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1 Case study 1: A synthetic signaling pathway
model

In this section we provide detailed results, including optimization statistics,
obtained while solving case study 1. This case study is based on a synthetic
signaling pathway model developed by [6]. The continuous parameters used to
generate the pseudo-experimental data can be found in the supplementary ma-
terials of [6].

This section contains the following elements (in this order):

1. Experimental setup for the synthetic pathway problem.

2. Expanded synthetic pathway model.

3. Convergence curves for MINLP solutions.

4. Convergence curves for the relaxed MINLP solutions.

5. Summary of results obtained with each optimization method.

6. Boxplot of the final objective function value for each optimization method.

7. Frequency of hyperedges in the synthetic pathway model for near optimal
solutions with objective function values under 20.0.

8. Frequency of hyperedges in the synthetic pathway model for near optimal
solutions with objective function values under 15.0.

9. Experimental versus predicted time-series for the best solution found for
synthetic pathway problem.

10. Experimental versus predicted time-series for the best solution found for
synthetic pathway problem.

11. The Wilcoxon rank sum test for equal medians applied to the obtained
distributions of final objective function values.
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Experiment IFNG TNFA IL1Ainh IL6inh
1 0 0 0 0
2 1 0 0 0
3 0 1 0 0
4 1 1 0 0
5 1 0 1 0
6 0 1 1 0
7 1 1 1 0
8 1 0 0 1
9 0 1 0 1
10 1 1 0 1

Table S.1: Case study 1, synthetic signaling pathway: Experimental setup for the
synthetic pathway problem. IFNG and TNFA are cytokines and can be regarded
as an upstream model stimuli which triggers the signaling cascade. IL1Ainh and
IL16inh are small-molecule inhibitors for IL1A and IL6.
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Figure S.1: Case study 1 (synthetic signaling pathway): Expanded synthetic
pathway model. The original protein signaling network is expanded into a
Boolean model containing every possible boolean gate in the form of hyper-
dges. The model contains 26 dynamic states, 86 continuous parameters and 34
possible hyperedges.
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Figure S.2: Case study 1 (synthetic signaling pathway): Convergence curves for
MINLP solutions the synthetic pathway model. The MINLP problem was solved
using 30 independent runs for each solver (eSS, ACOmi and MITS). No method
was always able to solve the problem for the given function evaluation budget.
Although eSS found the best solutions, its overall performance was comparable
to that of ACOmi. MITS was unable to solve the problem.
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Figure S.3: Case study 1 (synthetic signaling pathway): Convergence curves for
the MPeSS solutions the synthetic pathway model. The optimization procedure
was divided into three phases. First, we solved the relaxed problem using eSS
with α equal to 1. Next we used a family of solution found by eSS in the first
step to feed another relaxed NLP but this time penalizing the deviation of wi

from 0 or 1 with α equal to 3. Finally we used the solutions from step 2 to start
an MINLP problem solved by eSS.
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Figure S.4: Case study 1 (synthetic signaling pathway): Summary of results
obtained with each optimization method while solving the synthetic pathway
problem. The upper plot shows the histogram of the best objective func-
tion value achieved with each solver. The problem was solved using 30 in-
dependent optimization runs for each solver (eSS, MPeSS, ACOmi and MITS).
The upper plot shows the frequency of the final objective function achieved.
The lower figure shows the accuracy of the obtained solution computed as
(TP + TN)/(TP + TN + FP + FN) where TP is the number of true posi-
tive, TN the number of true negative, FP the number of false positive and FN
the number of false negative hyperedges when compared with the correct solu-
tion. MPeSS was the best performer. Although eSS did slightly better, both
eSS and ACOmi are competitive. MITS was systematically unable to solve
the problem. Results show that for objective function values below a certain
threshold, we can recover the correct model structure.
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Figure S.5: Case study 1 (synthetic signaling pathway): Boxplot of the final
objective function value for each optimization method (synthetic pathway prob-
lem).
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Figure S.6: Case study 1 (synthetic signaling pathway): Frequency of hyperedges
in the model for near optimal solutions with objective function values under 20.
The CellNOptR [8] software was used to illustrate specific hyperedges appear in
near optimal solutions. In this example we consider solutions with an objective
function value below 20. Redundant hypereges were filtered after the optimiza-
tion procedure. The numbers stand for the percentage each hyperedge appeared
in the final solutions. Strong dark or red links without any numbering illustrate
links that are always present. Light gray or red line corresponds to hyperedges
which are not present or are present in only a fraction of near optimal solutions
below specified threshold.
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Figure S.7: Case study 1, synthetic signaling pathway:Frequency of hyperedges
in the model for near optimal solutions with objective function values under 15.
The CellNOptR [8] software was used to illustrate specific hyperedges appear
in near optimal solutions. In this example we consider solutions with an ob-
jective function value bellow 15. Redundant hypereges were filtered after the
optimization procedure. The numbers stand for the percentage each hyperedge
appear in the final solutions. Strong dark or red links without any numbering
illustrate links that are always present.
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Figure S.8: Case study 1 (synthetic signaling pathway): Predicted versus ob-
served time-series for the best solution found.
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Figure S.9: Case study 1 (synthetic signaling pathway): Predicted versus ob-
served time-series for the worst solution found.
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MITS(34.2) eSS(21.2) ACO(19.8) MPeSS(19.6)
MITS(34.2) − H = 1, P = 9.83 · 10−8 H = 1, P = 1.61 · 10−10 H = 1, P = 1.17 · 10−4

eSS(21.2) H = 1, P = 9.83 · 10−8 − H = 0, P = 0.348 H = 0, P = 0.579
ACO(19.8) H = 1, P = 1.61 · 10−10 H = 0, P = 0.348 − H = 0, P = 0.912
MPeSS(19.6) H = 1, P = 1.17 · 10−4 H = 0, P = 0.579 H = 0, P = 0.912 −

Table S.2: Case study 1 (synthetic signaling pathway): The Wilcoxon rank sum
test applied to the distributions of final objective function values obtained with
each pair of methods. The null hypothesis (H=0) is that both distributions have
the same median (under parentheses) with a given probability (P).

2 Case Study 2: Application to the KdpD/KdpE
two-component signal transduction pathway

In this section we provide further details and results regarding case study 2:

1. Further details about the model and the calibration case study considered.

2. Convergence curves using 3 solvers (eSS, MITS, ACO).

3. Histogram of final objective function values and their accuracy using 3
solvers (eSS, MITS, ACO).

4. Boxplot of the final objective function value for each optimization method
(eSS, MITS, ACO)

5. Experimental versus predicted time series for the best solution.

6. Frequency of hyperedges in the model for near optimal solutions with
objective function values under 1500.

7. Frequency of hyperedges in the model for near optimal solutions with
objective function values under 1000.

8. The Wilcoxon rank sum test for equal medians applied to the obtained
distributions of final objective function values.

In broad terms we used the model and experimental design described in
[7] to generate a synthetic problem. We have modified this model to incorpo-
rate logic-based ODE expressions. This procedure is described in the text below:

Here we apply the methods to perform model selection in a model of K+
E. coli regulation of the KdpD/KdpE two-component signal transduction path-
way. The main components of this system are the high-affinity K+ transporter
KdpFABC and two regulatory proteins KdpD (sensor kinase) and KdpE (re-
sponse regulator) [5]. The two proteins regulate the kdpFABC operon, which
is activated in response to K+ limiting conditions [1], restoring the intracellular
K+ concentration [2].
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[4] developed a first version of a differential algebraic equation model for
this system. This model assumes that the stimuli enters the system through
the dephosphorylation of the response regulator KdpE. Since the model did not
include a functional transporter for K+, to integrate stimuli counteraction of
low K+ levels by the KdpFABC K+ uptake system, the authors introduced an
empirical black box mediating the dephosphorylation of the response regulator
(KdpE) depending on the K+ concentration. Based in in vitro and in vivo
measurements, Kremmling and colleagues were able to calibrate their model in
order to reproduce the available data accurately.

Recently, new experimental data aiming further insight into the KdpE/KdpE
two-component system has been generated. These experiments were based on
mutant strains with impaired K+ properties and diverse K+ stimulation con-
ditions. Based in these data, [7] and colleagues have postulated the possible
existence of two new possible feedback loops (R1 and R2) and an alternative ex-
pression for the previously existing empirical black-box describing stimuli coun-
teraction (R3). These new two feedback loops affected the translation (R1) and
proteolysis (R2) of KdpFABC:

dKdpFABC

dt
= R1· ktl3·mRNA− (kd2·R2 + µ)·KdpFABC (1)

where R1 and R2 are Hill shaped functions, ktl3 is the rate constant for trans-
lation, µ the growth rate and kd2 the degradation constant for KdpFABC. To
calibrate this model a simultaneous model discrimination and parameter esti-
mation process was done relying to the Akaike criterion, an objective function
which promotes model parsimony.

In this work we adapted the model developed in [7] to the C language and
solved it using CVODES. The original matlab version of this model contained
6 ODEs and a differential algebraic equation (DAE). Since CVODES does not
handle DAEs we implemented an equivalent ODE and verified that both models
produced the same results. Moreover, in order to consider the logic-based ODE
framework we have rewritten the differential equation describing the dynamics
of KdpFABC as follows:
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dKdpFABC

dt
= (2)(

0·
[
1− fHn

( mRNA

normmRNA

)]
·
[
1− fHn(FABC)

]
+ w2·

[
1− fHn

( mRNA

normmRNA

)]
· fHn(KdpFABC)

+OR(w1, w2, w3)· fHn
( mRNA

normmRNA

)
·
[
1− fHn(KdpFABC)

]
+

+ w1· fHn
( mRNA

normmRNA

)
]· fHn(KdpFABC)

−KdpFABC

)
· τKdpFABC (3)

The expression for R3 controls the dephosphorylation of KdpE. Rewriting
KdpE as a logic based ODE would require a major transformation of the model.
To avoid this, for the stimuli counteraction we opted to add an additional dy-
namical state (R3) instead of using just a black box function:

dR3

dt
=
[
w4· fHn(KdpFABC)−R3

]
· τR3

(4)

After these transformations the model considered in this work had a total
of 8 dynamical states.

To evaluate the ability of our method to describe and calibrate a model in a
realistic scenario where multiple hypothesis are postulated, we used the model
derived by Rodriguez-Fernandez and colleagues to generate pseudo-experimental
data. We considered 10 different scenarios by varying the external concentration
of K+ and by considering a wild-type and a mutant strain. The mutant strain
is modelled by removing the influence R3 in the dephosphorylation of KdpEp.
In the 10 experimental scenarios only KdpFABC and mRNA were observed and
were added 5% of Gaussian noise.

We executed 30 optimization runs for each solver, eSS, ACOmi and MITS.
The same budget of objective function evaluations was given to every run. In
this case due to the smaller size of the problem we did not see any improvement
by using MPeSS over eSS. The most robust method was clearly eSS (see Figures
S.9 and S.10 in the supplementary materials). ACOmi was also able to solve
the problem in a few instances. MITS consistently failed to solve the problem
for the allowed FE budget.

After redundant hypereges were filtered, all solutions showing a final ob-
jective function value below a given threshold (a total of 26) located the same
solution. The CellNOptR [8] software was used to illustrate this solution (see
Figure S.15). In this problem 4 binary variables were considered; w1, w2 , w3

and w4. The hyperedges w3 and w4 were present in every of the top performing
solutions while w1 and w2 were always absent.
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When comparing the time course simulation of the best solution with the
pseudo-experimental data we see that there is an excellent agreement between
the two (normalized RMSE values of 0.0168 and 0.0191 for kdpFABC and
mRNA, respectively).
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Figure S.10: Case study 2 (E. coli homeostasis): Convergence curves for the
logic-based implementation of the KdpD/KdpE two-component system problem.
The convergence curves show that eSS is the best performer, finding near glob-
ally optimal solutions in the allowed function evaluation budget.
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Figure S.11: Case study 2 (E. coli homeostasis): Histogram of achieved objective
function values and accuracy of solution for logic-based implementation of the
KdpD/KdpE two-component system problem. Upper figure: histogram with the
frequency distribution of the solutions obtained with 3 solvers. Most solutions
from ACOmi and MITS are excluded from this chart since these are far from
the optimal point. Below, accuracy is plotted for each group of solutions as a
function of the final objective function value. Accuracy was computed as as
(TP + TN)/(TP + TN + FP + FN) where TP is the number of true positive,
TN the number of true negative, FP the number of false positive and FN the
number of false negative links. As the correct solution is unknown for this case,
the comparison is done against the best solution found.
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Figure S.12: Case study 2 (E. coli homeostasis): Boxplot of the final objective
function value for each optimization method (eSS, ACO, MITS) while solving
the KdpD/KdpE two-component system problem.
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Figure S.13: Case study 2 (E. coli homeostasis): Predicted versus observed time
series for the best solution found. The model described in [7] was used to
generate pseudo-experimental data. Homoscedastic noise of 5% was added to
this data (based on the mean of each experiment). Data points with error
bars are shown in red while blue curves represent the simulation time-courses
of the logic-based implementation of this problem. The agreement between the
pseudo-experimental data and the calibrated logic-based model is very good.
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Figure S.14: Case study 2 (E. coli homeostasis): Frequency of hyperedges in
the model for near optimal solutions with objective function values under 1500.
The CellNOptR [8] software was used to illustrate specific hyperedges appear
in near optimal solutions. In this example we consider solutions with an ob-
jective function value under 1500. Redundant hypereges were filtered after the
optimization procedure. In this problem 4 binary variables were considered; w1,
w2 , w3 and w4. The hyperedge w4 is present in every of these solutions. On
the other hand w2 is always absent. The hyperedges w1 and w3 appear in some
solutions.
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Figure S.15: Case study 2 (E. coli homeostasis): Frequency of hyperedges in
the model for near optimal solutions with objective function values under 1000.
The CellNOptR [8] software was used to illustrate specific hyperedges appear
in near optimal solutions. In this example we consider solutions with an ob-
jective function value under 1000. Redundant hypereges were filtered after the
optimization procedure. In this problem 4 binary variables were considered; w1,
w2 , w3 and w4. The hyperedges w3 and w4 were present in every of the top
performing solutions whilew1 and w2 were always absent.
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MITS(2.17e+004) eSS(1.29e+003) ACO(2.97e+004)
MITS(2.17e+004) − H = 1, P = 1.11 · 10−6 H = 0, P = 0.631
eSS(1.29e+003) H = 1, P = 1.11 · 10−6 − H = 1, P = 7.69 · 10−8

ACO(2.97e+004) H = 0, P = 0.631 H = 1, P = 7.69 · 10−8 −

Table S.3: Case study 2 (E. coli homeostasis): The Wilcoxon rank sum test
applied to the distributions of final objective function values obtained with each
pair of methods. The null hypothesis (H=0) is that both distributions have the
same median (under parentheses) with a given probability (P).

3 Case Study 3: Signaling application to trans-
formed liver hepatocytes (HepG2)

In this section we provide a number of details and optimization statistics ob-
tained while solving case study 3. The model and data used in this section
are of public domain and can be downloaded from http://www.ebi.ac.uk/

~cokelaer/cellnopt/data/ExtLiverBMC2012.html#extliverbmc2012.
We used the standard CellNoptR preprocessing to obtain a compressed ver-

sion of the model. Data was normalized between 0 and 1 by rescaling. The
MINLP solvers considered here are based in Matlab, thus in order to use these
methods and to implement the NLP formulation of the problem we generated
an R parser to generate a dynamic model in C and a configuration file for the
AMIGO toolbox. All values for the inhibitors were set to 0.9 . All value for the
stimuli were set to 0.65.

This section contains the following elements (in this order):

1. Experimental data for the HepG2 case study.

2. Stimuli and inhibitor values from experiments 1 to 32.

3. Stimuli and inhibitor values from experiments 33 to 64.

4. Original PKN before being compressed.

5. PKN network after compression.

6. Hypergraph after expansion.

7. Convergence curves for the HepG2 cell-line problem.

8. Convergence curves for the solution of the HepG2 problem using MPeSS.

9. Histogram of the final objective function value achieved by each optimizer.

10. Boxplot of the final objective function value achieved by each optimizer.
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11. Frequency of hyperedges in the model for near optimal solutions with
objective function values under 37.

12. Pareto front of the obtained solutions showing the complexity versus fit-
ness trade-off.

13. Experimental versus predicted time series for each of the non-dominated
solution.

14. Network structure for solution A (selected as best trade-off fit).

15. Network structure for solution B.

16. Network structure for solution C.

17. Network structure for solution D.

18. Network structure for solution E.

19. Network structure for solution F.

20. Data and simulation for solution A (experiments 1 to 16).

21. Data and simulation for solution A (experiments 17 to 32).

22. Data and simulation for solution A (experiments 33 to 48).

23. Data and simulation for solution A (experiments 49 to 64).

24. The Wilcoxon rank sum test for equal medians applied to the obtained
distributions of final objective function values.
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Figure S.16: Case study 3 (HepG2): Experimental data for the HepG2 cell-line
case study.
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IFNG TNFA IL1A IL6 IGF1 TGFA lps MP2K2 p38 pi3k ikk MTOR GSK3 MK08
exp 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
exp 2 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
exp 3 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
exp 4 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
exp 5 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
exp 6 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
exp 7 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
exp 8 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00
exp 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00
exp 10 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00
exp 11 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00
exp 12 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00
exp 13 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00
exp 14 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00
exp 15 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00
exp 16 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.90 0.00 0.00 0.00 0.00 0.00 0.00
exp 17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00
exp 18. 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00
exp 19 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00
exp 20 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00
exp 21 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00
exp 22 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00
exp 23 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00
exp 24 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.90 0.00 0.00 0.00 0.00 0.00
exp 25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00
exp 26 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00
exp 27 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00
exp 28 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00
exp 29 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00
exp 30 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00
exp 31 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00
exp 32 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.90 0.00 0.00 0.00 0.00

Table S.4: Case study 3 (HepG2): Stimuli and inhibitor values for experiments
1 to 32.
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IFNG TNFA IL1A IL6 IGF1 TGFA lps MP2K2 p38 pi3k ikk MTOR GSK3 MK08
exp 33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00
exp 34 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00
exp 35 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00
exp 36 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00
exp 37 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00
exp 38 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00
exp 39 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00
exp 40 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.90 0.00 0.00 0.00
exp 41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00
exp 42 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00
exp 43 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00
exp 44 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00
exp 45 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00
exp 46 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00
exp 47 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00
exp 48 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.90 0.00 0.00
exp 49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00
exp 50 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00
exp 51 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00
exp 52 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00
exp 53 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00
exp 54 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00
exp 55 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00
exp 56 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.90 0.00
exp 57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90
exp 58 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90
exp 59 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90
exp 60 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90
exp 61 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90
exp 62 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90
exp 63 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90
exp 64 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.90

Table S.5: Case study 3 (HepG2): Stimuli and inhibitor values for experiments
33 to 64.
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Figure S.17: Case study 3 (HepG2): original PKN before being compressed This
figure was generated with the CellNOptR software.
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Figure S.18: Case study 3 (HepG2): PKN network after compression. Prior to
expansion the model was compressed to remove non-observable/non-controllable
species using CellNOptR[8] software.
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Figure S.19: Case study 3 (HepG2): Hypergraph after expansion. The orig-
inal PKN was initially compressed to remove as many non-observable/non-
controllable links as possible. Next the model was expanded to incorporate
all possible hyperedges formed by two inputs. These derived in a model with
109 integer variables. The model was then used to formulate the MINLP prob-
lem containing 135 continuous parameters (n, k and τ), 109 binary variables
(w) and 9 initial conditions.
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Figure S.20: Case study 3 (HepG2): Convergence curves for the HepG2 cell-line
problem using the MINLP formulation. The MINLP problem was solved with
20 independent runs for each solver (eSS and ACOmi). No method was always
able to solve the problem in the given function evaluation budget. Although
ACOmi found the best solutions, its overall performance was comparable to
that of eSS.

34



0
1

2
3

4
5

6
7

x 
10

4

0

10
0

20
0

α
=

0

0
0.

5
1

1.
5

2
2.

5
3

x 
10

4

0

50

10
0

=
8

 

(y
y
)2

p
en

a
lt
y

0
0.

5
1

1.
5

2
2.

5
3

x 
10

4

0

204060
=

32

 

(y
y
)2

α

p
en

a
lt
y

0
0.

5
1

1.
5

2
2.

5
3

x 
10

4

0

50

10
0

=
12

8

 

(y
y
)2

p
en

a
lt
y

0
0.

5
1

1.
5

2
2.

5
3

x 
10

4

0

50

10
0

=
38

4

 

(y
y
)2

p
en

a
lt
y

0
0.

5
1

1.
5

2
2.

5

x 
10

4

0

50

10
0

15
0

M
IN

LP

 

(y
y
)2

α

α
α

(y
y
)2

-
~

~
-

-
- -

~~
~

-
~

Figure S.21: Case study 3 (HepG2): Convergence curves using MPeSS. The
optimization procedure was executed in 6 phases. In the first 5 phases we
solved the relaxed problem with increasing values for α. In the final step, those
solutions were used as initial points to solve the original MINLP formulation
with eSS.
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Figure S.22: Case study 3 (HepG2): Histogram of the final objective function
value achieved by each optimizer. The problem was solved for 20 independent
optimization runs with 3 solvers (eSS, MPeSS and ACOmi). All runs used the
same budget of objective function evaluations.
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Figure S.23: Case study 3 (HepG2): Boxplot of the final objective function value
achieved by each optimizer (MPeSS, eSS, ACO).
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Figure S.24: Case study 3 (HepG2): Frequency of hyperedges in the model for
near optimal solutions with objective function values under 37. The CellNOptR
[8] software was used to illustrate how frequently certain hyperedges appear in
near optimal solutions. In this example we consider solutions with an objective
function value bellow 37 (a total of 6). Redundant hypereges were filtered
after the optimization procedure. The numbers stand for the percentage each
hyperedge appear in the final solutions. Strong dark or red links without any
numbering illustrate links that are always present.
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Figure S.25: Case study 3 (HepG2): Pareto front of the obtained solutions,
showing the trade-off between complexity and fit. This figure shows the trade-
off between fit (cost function) obtained by each independent optimization run
and the number of active variables (number of active binary variables plus the
number of active continuous parameters) which is a proxy for model complexity.
The chosen solution shows the best trade-off between fitness and complexity.
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ŷ

y
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
corrcoef=0.757221
RMSE=0.143430

solutionB
F

ŷ
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Figure S.26: Case study 3 (HepG2): Experimental versus predicted data points
for each of the non-dominated solution. For each of the non-dominated solutions
shown in figure S.25 the predicted values (by simulation) are plotted versus the
experimental data. Correlation coefficients and root mean squared error values
are also given to quantify the differences in the model fitness and/or potential
overfitting.
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Figure S.27: Case study 3 (HepG2): Network structure for solution A (best
trrade-off). Redundant hyperedges were removed from the model after the
optimization procedure.
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Figure S.28: Case study 3 (HepG2): Network structure for solution B. Redun-
dant hyperedges were removed from the model after the optimization procedure.
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Figure S.29: Case study 3 (HepG2): Network structure for solution C. Redun-
dant hyperedges were removed from the model after the optimization procedure.
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Figure S.30: Case study 3 (HepG2): Network structure for solution D. Redun-
dant hyperedges were removed from the model after the optimization procedure.
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Figure S.31: Case study 3 (HepG2): Network structure for solution E. Redun-
dant hyperedges were removed from the model after the optimization procedure.
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Figure S.32: Case study 3 (HepG2): Network structure for solution F. Redun-
dant hyperedges were removed from the model after the optimization procedure.
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Figure S.33: Case study 3 (HepG2): Data and model predictions for solution A
(experiments 1 to 16).
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Figure S.34: Case study 3 (HepG2): Data and model predictions for solution A
(experiments 17 to 32).
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Figure S.35: Case study 3 (HepG2): Data and model predictions for solution A
(experiments 33 to 48).
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Figure S.36: Case study 3 (HepG2): Data and model predictions for solution A
(experiments 49 to 64).
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eSS(59.8) ACO(65.7) MPeSS(44.6)
eSS(59.8) − H = 0, P = 0.457 H = 1, P = 4.54 · 10−6

ACO(65.7) H = 0, P = 0.457 − H = 1, P = 8.36 · 10−4

MPeSS(44.6) H = 1, P = 4.54 · 10−6 H = 1, P = 8.36 · 10−4 −

Table S.6: Case study 3 (HepG2): The Wilcoxon rank sum test applied to the
distributions of final objective function values obtained with each pair of methods.
The null hypothesis (H=0) is that both distributions have the same median
(under parentheses) with a given probability (P).
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4 A brief comparison with the two time points
Boolean approach

In this section we present a short comparison between results obtained with the
MIDO approach we propose in this work and a Boolean logic method designed
to capture two time points. The main assumption behind the two time points
approach is that the system has two different pseudo steady-states. The first
steady-state is governed by fast acting regulation mechanisms while the second
is a consequence of later events.

¿From the optimization point of view the two time points model calibration
is treated as two different optimization problems. The identification of the fast
acting mechanism is done by finding the simplest logic model which explains the
data at time point one. The links excluded at the first time point optimization
are then considered in a second optimization problem.

Therefore we have two models. The first explains how the steady-state at
time point one is reached and the second explains how the model prediction
moves to the steady-state at the second time-point. The first model is therefore
a subset of the second.

The advantage of using logic based ODEs becomes evident, i.e. the ability
to handle time properly in such way that transient responses can be represented
without the need of assumptions like having multiple steady-states. On the other
hand, we no longer have a qualitative/Boolean model with all its advantages
regarding analysis, interpretation and calibration.

4.1 The synthetic pathway model

The original goal of the synthetic pathway way model was to illustrate the dif-
ferences of different formalisms related to logic models. The comparison shown
in this section is similar to what is presented in [6] both at the conceptual level
and the level of the used network.

Figure S.37 shows the compressed version of the synthetic pathway model
the solution found by the two-time points algorithm in CellNOptR. Figure S.38
shows fitness of such solution. We can relate this plot to what is shown in
Figure S.9, the fit for a solution found with the MIDO approach, showing that
we were able to recover the full system dynamics. Except for p38 and and nfkb
and p38, the Boolean model does a great job capturing the qualitative features
of the system. In the case of nfkb the pseudo-experimental data incorporates
oscillatory behavior which escapes the scope the two time time points approach.

This comparison is unfair in the sense that the data was generated with a
logic-based ODE model which is included in the search space for the MIDO
approach and we knew a priori that the Boolean model would not be able
to grasp every detail of the simulated data. However the sole purpose of this
analysis is to illustrate the need of using a dynamic model representation to
describe certain model features.
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Figure S.37: The Boolean model found by the two time points approach in the
synthetic pathway case study The CellNOptR software was used to calibrate the
PKN to the pseudo-experimental data using the two time points strategy. The
best performing model found is shown in this figure.
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Figure S.38: Fitness of the best Boolean model found in the synthetic pathway
case study The fitness of the best Boolean model found is shown for all observed
species.
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4.2 The HepG2 model

The human liver cancer cell-line problem poses an interesting case to apply both
methods. The figures bellow are important to follow this analysis:

• Figure S.16: visualization of the data by combinations of perturbations.

• Figure S.18: The compressed PKN, describes the interactions considered
by the optimization procedure.

• Figures S.33 to S.36 :the dynamic simulation of the model found with
MIDO approach.

• Figure S.27: The best model found with the MIDO approach.

• Figure S.39: The best model found by the two time points approach.

• Figures S.40 and S.41: The Boolean logic simulation of the best model
found with the two-time points approach.

Since we do not know the correct solution, analyzing both results can help
finding anomalies caused by simulation artifacts. Consider for instance the
following case:

• akt→ GSK3A/GSK3B3: The Boolean model predicts that the activation
of GSK3A/GSK3B3 is the consequence of a later event. However by in-
specting the data we notice that GSK3A/GSK3B3 is slowly rising from
the beginning (see experiments 22,30 and 28 for example).

On the other hand, particular cases where the quantitative model is able
to describe the experimental data well and the qualitative model grossly fails
deserve closer inspection. Two examples are given bellow:

• MK08MK09 → JUN: The Boolean model is incapable of explaining the
behavior of JUN. The only option present in the PKN is that JUN in
controlled only by MK08MK09. The data for MK08MK09 shows a fast
transient after IL1A stimulation which the ODE model is able to reproduce
well. However upon stimulation with TGFA the data for MK08/Mk09
does not show any transient behavior in contrast to JUN data. The ODE
model is still able to find a good fit for MK08/MK09 and JUN. The
explanation given by the ODE model is that there is a later transient
behavior which is not visible in the data because we are not measuring
the correct time points. Although this seems rather unreasonable it would
easy to (in)validate this hypothesis by measuring intermediate time-points.
A more reasonable explanation is that the PKN is missing an interaction.
By inspecting the pathway hsa05200 (pathways in cancer) in Kegg [3]
we see that MP2K1/MP2K2 (MEK) phosphorylates ERK which in turn
phosphorylates JUN (c-JUN). The addition of this links should explain
the behavior of JUN upon TGFA stimulation.
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• Serine phophorylated IRS1: The Boolean models fails to explain IRS1 s
behavior. The ODE model does reasonable job explaining IRS1 serine
phophorylation which is mainly defined by MK03/Mk01. However we
observed that IRS1 s is extremely sensitive. The data shows that in several
occasions (see experiments 4,15,20,28, 36 for example ) that MK03/MK01
is mildly activated without support from the experimental data. Again
we turned to Kegg in order to find possible missing interactions in the
PKN. A pathway for adypocites, hepatocytes and skeletal muscle cells of
type II diabetes mellitus (ko04930) links the phosphorylation of the serine
residue of IRS1 to mTOR, IKK and JNK(MPK08/MK09). Neither IKK
and mTOR are measured. When these are inhibited we see a small (yet
visible) effect on IRS1 upon stimulation with IL1A (see Figure S.16). For
the case of MK08/MK09(JNK) we can directly contrast the model and
data. The addition of an OR gate between MK08MK09 and IRS1, should
be enough to correct the in Boolean logic case mismatch. Moreover the
inhibition of MK08/MK09 causes a clear decrease in the IRS1 s upon IL1A
stimulation.
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Figure S.40: Fit of the best Boolean model found in the HepG2 case study (ob-
servables 1 to 8). The fit of the best Boolean model found is shown for STAT3,
JUN, creb, H31TH33, HSPB1, IRS1s, MP2K2MP2K1, and P53.
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Figure S.41: Fit of the best Boolean model found in the HepG2 case study (ob-
servables 9 to 16) The fit of the best Boolean model found is shown for akt,
MK03MK01, GSK3GSK3B, MK08MK09, p38, KS6B1 and KS6A1.
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