368
	V319	L357		
	C320	L357		
	C320	F358A		
			W321	F358
	P323	F350		
	P323	T354	P323	T354
	Y324	T354		
			Y324	F358
	M330	L343	M330	L343
			M330	F350
	F331	Y347	F331	Y347

Figure S5. Interhelical hydrogen bond interactions close to A86L mutation in NTSR1-GW5 (black) and wt-NTSR1 (red). (A) $S362^{7.46}(O) - N82^{1.50}(ND2)$, and (B) $A110^{2.47}(O) - N82^{1.50}(ND2)$. Crystal structure distances for each interaction are shown as blue dotted-lines.

Figure S6. Time-dependent interhelical hydrophobic interactions near the A86L mutation in NTSR1-GW5 (black) and wt-NTSR1 (red). (A) $T79^{1.47} - L114^{2.51}$, (B) $A86^{1.54} - A110^{2.47}$, (C) $A86L^{1.54} - A114^{2.51}$, and (D) $T85^{1.53} - A110^{2.47}$. Crystal structure distances for each interaction are shown as blue dotted-lines.

Figure S7. Interhelical hydrogen bond interactions near the V360A mutation in NTSR1-GW5 (black) and wt-NTSR1 (red). (A) $S362^{7.46}(OG) - D113^{2.50}(OD^*)$, (B) $S362^{7.46}(O) - N82^{1.50}(ND2)$, and (C) $N365^{7.49}(ND2) - D113^{2.50}(OD^*)$. Crystal structure distances for each interaction are shown as dotted-lines.

Figure S8. π -sulfur stacking pattern between M121^{2.58} (Sulfur) and Y359^{7.43} (center of mass of benzene ring) in NTSR1-GW5 (black) and wt-NTSR1 (red).

Figure S9. Effect of the mutation $E166A^{3.49}$ on the interhelical interactions in the neighborhood of the mutation. (A) Interhelical hydrogen bond interactions in NTSR1-GW5, and (B) corresponding snapshot in the wild type receptor. The percentage of the snapshots in the MD ensemble observed for each water is shown in the bottom of the figure.

Figure S10. (A) The TM3-TM5 interhelical interaction as a function of time for S164^{3.47} (TM3) and N257^{5.58} (TM5). The distance between S164^{3.47} (OG) and N257^{5.58} (ND2) stays steady at the hydrogen bond interaction distance in NTSR1-GW5 (black) but breaks off in wt-NTSR1 (red). (**B & C**) The backbone and side chain dihedral angles of N257^{5.58} in NTSR1-GW5 (B) and in wt-NTSR1 (C). The backbone dihedral *phi* and *psi* are shown as black and blue, and the side chain dihedral (*kai1*) is in red showing flexibility and rotation outwards.

Figure S11. The effect of the mutation $L310A^{6.37}$ on the receptor thermostability. **(A)** The direct interhelical hydrogen bond interaction between N257^{5.58} and S164^{3.47} due to the neighboring mutation L310A^{6.37} in NTSR1-GW5, and **(B)** the corresponding conformation in the wild type receptor. The percentage of the snapshots in the MD ensemble observed for each water is shown in the bottom of the figure.

Figure S12. **(A)** Water clusters in NTSR1-GW5 forming hydrogen bond networks with the carboxy terminus of the NTS and the TM3 and TM6 in the extracellular region. **(B)** Water

mediated hydrogen bond networks between TM2, TM3 and TM7. All the distances shown in both the figures are within 3.5Å.

Figure S13. (A) Comparison of NTSR1-4GRV structure and the initial modeled NTSR1-GW5-H8. The NTSR1-4GRV crystal structure without helix 8 is shown in cyan and the equilibrated NTSR1-GW5-H8 with helix 8 built in is shown in magenta. Inset figure shows the steric hindrance between residues of TM7 and helix 8 in the NTSR1-GW5-H8 homology model. (B) Comparison of final snapshot of the homology models with addition of amphipathic helix 8. NTSR1 with helix 8 (NTSR1-GW5-H8) is shown in magenta, and wt-NTSR1-H8 is shown in orange. The unraveled helices 8 in NTSR1-GW5-H8 and in wt-NTSR1-H8 are shown in red color.

Supporting Information

initialize in the NTSKT-OW 5-118 homology model after equinoration.									
	vdW interaction	Min. contact distance							
	(kcal/mol)	(kcal/mol)	(Å)						
P366 ^{7.50} – F380 ^{H8}	6.9	-1.5	4.0						
$N370^{7.54} - F380^{H8}$	6.6	-11.3	3.3						

Table S8. Non-bonded interactions between residues of TM7 and helix 8 that would facilitate steric hindrance in the NTSR1-GW5-H8 homology model after equilibration.

Supporting Information

Table S9. The dynamics of residues in the helix 8 region during MD simulations of various class A GPCRs both in the inactive and active states. The residues highlighted in pink remain helical during MD simulations whereas residues with white background unraveled. The mustard colored structures are inactive states of various receptors and light-blue is in active or active-like states. The description of the systems is given in the table below.

	Sequence of Helix 8 for various GPCR simulations System used																
2921	293R	294E	295F	296R	297Q	298T	299F	300R	301K	3021	3031	304R	305S	306H	307V	wt-3PWH (A _{2A} R)	1
2921	293R	294E	295F	296R	297Q	298T	299F	300R	301K	3021	3031	304R	3055	306H	307V	3EML	2
444N	445A	446T	447F	448K	449K	450T	451F	452K	453H	454L	455L	456M				3UON (M2)	3
329S	330P	331D	332F	333R	3341	335A	336F	337Q	338E	339L	340L	341C	342L			2RH1 (β₂AR)	4
387N	3881	389E	390F	391R	392K	393A	394F	395L	396K	3971	398L	399S	400C			3PBL (D3)	5
472N	473E	474N	475F	476K	477K	478T	479F	480K	481R	4821	483L	484H	4851			3RZE (H1)	6
2921	293R	294E	295F	296R	297Q	298T	299F	300R	301K	3021	3031	304R	3055	306H	307V	wt-2YDO (A _{2A} R)	7
444N	445A	446T	447F	448K	449K	450T	451F	452K	453H	454L	455L	456M				4MQS (M2)	8
444N	445A	446T	447F	448K	449K	450T	451F	452K	453H	454L	455L	456M	457C			4MQT (M2)	9
3295	330P	331D	332F	333R	3341	335A	336F	337Q	338E	339L	340L	341C	342L	343R	344R	3P0G-wt (β ₂ AR)	10
374A	375N	376F	377R	378Q	379V	380F	381F	3825	383T	384L						NTSR1-GW5-H8	11
374A	375N	376F	377R	378Q	379V	380F	381F	3825	3831	384L						wt-NTSR1-H8	12
Secon	Secondary structure																
Mage	nta	Helix	wni	te	Colle	a					F orda						
	System	used									Explai	nation					
1	wt-3PW	$H(A_{2A}R)$)	Wild ty	pe simu	lation	of Inact	ive A _{2A} F	{ bound	to ZM.	241385	under F	POPC bi	layer			
2	3EML			A2A Ad	enosine	recept	or bou	nd to Z	M24138	35							
3	3UON (M2)		M2 Mu	scarinic	Acetyl	choline	recept	or boun	d to Ar	tagoni	st					
4	2RH1 (β	₂AR)		Human	B2AR r	ecepto	bound	to part	tial inve	rse ago	onist Ca	razolol					
5	3PBL (D	3)		Human	dopam	ine D3	recepto	or in cor	mplex w	ith D2,	/D3 sele	ective an	ntagoni	st Eticloprid	е		
6	3RZE (H	1)		Human	Histam	ine H1	recepto	or in co	mplex w	ith firs	tgener	ation ar	tagoni	st Doxepin			
7	wt-2YD	$O(A_{2A}R)$		Wild ty	pe simu	lation	of Activ	e A2AR	bound	to Ade	nosine	under P	OPC bila	ayer			
8	4MQS (M2)		Active I	M2 Mus	carinic	Acetyl	choline	recepto	r boun	d to Ag	onist Ipe	eroxo				
9	4MQT (M2)		Active I	M2 Mus	carinic	Acetylo	holine	recepto	r boun	d to Ag	onist Ipe	eroxo a	nd allosteric	modula	tor	
10	3POG-w	t (B ₂ AR)		Wild ty	pe simu	lation	of Nanc	body-s	tabilize	d Activ	e state	of $\beta_2 AR$					
11	NTSR1-	GW5-H8		Mutant	Simula	tionof	Neurot	ensin R	ecepto	NTSR	1 bound	to ago	nist NT	peptide lig	and		
12	wt-NTS	R1-H8		Wild ty	pe Simu	lation	of NTSF	1 boun	d to ago	onist pe	eptide li	gand					
Blue	Artive Artive Orange Inactive																

*The helix 8 region of NTSR1-TM86V (pdb code 4BUO) was found to less stable than that other GPCRs. $^{(2)}$

The MD simulations on systems 1, 2 and 7 have been published in reference 3 of the Supporting Information.

Figure S14. The population density variation with the inter-residue distance R3.50 - Y7.53 observed with the presence of helix 8 in the NTSR1-GW5-H8 (black) and the wt-NTSR1-H8 (red).

References

- Shibata, Y.; Gvozdenovic-Jeremic, J.; Love, J.; Kloss, B.; White, J. F.; Grisshammer, R.; Tate, C. G. *Biochim. Biophys. Acta.* 2013, *1828*, 1293.
- (2) Egloff, P.; Hillenbrand, M.; Klenk, C.; Batyuk, A.; Heine, P.; Balada, S.; Schlinkmann, K. M.; Scott, D. J.; Schutz, M.; Pluckthun, A. *Proc. Natl. Acad. Sci. U.S.A.* **2014**, *111*, E655.
- (3) Lee, S.; Bhattacharya, S.; Grisshammer, R.; Tate, C.; Vaidehi, N. J. Phys. Chem. B. 2014, 118, 3355.