Supplementary Information

Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics

The EUMODIC Consortium

I Supplementary Figures

Supplementary Figure 1: EMPReSSlim Pipeline. EMPReSSslim comprises two phenotyping pipelines, covering a diverse set of biological and disease areas as indicated. In total 20 phenotyping tests are incorporated in the two pipelines. Note that a minimum cohort of 7 males and 7 females enters each pipeline.

Supplementary Figure 2: Procedure-specific detectable standardized effect size Procedure-specific detectable standardized effect size, d, as a function of sample size, under a variety of experimental workflows and analysis approaches (identified in legend). The the mutants were accompanied). Two analytical approaches were compared: analysis of all baseline data (all data); versus analysis restricted to baseline data from animals phenotyped on the same day(s) as mutants (accompanying data only). Calculations were based on attaining 80% power while controlling the FDR at 5%. Baseline data comprised 100 days, each with two litters. The variance two qualitative design choices under consideration were: whether mutant animals were phenotyped across multiple days with four animals per day, or all on a single day; and whether baseline animals were phenotyped on the same day(s) as mutants (i.e. whether components used in the power calculations for any particular procedure are shown at the top of the corresponding plot. The vertical **Supplementary Figure 2:** Procedure-specific detectable standardized effect size Procedure-specific detectable standardized effect size, d, as a function of sample size, under a variety of experimental workflows and analysis approaches (identified in legend). The two qualitative design choices under consideration were: whether mutant animals were phenotyped across multiple days with four animals per day, or all on a single day; and whether baseline animals were phenotyped on the same day(s) as mutants (i.e. whether the mutants were accompanied). Two analytical approaches were compared: analysis of all baseline data (all data); versus analysis restricted to baseline data from animals phenotyped on the same day(s) as mutants (accompanying data only). Calculations were based on attaining 80% power while controlling the FDR at 5%. Baseline data comprised 100 days, each with two litters. The variance components used in the power calculations for any particular procedure are shown at the top of the corresponding plot. The vertical axis is restricted to the range [0, 4] so not all curves appear on all panels. axis is restricted to the range [0, 4] so not all curves appear on all panels.

Supplementary Figure 3: Precision of variance component estimates. The precision of variance-component estimates (i.e. width of 95% posterior credible interval) is plotted against the number of baseline days upon which estimation is based. Each point corresponds to a dataset for a particular centre-parameter combination. Smoothing splines were fitted to the data and are superimposed.

Mutant mean − baseline mean (with 95% CI)

specific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres Above each significant **Supplementary Figure 4, Page 2:** Comparison of reference lines across centres For each line (one line plotted per page), centrespecific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres (see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant Supplementary Figure 4, Page 2: Comparison of reference lines across centres For each line (one line plotted per page), centre-(see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. ohenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour. phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

Mutant mean − baseline mean (with 95% CI)

specific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres **Supplementary Figure 4, Page 3:** Comparison of reference lines across centres For each line (one line plotted per page), centrespecific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres (see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant Supplementary Figure 4, Page 3: Comparison of reference lines across centres For each line (one line plotted per page), centre-(see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. ohenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour. phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

Above each significant

specific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres (see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant
phenotype, the number of mutant animals phenotyped in each centre is shown in the correspo Supplementary Figure 4, Page 4: Comparison of reference lines across centres For each line (one line plotted per page), centre-**Supplementary Figure 4, Page 4:** Comparison of reference lines across centres For each line (one line plotted per page), centrespecific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres (see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

(see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant

(see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. ohenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

Above each significant

phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

Mutant mean − baseline mean (with 95% CI)

11

Mutant mean − baseline mean (with 95% CI)

specific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres Above each significant **Supplementary Figure 4, Page 8:** Comparison of reference lines across centres For each line (one line plotted per page), centrespecific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres (see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant Supplementary Figure 4, Page 8: Comparison of reference lines across centres For each line (one line plotted per page), centre-(see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. ohenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour. phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

specific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres (see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant

Above each significant

specific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres

phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

(see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre.
phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

Impad1 (het) Impad1 (het)

specific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres (see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant

specific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant

phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

ohenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

Mutant mean − baseline mean (with 95% CI)

Jmjd5 (het) Jmjd5 (het)

14

194*

specific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres Above each significant **Supplementary Figure 4, Page 11:** Comparison of reference lines across centres For each line (one line plotted per page), centrespecific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres (see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant Supplementary Figure 4, Page 11: Comparison of reference lines across centres For each line (one line plotted per page), centre-(see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre.
phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour. phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

specific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres Above each significant **Supplementary Figure 4, Page 13:** Comparison of reference lines across centres For each line (one line plotted per page), centrespecific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres (see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant Supplementary Figure 4, Page 13: Comparison of reference lines across centres For each line (one line plotted per page), centre-(see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre.
phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour. phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

Mutant mean − baseline mean (with 95% CI)

specific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant **Supplementary Figure 4, Page 14:** Comparison of reference lines across centres For each line (one line plotted per page), centrespecific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres (see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant Supplementary Figure 4, Page 14: Comparison of reference lines across centres For each line (one line plotted per page), centreohenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour. phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

specific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant Supplementary Figure 4, Page 15: Comparison of reference lines across centres For each line (one line plotted per page), centre-**Supplementary Figure 4, Page 15:** Comparison of reference lines across centres For each line (one line plotted per page), centrespecific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres (see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant ohenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour. phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

specific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres Above each significant **Supplementary Figure 4, Page 16:** Comparison of reference lines across centres For each line (one line plotted per page), centrespecific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres (see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant Supplementary Figure 4, Page 16: Comparison of reference lines across centres For each line (one line plotted per page), centresee main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre.
phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour. phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

Mutant mean − baseline mean (with 95% CI)

specific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres Above each significant **Supplementary Figure 4, Page 17:** Comparison of reference lines across centres For each line (one line plotted per page), centrespecific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres (see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant Supplementary Figure 4, Page 17: Comparison of reference lines across centres For each line (one line plotted per page), centre-(see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre.
phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour. phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

Supplementary Figure 4, Page 18: Comparison of reference lines across centres For each line (one line plotted per page), centrespecific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres (see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant

phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

(see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant
phenotype, the number of mutant animals phenotyped in each centre is shown in the correspo

Snip1 (het) Snip1 (het)

specific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres (see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant

specific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres (see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant

phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

ohenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

Mutant mean − baseline mean (with 95% CI)

23

Mutant mean − baseline mean (with 95% CI)

specific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant **Supplementary Figure 4, Page 21:** Comparison of reference lines across centres For each line (one line plotted per page), centrespecific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres (see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant Supplementary Figure 4, Page 21: Comparison of reference lines across centres For each line (one line plotted per page), centreohenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour. phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

specific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres (see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant
phenotype, the number of mutant animals phenotyped in each centre is shown in the correspo Supplementary Figure 4, Page 22: Comparison of reference lines across centres For each line (one line plotted per page), centre-**Supplementary Figure 4, Page 22:** Comparison of reference lines across centres For each line (one line plotted per page), centrespecific genotype effect estimates and 95% credible intervals are shown. A "Q" indicates significant heterogeneity across centres (see main text for details). A "*" indicates a significant phenotype in the correspondingly coloured centre. Above each significant phenotype, the number of mutant animals phenotyped in each centre is shown in the corresponding colour.

Mutant mean − baseline mean (with 95% CI)

Centre 1, estimated genotype effect

Supplementary Figure 5: Pairwise comparison of reference-line effect estimates across centres. Each point in the plot compares estimated genotype effects across a pair of centres for a reference line phenotyped at both c whether the line was annotated in neither, one, or both of the centres (see legend).

Supplementary Figure 6: Hit rates stratified by procedure and centre. Hit rates stratified by procedure and centre. For each procedure, the proportion of tests (line-parameter combinations) resulting in annotations is indicated by a horizontal black line; centre-specific hit rates are denoted by points, with error bars providing 95% CIs. A "*" denotes procedures with significant inter-centre discordance controlling FDR < 0.05.

Homozygote signed standardized effect size

Supplementary Figure 7: Heterozygous versus Homozygous Effect Size Comparison of signed standardized effect size between heterozygotes (vertical axis) and homozygotes (horizontal axis) of the same line. Each point represents a particular combination of a mutant line and a parameter, with the graph only displaying combinations for which at least one of the heterozygote and homozygote is annotated, with zygosity-annotation details being indicated by the point colour (see legend).

II Supplementary Tables

Supplementary Table 1: Lines and annotation rates at each centre, stratified by non-EUCOMM / EUCOMM.

Supplementary Table 2, Page 1: Concordance of novel genes with human disease data. **Supplementary Table 2, Page 1:** Concordance of novel genes with human disease data.

Supplementary Table 2, Page 2: Concordance of novel genes with human disease data. **Supplementary Table 2, Page 2:** Concordance of novel genes with human disease data.

* Databases are Gwas Central, Gwas Catalogue and Orphanet, **Top-level phenotypes, ***Categorical data **Databases are Gwas Central, Gwas Catalogue and Orphanet, **Top -level phenotypes, ***Categorical data** Supplementary Table 2, Page 3: Concordance of novel genes with human disease data. **Supplementary Table 2, Page 3:** Concordance of novel genes with human disease data.

III Supplementary Note

III.1 Statistical Methods

l

III.1.1 Analysis of quantitative phenotypes

A transformation was applied to each quantitative phenotype separately, and to data from across all phenotyping centres at once. For any quantitative phenotype with some observations **≤** 0, a constant was added to all observations prior to transformation in order to satisfy: $min(y) = (max(y) - min(y)) / 100$. Phenotypes were then Box-Cox transformed with the exponent λ constrained to be in $\lambda \in \{-2, -1.5, \ldots, 1.5, 2\}$ and chosen to maximise the likelihood with respect to λ under an ordinary Gaussian linear model applied to data from baseline animals with sex and day as covariates. After Box-Cox transformation, each phenotype's data were scaled to zero mean and unit standard deviation.

Transformed quantitative phenotypes were then analysed under a Gaussian-response Bayesian multilevel model with day (α^{day}), litter (α^{litter}), genotype (β^{gen}), sex (β^{sex}), strain (β^{strain}), investigator (β^{inv}) and metadata group (β^{meta}) as covariates, and with a penalized spline to account for systematic temporal trends in baseline animal measurements. The penalized spline was fitted as described in chapter 16 of [1], with the pure cubic polynomial component having coefficients B^{poly} , and the full cubic spline's basis functions having coefficients α_k^{spl} which were regularised via a hierarchical model with variance component $\sigma^2_{\bf sol}$. Day and litter effects were modelled hierarchically with variance components $\sigma^2_{\bf day}$ and σ^2 The residual variance is denoted by σ^2 For any particular mutant line the analysis was restricted to data from that line along with data from all baseline animals at the same centre. The model was:

$$
y_i \sim N(\mu_i, \sigma_{resid}^2)
$$

\n
$$
\mu_i = \alpha_{d[i]}^{day} + \alpha_{[i]}^{litter} + \sum_{k=1}^{K+3} \alpha_k^{spl} f_k(t_{d[i]}) +
$$

\n
$$
\beta_{g[i]}^{geno} + \beta_{s[i]}^{Sex} + \beta_{j[i]}^{Strain} + \beta_{v[i]}^{inv} + \beta_{m[i]}^{meta} + \sum_{p=1}^{3} \beta_p^{poly} t_{d[i]}^p
$$

\n
$$
\alpha_d^{day} | \sigma_{day}^2 \sim N(0, \sigma_{day}^2), \text{ for } d = 1,..., D
$$

\n
$$
\alpha_i^{litter} | \sigma_{litter}^2 \sim N(0, \sigma_{litter}^2), \text{ for } l = 1,..., L
$$

\n
$$
\alpha_k^{spl} | \sigma_{spl}^2 \sim N(0, \sigma_{spl}^2), \text{ for } k = 1,..., K
$$

where g indexes genotype, s sex, j strain, v investigator, and m metadata group; t_d is the time point corresponding to the dth day. The functions $f_k(\cdot)$ denote basis functions of a B-spline basis for a cubic spline with knots at regularly spaced quantiles of the empirical distribution of days, and the number of knots, K , rounded down from the number of unique days divided by 10.

Non-informative priors were specified for β and σ^2 within the conjugate prior families available in the software package used (MCMCglmm [2, 3]). The location parameters β were allocated independent Normal(mean = 0, variance = 100) priors.¹ The variance parame-

¹The variance (= 100) of the diffuse Normal prior on the location parameters was chosen to allow large parameter values in the context of the data having been scaled to unit standard deviation prior to analysis (as here). The posterior is insensitive to the particular choice of large variance, provided it is large enough (e.g. varying the parameter from 100 to 10000 would lead to a similar posterior).

ters σ^2 were allocated independent Inverse-gamma(shape = 0.01, rate = 0.01) priors.²

For computational speed when fitting the model to multiple permuted data sets, a twostage model fitting procedure was implemented (Appendix A).

III.1.2 Analysis of categorical phenotypes

Categorical phenotypes, including those with more than two levels, were dichotomized into reference³ ($y_i = 0$) and non-reference categories ($y_i = 1$) and were analysed under a multilevel over-dispersed logistic regression model with parameters for litter (α^{litter}). genotype (β^{geno}), sex (β^{sex}), strain (β^{strain}), investigator (β^{inv}) and metadata group (β^{meta}) . Litter effects were modelled hierarchically with variance component σ_{litter}^2 . The inclusion of residuals, denoted by α^{resid} , provide an overdispersed logistic model that is the default in the software package used (MCMCglmm [2, 3]). For any particular mutant line, the following model was fitted only to data from that mutant line along with data from all baseline animals phenotyped in the same centre:

$$
Pr(y_i = 1) = logit^{-1} \left(\alpha_{[i]}^{litter} + \alpha_i^{resid} + \beta_{g[i]}^{geno} + \beta_{s[i]}^{sex} + \beta_{j[i]}^{strain} + \beta_{v[i]}^{inv} + \beta_{m[i]}^{meta} \right)
$$

\n
$$
\alpha_l^{litter} | \sigma_{litter}^2 \sim N(0, \sigma_{litter}^2), \text{ for } l = 1,...,L
$$

\n
$$
\alpha_i^{resid} \sim N(0, 1)
$$

The location parameters β were allocated weakly informative, independent Normal(0, 25) priors, motivated by the considerations outlined in [5] and its references.⁴ The litter variance parameter σ^2_{litter} , modelling covariance between binary observations within a litter, was allocated an Inverse-gamma(0.8, 0.04) empirical Bayes-type prior.⁵ For computational speed when fitting the model to multiple permuted data sets, a two-stage model fitting procedure was implemented (Appendix A).

III.1.3 Control of the false discovery rate (FDR)

To quantify the evidence in favour of a non-zero genotype effect for any particular (centre, phenotype, mutant line) combination, we used the following posterior summary statistic:

$$
T := 2 \times \min\left\{ \Pr(\beta^{\text{geno}} \le 0 \mid y), \ \Pr(\beta^{\text{geno}} \ge 0 \mid y) \right\} \ . \tag{1}
$$

²A non-informative Inverse-gamma(ϵ , ϵ) prior with small ϵ is a common but pragmatic choice for variance components, and we were guided by what was available in the software package used. It is known that there can be a degree of posterior sensitivity to the particular choice of ε (e.g. as ε varies from 0.01 to 0.001) [4]. In future methods development we would prefer a non-informative half-Cauchy prior as suggested by [4].

 3 The one or more categories pooled into a particular reference class represent the typical characteristics of baseline animals, and were selected through discussion with domain experts.

⁴In [5], a Cauchy distribution with scale parameter 2.5 was suggested as a weakly informative default prior for the logistic model, with its relevant properties being that it "gives preference to values less than 5, with the Cauchy allowing the occasional possibility of very large values." Our choice of prior was restricted to be Gaussian in the software used, so we approximated the distribution suggested in [5] by selecting a Normal(0, variance = 25), i.e. with scale parameter 5, which places 68% of mass within the interval **[−**5, 5**]** while admitting very large (up to about 15) absolute values on log odds scale.

⁵The rationale for this empirical-Bayes prior is to share information across phenotypes and centres on the litter covariance effect. The prior will have largest effect on the posterior, and corresponding benefit to inference relative to a non-informative prior, at phenotypes where very little information about the litter covariance effect is available, e.g. when most or all of the observations on baseline animals fall into the same category. The hyperparameters (shape = 0.8, rate = 0.04) were selected by maximum likelihood so that the empirical-Bayes prior matched the empirical distribution of estimates of σ_{litter}^2 from across all centres and parameters obtained under a non-informative Inverse-gamma(0.01, 0.01) prior.

Each (centre, phenotype, mutant line) combination was annotated if

$$
T_{(cen,phen,line)} < T_{(cen,phen)} \tag{2}
$$

The (centre, phenotype)-specific threshold τ _(cen,phen) was selected to control the FDR.

The FDR was estimated by permutations in which, for each (centre, phenotype, mutant line) combination, P **=** 10 negative-control instances of the mutant line's data were generated by randomly relabelling baseline data from the same centre. Multiple sets of 10 permutations were used to estimate the FDR; e.g. (centre, phenotype)-specific FDR was estimated, as described in (3) below, using permutations generated from all genes – 10 per gene – at that (centre, phenotype), so that the median number of permutations contributing to a (centre, phenotype) FDR estimate was 920 (interquartile range 650-1400).

The permutation approach was designed to mimic relevant characteristics of the mutant's data structure in the relabelled baseline data, and is described in Appendix B.

With the π th permutation for a (centre, phenotype, mutant line) combination yielding T **(**π**)** (cen,phen,line), the FDR at a particular (centre, phenotype) combination was estimated as

$$
\widehat{FDR}_{(\text{cen}, \text{phen})} = \frac{\text{Estimated number of false annotations}}{\text{Number of annotations}}
$$
\n
$$
= \frac{\sum_{\text{line } \bar{P}} \sum_{\pi=1}^{P} I \left[T_{(\text{cen}, \text{phen}, \text{line})}^{(\pi)} < T(\text{cen}, \text{phen}) \right]}{\sum_{\text{line}} I \left[T(\text{cen}, \text{phen}, \text{line}) < T(\text{cen}, \text{phen}) \right]}
$$
\n(3)

with $\widehat{FDR}_{(cen,phen)}$ defined to be zero when the denominator was zero, and where $I[\cdot]$ denotes the indicator function. The global FDR across all centres and phenotypes was estimated similarly as

$$
\widehat{FDR} = \frac{\sum_{\text{cen}} \sum_{\text{phen}} \sum_{\text{line}} \frac{1}{P} \sum_{\pi=1}^{P} I \left[T_{(\text{cen}, \text{phen}, \text{line})}^{(\pi)} < T_{(\text{cen}, \text{phen})} \right]}{\sum_{\text{cen}} \sum_{\text{phen}} \sum_{\text{line}} I \left[T_{(\text{cen}, \text{phen}, \text{line})} < T_{(\text{cen}, \text{phen})} \right]} \tag{4}
$$

Initially a single threshold $\tau_{\text{max}} = 10^{-4}$ was found that controlled the global FDR at 5%, i.e. such that, in (4), \widehat{FDR} < 0.05 when all $\tau_{(cen,phen)} \equiv \tau_{max}$. The (centre, phenotype)specific thresholds were then chosen to control each $\widehat{FDR}_{(cen,phen)}$ < 0.05, under the constraint that the (centre, phenotype)-specific thresholds must be at least as stringent as the global threshold, i.e. $\tau_{(cen,phen)} \leq \tau_{max}$.⁶

III.1.4 Power and experimental design

Power calculations were performed to investigate and compare various designs for phenotyping pipelines. Design variables included: the number of litters of each mutant line phenotyped, whether litters were split across days, whether baseline animals accompanied mutant animals (i.e. were phenotyped on the same day) and how many baseline litters were phenotyped per day. Realistic correlation structure was introduced into the model using the estimated proportions of variance attributed to day, litter and residual components, averaged across phenotypes measured within a particular procedure; e.g. for

⁶The estimators $\widehat{FDR}_{(cen,phen)}$ can be imprecise, and so the constraint $\tau_{(cen,phen)} \leq \tau_{max}$ was enforced for all (centre, phenotype) combinations to protect against choice of unsuitably large (i.e. not stringent enough) thresholds in instances of underestimation of the true FDR.

Calorimetry the average estimated variance proportions were $v_{\text{day}} = 0.21$, $v_{\text{litter}} = 0.08$ and $v_{\text{resid}} = 0.71$.

Inference for power calculations was performed under a frequentist linear model with correlation matrix for the residuals (generalized least squares), **R**, specified from estimated variance proportions v_{dav} , v_{litter} and v_{resid} :

$$
y \sim N(X\beta^{geno}, R\sigma^2)
$$

$$
R = Z_{day}Z_{day}^T V_{day} + Z_{litter}Z_{litter}^T V_{litter} + IV_{resid}
$$

where the **Z** are design matrices relating **y** to day and litter, and **X** relates **y** to genotype. Detectable effect size was determined based on the test of the null hypothesis of no genotypic effect using the standard t-statistic under its asymptotic Gaussian distribution⁷ at a significance level of 10**−**⁷ and with power 80%. A significance level of 10**−**⁷ was found to control the global FDR at 5% in a permutation analysis of the EUMODIC data, performed as described in section "Control of the false discovery rate (FDR)" above, but with $T_{(cen,phen,line)}$ and $T_{(cen,phen)}$ now corresponding to p-value and significance level respectively under a frequentist linear mixed-effects model (with day and litter as random effects and genotype, sex, strain, and metadata group as fixed effects). Detectable standardized effect size is presented, i.e.

$$
d = \frac{\left|\beta_{\text{mut}}^{\text{geno}} - \beta_{\text{bas}}^{\text{geno}}\right|}{\sigma}
$$

.

The experimental design and analysis for the EUMODIC project had the following properties (note that both sexes are included in the numbers below):

- 1. 68% of mutant lines were phenotyped across more than one day;
- 2. 71% of mutant days were accompanied by baseline animals;
- 3. all centre-specific baseline data were included in the analysis;
- 4. the average numbers of mutant and baseline animals per litter were 2.5 and 2.7 respectively (we use 2 as the default in the power calculation, as described below);
- 5. the average number of mutant animals of each line was 16.4 (we use 14 [7 litters of size 2] for the default, described below);
- 6. the average numbers of mutant and baseline animals phenotyped per day were 7.1 and 5.7 respectively (we use 4 per day as the default for the power calculations, described below [2 litters of size 2 per day]);
- 7. On average, mutant lines were compared to 119 days' worth of baseline animals, and 97% of mutant lines were compared to at least 50 days worth.

The values of the experimental design and analytical variables used in power calculations are listed below; note that the underlined choices indicate those values representative of the typical design and analysis used in the EUMODIC project and which were just described above.⁸

- 1. Whether all mutant litters are phenotyped on a single day, or each on a different day
	- Single day

 7 This is a reasonable approximation as the combined baseline/mutant sample sizes are sufficiently high; in particular there are always at least 54 animals in the power calculations performed

⁸The underlined choices do not completely coincide with the most powerful design considered in the power calculations: the design with mutants accompanied on a single day was marginally more powerful than the design having mutants accompanied on multiple days, though the latter design has other advantages, such as being relatively robust to an unplanned absence of accompanying controls.

- Multiple days, with two mutant litters per day
- 2. Whether mutants are accompanied (i.e. whether baseline animals are phenotyped on the same day(s))
	- Accompanied
	- Not accompanied
- 3. Whether all baseline data are analysed
	- Include all baseline data in analysis
	- **Include just accompanying baseline data**
- 4. Number of animals in a litter **∈** {2}
- 5. Number of mutant litters phenotyped **∈** {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
- 6. Number of baseline litters per day **∈** {1, 2, 3}
- 7. Total number of baseline days **∈** {50, 100, 200}

III.1.5 Appendix A – Model fitting

Evaluating the posterior for the mutant genotype effect proceeded in two stages. In the first stage, thinned samples, $\boldsymbol{\theta}_{\textsf{bas}}^{(1)}, \dots, \boldsymbol{\theta}_{\textsf{bas}}^{(K)}$, were drawn from the posterior distribution p**(θ**bas **| y**bas**)** using MCMC as implemented in the R package MCMCglmm [2, 3], where **θ**bas denotes all **β** and **σ** parameters in the (quantitative or categorical) model apart from the mutant genotype parameter, i.e. $\boldsymbol{\theta}_{\text{bas}} \equiv \{\boldsymbol{\beta}, \boldsymbol{\sigma}\} \setminus \beta_{\text{mut}}^{\text{geno}}$.

In the second stage, performed separately for each mutant line, the marginal posterior for the mutant genotype effect, $\theta_{\text{mut}} = \beta_{\text{mut}}^{\text{geno}} - \beta_{\text{bas}}^{\text{geno}}$, conditional on baseline and that mutant's data, p**(**θmut **| y**bas, **y**mut**)**, was evaluated via numerical integration methods, as follows. By Bayes' theorem,

$$
p(\theta_{\text{mut}} \mid \mathbf{y}_{\text{mut}}, \mathbf{y}_{\text{bas}}) \propto p(\mathbf{y}_{\text{mut}} \mid \theta_{\text{mut}}, \mathbf{y}_{\text{bas}}) p(\theta_{\text{mut}} \mid \mathbf{y}_{\text{bas}})
$$

= $p(\mathbf{y}_{\text{mut}} \mid \theta_{\text{mut}}, \mathbf{y}_{\text{bas}}) p(\theta_{\text{mut}})$, (5)

where (5) used $θ_{\text{mut}}$ \perp y_{bas} .⁹ The first term in (5) was estimated by Monte Carlo integration using the draws from the posterior $p(\boldsymbol{\theta}_{\text{bas}} | \boldsymbol{y}_{\text{bas}})$ obtained in stage one:

$$
p(\mathbf{y}_{\text{mut}} \mid \theta_{\text{mut}}, \mathbf{y}_{\text{bas}}) = \int p(\mathbf{y}_{\text{mut}} \mid \theta_{\text{mut}}, \mathbf{y}_{\text{bas}}, \theta_{\text{bas}}) p(\theta_{\text{bas}} \mid \theta_{\text{mut}}, \mathbf{y}_{\text{bas}}) d\theta_{\text{bas}}
$$

=
$$
\int \frac{p(\mathbf{y}_{\text{mut}}, \mathbf{y}_{\text{bas}} \mid \theta_{\text{mut}}, \theta_{\text{bas}})}{p(\mathbf{y}_{\text{bas}} \mid \theta_{\text{mut}}, \theta_{\text{bas}})}
$$

$$
p(\theta_{\text{bas}} \mid \mathbf{y}_{\text{bas}}) d\theta_{\text{bas}}
$$
(6)

$$
1 \underset{\text{M}}{\times} p(\mathbf{y}_{\text{mut}}, \mathbf{y}_{\text{bas}} \mid \theta_{\text{mut}}, \theta_{\text{bas}}^{(k)})
$$

$$
\frac{1}{K} \sum_{k=1}^{N} \frac{\rho(\mathbf{y}_{\text{mult}}, \mathbf{y}_{\text{bas}} + \sigma_{\text{huls}})}{\rho(\mathbf{y}_{\text{bas}} + \mathbf{\theta}_{\text{bas}}^{(k)})}
$$
(7)

where (6) used **θ**bas **⊥⊥** θmut **| y**bas, and (7) used **y**bas **⊥⊥** θmut **| θ**bas. In the categorical model, evaluating the numerator and denominator in the summand of (7) required numerical integration, performed using Gauss-Hermite quadrature, to marginalise with respect to the random effects, **α**day and/or **α**litter . ¹⁰ Finally, (7) was substituted in (5) and the

≈

⁹We use the notation x $\perp \!\!\! \perp$ y | z to denote conditional independence of x and y given z.

¹⁰For the quantitative response model, the spline random effects were included in θ_{bas} , i.e. $\theta_{\text{bas}} \equiv$ $\{\boldsymbol{\beta}, \boldsymbol{\sigma}, \boldsymbol{\alpha}^{\text{spl}}\} \setminus \beta_{\text{mut}}^{\text{geno}}$.

posterior's normalising constant calculated via integration with respect to θ_{mult} using the trapezoidal rule.

Numerical integration for logistic-response model: without a day effect in the categorical model, **y**mut and **y**bas are conditionally independent given **(**θmut, **θ (**k**)** bas**)**, so the formula in (7) can be expressed as

$$
\frac{1}{K} \sum_{k=1}^{K} \frac{p(\mathbf{y}_{\text{mut}}, \mathbf{y}_{\text{bas}} | \theta_{\text{max}})}{p(\mathbf{y}_{\text{bas}} | \theta_{\text{bas}}^{(k)})} = \frac{1}{K} \sum_{k=1}^{K} \frac{p(\mathbf{y}_{\text{mut}}, | \theta_{\text{mut}}, \theta_{\text{bas}}^{(k)})p(\mathbf{y}_{\text{bas}} | \theta_{\text{bas}}^{(k)})}{p(\mathbf{y}_{\text{bas}} | \theta_{\text{bas}}^{(k)})}
$$
\n
$$
= \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{y}_{\text{mut}}, | \theta_{\text{mut}}, \theta_{\text{bas}}^{(k)})
$$

and

$$
p(\mathbf{y}_{\text{mut}}, \mid \theta_{\text{mut}}, \boldsymbol{\theta}_{\text{bas}}^{(k)}) = \int \int p(\mathbf{y}_{\text{mut}} \mid \theta_{\text{mut}}, \boldsymbol{\theta}_{\text{bas}}^{(k)}, \boldsymbol{\alpha}^{\text{litter}}, \boldsymbol{\alpha}^{\text{resid}}) p(\boldsymbol{\alpha}^{\text{litter}}, \boldsymbol{\alpha}^{\text{resid}} \mid \boldsymbol{\sigma}^{(k)}) d\boldsymbol{\alpha}^{\text{litter}} d\boldsymbol{\alpha}^{\text{resid}} = \prod_{l=1}^{L} \int \left[\prod_{i=1}^{N_l} \int g_{li}(\alpha_l^{\text{litter}}, \alpha_{li}^{\text{resid}}) p(\boldsymbol{\alpha}_{li}^{\text{resid}} \mid \sigma_{\text{resid}}^{(k)}) d\alpha_{li}^{\text{resid}} \right] p(\alpha_l^{\text{litter}} \mid \sigma_{\text{litter}}^{(k)}) d\alpha_l^{\text{litter}}
$$

where

$$
g_{li}(\alpha_l^{\text{litter}}, \alpha_{li}^{\text{resid}}) := \rho(y_{\text{mut},li} | \theta_{\text{mut}}, \theta_{\text{bas}}^{(k)}, \alpha_l^{\text{litter}}, \alpha_{li}^{\text{resid}})
$$

$$
= \frac{\exp\left(\mathbf{x}_{li}^T \boldsymbol{\beta}^{(k)} + \beta_{\text{mut}}^{\text{geno}} + \alpha_l^{\text{litter}} + \alpha_{li}^{\text{resid}}\right)^{y_{\text{mut},li}}}{1 + \exp\left(\mathbf{x}_{li}^T \boldsymbol{\beta}^{(k)} + \beta_{\text{mut}}^{\text{geno}} + \alpha_l^{\text{litter}} + \alpha_{li}^{\text{resid}}\right)}.
$$

The integrals were performed using Gauss-Hermite quadrature, e.g.

$$
\int_{-\infty}^{\infty} g(\alpha) p(\alpha | \sigma) d\alpha = \int_{-\infty}^{\infty} g(\alpha) \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\alpha^2}{2\sigma^2}\right) d\alpha
$$

$$
= \int_{-\infty}^{\infty} g(\alpha \sqrt{2\sigma^2}) \frac{1}{\sqrt{\pi}} \exp(-\alpha^2) d\alpha
$$

$$
\approx \frac{1}{\sqrt{\pi}} \sum_{i=1}^{n} w_i g(z_i \sqrt{2\sigma^2}),
$$

where the z_i and w_i are the are the roots and weights of the Hermite polynomial $H_n(\cdot)$.

III.1.6 Appendix B – Permutation scheme

For the purposes of estimating and controlling the false discovery rate among phenotype calls, baseline data were relabelled to create synthetic null mutant data and analysed similarly to the true mutant data. So as to attain accurate FDR estimates, synthetic mutants were sampled from baseline animals in such a way as to match closely the experimental design implemented for true mutants. Design variables desirable to match across synthetic and true mutants included: the number of mutant animals, the number of mutant litters, the number of days across which phenotyping occurred, whether or not baseline animals were phenotyped on the same day, and the calendar time points at which phenotyping occurred.

For each (centre, phenotype, mutant line) combination, several synthetic null mutant data sets were independently sampled, each matching the design characteristics of that particular true mutant data set. A mutant data set comprised one or more mutant days, each comprising mutant data gathered on a single day. For each mutant day of a true mutant data set, a *baseline day*, comprising all baseline data gathered on a single day, was chosen and relabelled to create a corresponding synthetic null mutant day.

The following notation is used to describe the scheme for sampling baseline days:

 d_{mult} : the date of the mutant day (in days since arbitrary reference date)

- l_{mut} : the number of mutant litters phenotyped on the mutant day
- δ_{mut} : indicator whether mutants were *accompanied^a* (δ_{mut} = 1) or not (δ_{mut} = 0) \overline{B} : the total number of baseline days
	- d_i : the date of the *i*th baseline day $(i = 1, ..., B)$
	- l_i : number of baseline litters phenotyped on the *i*th baseline day $(i = 1, \ldots, B)$

The (unnormalized) sampling distribution was:

$$
\text{Pr}\left(\text{select } i\text{th baseline day}\right) \propto t_2 \left(\frac{d_i - d_{\text{mut}}}{14}\right) I[i] \ge l_{\text{mut}} + \delta_{\text{mut}}\tag{8}
$$

where $t_2(\cdot)$ denotes the density function of the Student t_2 distribution, and $I[\cdot]$ denotes the indicator function. The t_2 distribution and scaling in units of 14 days were heuristically selected with particular attention to the trade-off between close temporal matching and conditional independence of multiple synthetic data sets.

Once a baseline day had been selected, l_{mult} of that day's litters were relabelled as mutant litters, and its remaining data were either retained without relabelling if $\delta_{\text{mult}} = 1$, or were discarded if $\delta_{\text{mult}} = 0$. In creating a particular instance of a synthetic mutant data set comprising multiple mutant days, sampling of baseline days was performed without replacement.

III.1.7 SI References

- [1] Ruppert, D., Wand, M. P., and Carroll, R. J. Semiparametric Regression. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, first edition, (2003).
- [2] Hadfield, J. D. Journal of Statistical Software **33**(2), 1–22 February (2010).
- [3] R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, (2010).
- [4] Gelman, A. Bayesian Analysis **1**(3), 515–533 (2006).
- [5] Gelman, A., Jakulin, A., Grazia Pittau, M., and Su, Y.-S. The Annals of Applied Statistics **2**(4), 1360–1383 (2008).

aMutants on a particular mutant day were accompanied if baseline animals were also phenotyped on that date.

III.2 The EUMODIC Consortium

Universitat Autònoma Barcelona (UAB), Spain Fatima Bosch ¹ Jesús Ruberte¹ Tura Ferre¹ Anna Pujol¹ Pedro Otaegui¹ Sylvie Franckhauser¹ David Ramos¹ Miquel Garcia¹

Ani.Rhône-Alpes

Lyon, France Jacqueline Marvel² Veronique Queste² Romain Dacquin ² Sophia Djebali² Pierre Jurdic²

Biomedical Sciences Research Center 'Alexander Fleming' Athens, Greece George Kollias Christina Chandras ³ Eleni Douni ³

Vassilis Aidinis ³ Dimitris Kontoyiannis³ Maria Kamber³

CNIO

Madrid, Spain Mariano Barbacid⁴ Carmen Guerra ⁴ Marta Cañamero⁴ Pierre Dubus⁵

CNR, IBC

Monterotondo, Italy Glauco Tocchini-Valentini ⁶ Silvia Mandillo ⁶ Elisabetta Golini ⁶ Daniela Marazziti ⁶ Giancarlo Deidda⁶

CNR, IBC (cont.) Nicoletta Rossi⁶ Brendan Doe⁶ Rafaele Matteoni ⁶ Marcello Raspa⁶ Alessia Gambadoro 6 Francesco Chiani ⁶ Ferdinando Scavizzi ⁶ Richard Hugh Butler ⁶ Gianfranco Di Segni ⁶ Paolo Fruscoloni⁶ Patrizia Calandra ⁶ Cecilia Mannironi 6 Daniela Scarabino⁶ Giuseppe D. Tocchini-Valentini ⁶ Michela Zamboni ⁶ Sabrina Putti⁶ Chiara Di Pietro ⁶ Serena Gastaldi⁶

CNRS TAAM UPS44 – INEM UMR, France

Yann Hérault Bernard Ryffel⁷ Valérie Quesniaux ⁷ Isabelle Couillin ⁷ François Erard⁷ Marc le Bert⁷ Jacques Lignon ⁷ Florence Savigny⁷ Isabelle Maillet-Mercier ⁷ Stéphanie Rose ⁷ Rachel Vacher ⁷ Léa Brault⁷ Patricia Lopes Pereirea ⁷ Véronique Brault⁷ Emilie Dalloneau⁷ Stéphanie Pothion ⁷ Alexandre Diet ⁷ Cécile Fremond ⁷

EMBL Mouse Biology Unit Monterotondo, Italy Nadia Rosenthal⁸ Mumna Al Banchaabouchi⁸ Raffaele Migliozzi ⁸ Ekaterina Salimova ⁸

Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany

Bastian Pasche Fabio Pisano⁵ Silke Bergmann⁹ Werner Müller¹⁰ Andreas Lengeling¹¹

Helmholtz Zentrum München German Research Center for Environmental Health Munich (HMGU), Germany

Martin Hrabě de Angelis^{12,} Valérie Gailus-Durner¹² Helmut Fuchs¹² Thure Adler $^{12, 14}$ Antonio Aguilar-Pimentel^{12, b} Lore Becker $12, c$ Raffi Bekeredjian 12, d Dirk H. Busch⁹ Julia Calzada-Wack^e Oliver Eickelberg^g Irene Esposito^e Jack Favor^f Lilian Garrett¹³ Lisa Glasl $^{\rm 13}$ Alexander Götz^g Jochen Graw¹³ Wolfgang Hans¹² Heinz Höfler^e Sabine M. Hölter¹³ Anja Hurt ¹² Boris Ivandic $12, d$ Hugo A. Katus ^{12, d} Martin Klingenspor^{12, h} Thomas Klopstock^{12, c} Christoph Lengger 12
Tonic I what 12 Tonia Ludwig¹² Holger Maier¹² Susan Marschall $^{\rm 12}$ Kateryna Micklich¹²

HMGU (cont.) Beatrix Naton Frauke Neff^e Markus Ollert $^{12,\,\mathrm{b}}$ Natalia Pellegata^e Oliver Puk¹³ Leticia Quintanilla-Fend^e Ildiko Racz 12, i Birgit Rathkolb^{12, j} Jan Rozman 12, h Karl-Heinz Schäble¹² Evelyn Schiller¹² Anja Schrewe ¹² Holger Schulz^g Ralf Steinkamp $^{\mathrm{12}}$ Claudia Stöger¹² Tobias Stöger^g Minxuan Sun¹³ Monica Tost^e Irina Treise ¹² Daniela Vogt-Weisenhorn¹³ Monja Willershäuser¹² Eckhard Wolf^{j,12} Annemarie Wolff-Muscate ¹³ Wolfgang Wurst^{13, k,l,m} Ali Önder Yildirim^g Ramona Zeh ¹² Andreas Zimmer^{12, i}

Institut Clinique de la Souris

(IGBMC), Strasbourg, France Jean-Louis Mandel¹⁵ Yann Hérault¹⁵ Tania Sorg ¹⁵ Mohammed Selloum¹⁵ Abdel Ayadi ¹⁵ Guillaume Pavlovic¹⁵ Marie-Christine Birling ¹⁵ Laurent Monassier¹⁵ Michel Roux¹⁵ Manuel Mark ¹⁵ Dalila Ali-Hadji $^{\rm 15}$ Philippe André¹⁵ Elodie Bedu ¹⁵ Julien Becker¹⁵ Benoit Petit-Demoulière¹⁵ Marie-France Champy¹⁵ Philippe Charles¹⁵

IGBMC (cont.)

Roy Combe¹ André Dierich ¹⁵ Isabelle Goncalves Da Cruz ¹⁵ Sylvie Jacquot¹⁵ Hughes Jacobs¹⁵ Sophie Leblanc¹⁵ Hamid Meziane¹⁵ Laurent Vasseur¹⁵ Olivia Wendling¹⁵ Gregory Amann¹⁵ Aurelie Auburtin¹⁵ Lahcen El Fertak¹⁵ Alain Guimond 15 Patrice Goetz¹⁵ Valerie Lalanne¹⁵ Elise le Marchand 15 Stéphanie Muller¹⁵ Aline Lux 15 Christophe Mittelhauser 15 Laurent Pouilly¹⁵ David Moulaert¹⁵ Emilie Peter¹⁵ Fabrice Riet 15 Stephane Rousseau 15 Isabelle Tilly^{15} Christelle Wagner¹⁵ Bruno Weber¹ Anne Wolter 15 Véronique Brault¹⁵ Claire Chevalier ¹⁵ Arnaud Duchon ¹⁵ Emilie Dalloneau ¹⁵ Emilie Velot¹⁵

MRC Harwell, UK

Steve Brown¹⁶ Hilary Gates¹⁶ Niels Adams¹⁷ Sarah Atkins¹⁶ Tim Beck ¹⁶ Kathryn Birch ¹⁷ Andy Blake 16 Debra Brooker ¹⁶ Heather Cater¹⁷ Kan Pai Chiev¹⁶ Andre Chouankam ¹⁶ Roger Cox ¹⁶

MRC Harwell (cont.) Paul Denny¹⁶ Irina Emelyanova¹⁶ Martin Fray¹⁷ George Gkoutos 30 Simon Greenaway¹⁶ Ahmad Hassan¹⁶ John Hancock¹⁶ Tertius Hough¹⁷ Kelly Hunt¹⁶ Elizabeth Joynson ¹⁷ Rachel Kendall¹⁶ Sharon Kitchen 17 Ramakrishna Kurapati ¹⁶ Heena Lad¹⁶ Kirsty Lee¹⁶ Dee Lynch¹⁷ Ann-Marie Mallon ¹⁶ Hugh Morgan¹⁶ Helen Natukunda 17 George Nicholson ²⁹ Pat Nolan¹⁶ Viral Panchal 16 Paras Pathak¹⁷ Amanda Pickard 17 Paul Potter¹⁷ Deen Quwailid 16 Matthew Reddon¹⁶ Ahmad Retha¹⁶ Luis Santos¹⁶ Michelle Simon¹⁶ Anne Southwell¹⁶ Michelle Stewart 17 Lydia Teboul¹⁷ Adele Traynor¹⁶ Simon Vowell¹⁶ Jane Vowles¹⁷ Alison Walling¹⁷ Tom Weaver Sara Wells¹⁷ Henrik Westerberg¹⁶
Debbie Williams¹⁶ Debbie Williams ¹⁶ Joe Wood¹⁷ Rumana Zaman ¹⁶

MRC Human Genetics Unit Edinburgh, UK Ian Jackson¹⁸

Sally Cross¹⁸ Russell Joynson 18/17 Shalini Jadeja¹⁸ Lisa McKie

Tel Aviv University

Israel Karen B. Avraham ¹⁹ Amiel Dror¹⁹ Shaked Shivatzki $^{\rm 19}$ Anya Rudnicki ¹⁹ Danielle Lenz¹⁹ Tal Elkan ¹⁹ Zippora Brownstein ¹⁹

Telethon Institute of Genetics and Medicine (TIGEM) Italy Andrea Ballabio ²⁰

Graciana Diez-Roux ²⁰

The Roslin Institute, UK Andreas Lengeling²

University of Cambridge UK Paul Schofield $^\mathrm{22}$ Michael Gruenberger²² Julian L Griffin²

University of Lausanne, Switzerland

Walter Wahli²⁴ Frederic Preitner ²⁴ Mehdi Tafti²⁴ Bernard Thorens ²⁴ Béatrice Desvergne²⁴ Liliane Michalik² Salima Metref²⁴ Anabela Da Costa ²⁴ Paul Franken²⁴ Yann Emmenegger ²⁴

University of Manchester, UK Ludwig Neyses²⁵ Elizabeth Cartwright ²⁶ Sukhpal Prehar²⁶ Min Zi²⁶

The Wellcome Trust Sanger Institute (WTSI), Cambridge,

UK Jacqueline K White ²⁷ Ramiro Ramirez-Solis ²⁷ Anna-Karin Gerdin ²⁷ Natasha A Karp $^{\mathrm{27}}$ James N Bussell²⁷ Jennifer Salisbury ²⁷ Ed Ryder²⁷ Christine Podrini ²⁷ Richard Houghton²⁷ Jeanne Estabel²⁷ Joanna Bottomley ²⁷ David Richardson²⁷ David G Melvin²⁷ David Sunter 27 Niels C Adams²⁷ David J Adams²⁷ Karen P Steel ²⁷ Emma Cambridge²⁷ Caroline Barnes²⁷ Damian Carragher²⁷ Prabhjoat Chana²⁷ Jing Chen ²⁷ Kay Clarke 27 Yvette Hooks²⁷ Natalia Igosheva ²⁷ Neil Ingham²⁷ Ozama Ismail ²⁷ Hannah Jackson²⁷ Leanne Kane²⁷ Rosalind Lacey ²⁷ David Tino Lafont²⁷ Mark Lucas²⁷ Simon Maguire ²⁷ Katherine McGill²⁷ Rebecca McIntyre²⁷ Lynda Mottram²⁷ Lee Mulderrig²⁷ Selina Pearson²⁷

WTSI (cont.) Hayley J Protheroe²⁷ Laura-Anne Roberson ²⁷ Grace Salsbury²⁷ Mark Sanderson²⁷ Daniel Sanger²⁷ Carl Shannon²⁷ Elizabeth Tuck²⁷ Valerie E Vancollie ²⁷ Sophie Messager²⁷ Ryan Beveridge²⁷ Lauren Baker² Diane Gleeson²⁷ Ross Cook ²⁷ Matt Hardy 27 Kifayathullah Liakath Ali²⁷ Stacey Price²⁷ Debarati Sethi²⁷ Elizabeth Trenchard ²⁷ Sapna Vyas²⁷ Elizabeth Wynn ²⁷ Lisa Brackenbury²⁷ Arthur Evans²⁷ David Gannon²⁷ Mark Griffiths 27 $Simon$ Holroyd²⁷ Christian Kipp²⁷ Wei Li 27 Helen Tharagonnet²⁷ Chukwuma Agu²⁷ Jackie Bryant²⁷ Liz Delaney²⁷ Ellen Brown²⁷ Adam Collinson²⁷ Evelyn Grau²⁷ Catherine Ingle ²⁷ Helen Kundi²⁷ Alla Madich $^{27}\,$ Danielle Mayhew ²⁷ Tom Metcalf²⁷ Stuart Newman ²⁷ Johanna Pass²⁷ Laila Pearson²⁷ Caroline Sinclair ²⁷ Hannah Wardle-Jones²⁷ Michael Woods²⁷ Sarah Harrison²⁷ James Harrison²⁷ Charles-Etienne Dumeau ²⁷

WTSI (cont.) Helen Reynolds²⁷ Daniel Biggs²⁷ Francesca Flack²⁷ Gemma White²⁷ Terry Brown²⁷ Andrea Kirton ²⁷ Liam Alexander²⁷ Claire Rogerson²⁷ Jordan McDermott²⁷ Nicola Griggs²⁷ Silvia Hrnciarova²⁷ Pawel Zielezinski²⁷

EUMODIC stands for the "European Mouse Disease Clinic: A distributed phenotyping resource for studying human disease". The EUMODIC project was funded by the European Commission within its FP6 Programme, under the thematic area "Life sciences, genomics and biotechnology for health" contract number LSHG-CT-2006-037188

Further information on the EUMODIC project and consortium can be found on the project website: www.eumodic.org

- 1 Centre of Animal Biotechnology and Gene Therapy, School of Veterinary Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
- 2 Ani.Rhone-Alpes, AniRA UMS3444/US8 Biosciences Gerland-Lyon Sud, 50 Avenue Tony Garnier, 69366 Lyon Cedex 7, France
- 3 Biomedical Sciences Research Center 'Alexander Fleming', Athens, Greece
- 4 CNIO Centro Nacional de Investigaciones Oncologicas, Molecular Oncology & Comparative Pathology, Melchor Fernandez Almagro 3, 28029 Madrid, Spain
- 5 University of Bordeaux, Histology and Molecular Pathology Department, EA2406, 146 Rue Leo Saignat, 33076 Bordeaux, France
- 6 IBC-CNR, Campus "A.Buzzati-Traverso", via Ramarini 32 00016 Monterotondo Scalo, Rome, Italy
- 7 CNRS INEM UMR7355, 3B rue de la ferollerie 45071 Orleans cedex 2, France
- 8 EMBL Monterotondo, Mouse Phenotyping Facility, "A.Buzzati-Traverso Campus", via Ramarini 32, 00015 Monterotondo Scalo, Rome, Italy
- 9 Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstrasse 9, 81675 Munich, Germany
- 10 The University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
- 11 The Roslin Institute, University of Edinburgh, Easter Bush Veterinary Research Centre, Roslin, Midlothian, EH25 9RG, UK
- 12 Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Ingolstaedter Landstrasse 1, D- 85764 Neuherberg, Germany
- 13 Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
- 14 Institute for Medical Microbiology, Immunology and Hygeine, Technische Universität München, Trogerstrasse 9, 81675 Munich, Germany
- 15 Institut Clinique de la Souris (ICS), 1 Rue Laurent Fries, BP10142, 67404 Illkirch, Cedex, France
- 16 Medical Research Council Mammalian Genetics Unit, Harwell, Oxfordshire, OX11 0RD, UK
- 17 Medical Research Council Mary Lyon Centre, Harwell, Oxfordshire, OX11 0RD, **IK**
- 18 Medical Research Council Human Genetics Unit, Comparative and Developmental Genetics Department, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- 19 Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- 20 Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Napoli, Italy
- 21 Infection and Immunity Division, The Roslin Institute and Royal Dick Schoolof Veterinary Studies, University of

Edinburgh, Easter Bush Veterinary Campus, Edinburgh, EH25 9RG, UK

- 22 Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
- 23 University of Cambridge, Clinical Biochemistry, Addenbrooke's Hospital, Box 232, Hills Road, Cambridge CB2 2QR, UK
- 24 National Centre of Research 'Frontiers in Genetics', University of Lausanne, Center for Integrative Genomics, BEP, CH-1015 Lausanne, Switzerland
- 25 University of Manchester, Manchester Heart Centre, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, UK
- 26 University of Manchester, Medical School, Rm 1.302, Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- 27 The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- 28 Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- 29 Department of Statistics, University of Oxford, 1 South Park Road, Oxford, OX1 3TG, UK
- 30 Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- a Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- b Division of Environmental Dermatology and Allergy (UDA), Helmholtz Zentrum München/ Technische Universität München, and Clinical Research Division of Molecular and Clinical

Allergotoxicology, Department of Dermatology and Allergy, Technische Universität München, Munich, Germany

c Klinikum der Ludwig-Maximilians-Universität München, Dept. of Neurology, Friedrich-Baur-Institute, Ziemssenstr. 1a, 80336 Munich, Germany d Heidelberg University Hospital, Im

- Neuenheimer Feld 410, 69120 Heidelberg, Germany
- e Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany

f Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Human Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany

- g Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
	- Technische Universität München, Molecular Nutrional Medicine, Else Kröner-Fresenius Center, Am Forum 8, 85354 Freising-Weihenstephan, Germany

University of Bonn, Life & Brain Center, Institute of Molecular Psychiatry, Sigmund Freud Str. 25, 53127 Bonn, Germany

- j Ludwigs-Maximilians-University München, Gene Center, Institute of Molecular Animal Breeding and Biotechnology, Feodor-Lynen Str. 25, 81377 Munich, Germany
- k Chair of Developmental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany