Supplementary Information

Supersensitive detection and discrimination of enantiomers by dorsal olfactory receptors: evidence for hierarchical odour coding

Takaaki Sato^{1,*}, Reiko Kobayakawa², Ko Kobayakawa², Makoto Emura³, Shigeyoshi Itohara⁴, Miwako Kizumi¹, Hiroshi Hamana¹, Akio Tsuboi⁵ and Junzo Hirono¹

¹ Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Hyogo 661-0974, Japan. ² Institute of Biomedical Science, Kansai Medical University, Osaka 573-1010, Japan. ³ Takasago International Corporation, Kanagawa 254-0073, Japan. ⁴ Laboratory for Behavioral Genetics, Brain Science Institute, RIKEN, Saitama 351-0198, Japan. ⁵ Research Institute of Frontier Medicine, Nara Medical University, Nara 634-8521, Japan.

Other Supplementary Information for this manuscript includes the following: (available at www.nature.com/scientificreports/)

Video S1. Odour setting and correct odour choice behaviour in the Y-maze.

Figure S1. A schematic diagram of the Y-maze. Two alternative forced choice assays, with mice choosing between odourant and solvent solutions, or between pairs of enantiomeric odourant solutions, were conducted in a Y-maze. Cotton balls moistened with diluted odourants were placed at the inlet ports of the maze arms. Odour vapour flows were guided into the Y-maze at the centres of the cavities by weak negative pressure. Flow rate at inlet port was adjusted to 0.5 L/min by regulating leakage through a 3-way valve. Runs to the target odour source (correct odour choice) against the (+)-enantiomers or the solvent were rewarded with a drop of water. Rewarded side was randomly switched by independently exchanging the terminal caps and funnels between the arms. A mouse was picked up in the start cup and set in the Y-maze to initiate a trial running to the end of one arm. When the mouse chose the wrong side, both terminal caps were removed to prevent the mouse from drinking water from the funnel. Each mouse ran and chose one of the two odours 18 to 24 times per day. The sums of the initial 18 trials for 6 mice of the same strain were statistically analysed.

Figure S2. Odour responses of the most sensitive OSNs for wine lactones in mice. Odour responses were measured using intracellular Ca²⁺-imaging. A, OSN tuned to 10 nM (–)-wnl. B, OSN tuned to 10 nM (–)-wnl and (+)-wnl. C, OSN tuned to 1 μ M (+)-wnl. D and E, OSNs tuned to 1 μ M (–)-wnl. (–)-ro: (2*S*,4*R*)-(–)-cis-rose oxide; (+)-ro: (2*R*,4*S*)-(+)-cis-rose oxide. The arrows indicate the time at which odourant solutions of the indicated concentrations were applied to the OSNs for 4 s. The odourants that evoked characteristic odour responses are indicated by the asterisks. All OSNs, except for that shown in E, were obtained from the dorsal zone.

Figure S3. Dose-dependency of the peak areas of diluted odourant solutions in gas chromatography-mass spectrometry (GC-MS). The peak area per unit dose seemed too large for the 10^{-9} -w/w odourant solution compared with those at higher concentrations. This was likely due to background noise. This result suggests that the detection limit of this GC-MS measurement is approximately 10 ppb for (*R*)-(–)-carvone. The theoretical curve (dashed line) is the plot of the peak areas at the concentrations (C_x) with the correction by the term -(peak_area_at_ 10^{-9}) + (peak_area_at_ $10^{-3} \times C_x/10^{-3}$).

Table ST1. COCRs of WT and ΔD mice in a Y-maze for serial 100-fold diluted odourants.

Table ST2. Dose-dependent subpopulations of wine lactone-responsive OSNs/ORs. Of 1,746 olfactory sensory neurons (OSNs) (1,207 dorsal zone: 539 ventral zone) assayed by

 Ca^{2+} imaging, 2, 5, 17 and 46 OSNs/ORs responded to either or both wine lactone enantiomers at 10-100 nM, 1, 10 and 10 μ M, respectively. They were classified by their tuning to target enantiomers of wine lactones. Target-best OSNs/ORs^{*} are those more sensitive to the target enantiomer than to the non-target enantiomer. Percentage of each class responsive to the target at a given concentration is listed in the lower row. OR overlap indicates percentage (numbers) of overlapping OSN/OR in enantiomer OR codes at each concentration. (–)-wnl, (–)-wine lactone; (+)-wnl, (+)-wine lactone.

Table ST3. Dose-dependent subpopulations of carvone-responsive OSNs/ORs. Of 2,740 OSNs/ORs assayed by Ca²⁺ imaging, 13 and 89 OSNs/ORs (dorsal zone: ventral zone) responded to either or both carvone enantiomers at 1 and 10 μ M, respectively, and were classified by their tuning to target odourants. Target-best OSNs/ORs^{*} are those more sensitive to the target enantiomer than to the non-target enantiomer. Percentage of each class responsive to the target at a given concentration is listed in the lower row. The percentage[†] indicates OSNs/ORs with response amplitudes less than the half of the others. The percentages in parentheses indicate OSNs/ORs that were prepared from uncertain zones and counted in each zone by a factor of 1/2. OR overlap indicates percentage (numbers) of overlapping OSN/OR in enantiomer OR codes at each concentration. The largest class[‡] is the sum of (+)-car and (+)-car/others OSNs/ORs. In the lower part, relative response amplitudes of 15 identified carvone ORs are shown with the lowest responsive concentrations (μ M) for target (left column) and non-target carvone in parentheses (Fig. 3).

Table ST4. Significance of the COCR differences between WT and ΔD mice.

Table ST5. Peak areas of GC-MS and calculation of the dilution factors for the 100-fold dilution series. The dilution factors were obtained as the ratios of peak areas per unit dose between subsequent concentrations. (R)-(-)-carvone was used as the standard odourant. The dose-dependency of the peak areas was shown in Supplementary Information Fig. S3.

Table ST6. Estimated odourant concentrations. Averaged dilution factor, $D_{avg} = 1.0109 \pm 0.0515$, and the maximum dilution factor, $D_{max} = 1.21$, are shown in Supplementary Information Table ST5.

Figure S1. A schematic diagram of the Y-maze. Two alternative forced choice assays, with mice choosing between odourant and solvent solutions, or between pairs of enantiomeric odourant solutions, were conducted in a Y-maze. Cotton balls moistened with diluted odourants were placed at the inlet ports of the maze arms. Odour vapour flows were guided into the Y-maze at the centres of the cavities by weak negative pressure. Flow rate at inlet port was adjusted to 0.5 L/min by regulating leakage through a 3-way valve. Runs to the target odour source (correct odour choice) vs. the (+)-enantiomers or the solvent were rewarded with a drop of water. Rewarded side was randomly switched by independently exchanging the terminal caps and funnels between the arms. A mouse was picked up in the trunk terminal cap and set in the Y-maze to initiate a trial running to the end of one arm. When the mouse chose the wrong side, both terminal caps were removed to prevent the mouse from drinking water from the funnel. Each mouse ran and chose one of the two odours 18 to 24 times per day. Sums of initial 18 trials for 6 mice were statistically analysed.

	СС	OCRs of	individ	ual WT	mice (%)	avg. of	0 - 14	avg. of	0 5 14	avg. of 6	0.5.14	COCR
Odourant pairs	wt1	wt2	wt3	wt4	wt5	wt6	3 mice (wt1-3)	S.E.M.	3 mice (wt4-6)	S.E.M.	WI mice	S.E.M.	for $P = 0.05$
(-)-wnl vs. solvent							(W(1 0)		(114 0)		inioc		0.00
10 ⁻³ (-)-wnl vs. solvent	100.0	72.2	88.9	77.8	83.3	100.0	87.0	8.1	87.0	6.7	87.0	4.7	59.4
10 ⁻⁵ (-)-wnl vs. solvent	77.8	77.8	83.3	77.8	77.8	72.2	79.6	1.9	75.9	1.9	77.8	1.4	59.4
10 ⁻⁷ (-)-wnl vs. solvent	88.9	66.7	66.7	83.3	66.7	61.1	74.1	7.4	70.4	6.7	72.2	4.5	59.4
10 ⁻⁹ (-)-wnl vs. solvent	77.8	72.2	61.1	83.3	72.2	77.8	70.4	4.9	77.8	3.2	74.1	3.1	59.4
10 ⁻¹¹ (-)-wnl vs. solvent	72.2	66.7	72.2	88.9	88.9	88.9	70.4	1.9	88.9	0.0	79.6	4.2	59.4
10 ⁻¹³ (-)-wnl vs. solvent	72.2	66.7	72.2	94.4	83.3	88.9	70.4	1.9	88.9	3.2	79.6	4.5	59.4
10^{10} (-)-wnl vs. solvent	83.3	72.2	72.2	77.8	83.3	83.3	77.8	3.2	81.5	1.9	79.6	1.9	59.4
10 (-)-Whi Vs. solvent	77.8	61.1	61 1	03.3 77.8	72.2	77.8	70.4 66.7	1.9 5.6	75.9	1.9	75.9	2.7	59.4 59.4
10^{-21} (-)-while vs. solvent	66.7	77.8	61.1	72.2	61.1	66.7	68.5	4.9	66.7	3.2	67.6	2.7	59.4
10 ⁻²³ (-)-wnl vs. solvent	61.1	61.1	44.4	66.7	61.1	61.1	55.6	5.6	63.0	1.9	59.3	3.1	59.4
10 ⁻²⁵ (-)-wnl vs. solvent	55.6	44.4	55.6	50.0	44.4	66.7	51.9	3.7	53.7	6.7	52.8	3.4	59.4
PO assays													
10 ⁻¹³ (-)-wnl vs. solvent	66.7	55.6	83.3	72.2	72.2	83.3	68.5	8.1	75.9	3.7	72.2	4.3	59.4
10 ⁻¹³ (-)-wnl vs. (-)-wnl	55.6	50.0	61.1	44.4	50.0	50.0	55.6	3.2	48.1	1.9	51.9	2.3	59.4
(+)-wnl vs. solvent													
10^{-3} (+)-wnl vs. solvent	94.4	77.8	66.7	75.0	75.0	70.8	79.6	8.1	73.6	1.4	76.6	3.9	59.4
10° (+)-wnl vs. solvent	00.7	66.7 77.9	66.7	83.3 75.0	83.3	83.3	72.2	5.6	83.3	0.0	77.7	3.5	59.4
10^{-9} (+)-whiles solvent	77.8	77.0 88.0	88.0	79.0	79.2	79.2 95.8	81.5	0.0 3.7	84.7	2.4	83.1	4.2	59.4 59.4
10^{-11} (+)-will vs. solvent	72.2	77.8	55.6	79.2	79.2	83.3	68.5	6.7	80.6	5.0 1.4	74.5	3.1 4 1	59.4
10^{-13} (+)-wnl vs. solvent	88.9	88.9	77.8	75.0	83.3	83.3	85.2	3.7	80.6	2.8	82.9	2.3	59.4
10^{-15} (+)-wnl vs. solvent	83.3	77.8	77.8	75.0	79.2	75.0	74.1	6.7	76.4	1.4	75.2	3.1	59.4
10 ⁻¹⁷ (+)-wnl vs. solvent	83.3	77.8	77.8	75.0	62.5	75.0	79.6	1.9	70.8	4.2	75.2	2.8	59.4
10 ⁻¹⁹ (+)-wnl vs. solvent	77.8	83.3	88.9	66.7	75.0	66.7	79.6	1.9	69.4	2.8	74.5	2.7	59.4
10 ⁻²¹ (+)-wnl vs. solvent	50.0	50.0	33.3	62.5	58.3	58.3	44.4	5.6	59.7	1.4	52.1	4.3	59.4
10 ⁻²³ (+)-wnl vs. solvent				58.3	50.0	58.3			55.6	2.8			63.3
PO assays	70.0	70.0	77.0	77.0	77.0	00.7	70.4	1.0	74.4	0.7	70.0	2.0	50.4
10^{10} (+)-wnl vs. solvent	72.Z	28.0	77.8 55.6	11.8	11.8	66.7	70.4	1.9	74.1	3.7	12.2	2.0	59.4
10 (+)-wni vs. (+)-wni	30.0	30.9	55.0	33.3	33.3	00.7	40.3	3.7	44.4	11.1	40.4	5.5	59.4
10^{-3} (-)-wnl vs. (+)-wnl	55.6	77.8	66.7	72.2	66.7	77.8	66.7	6.4	72.2	3.2	69.4	3.4	59.4
10 ⁻⁵ (-)-wnl vs. (+)-wnl	55.6	55.6	66.7	46.7	40.0	61.1	59.3	3.7	49.3	6.2	54.3	3.9	59.4
10 ⁻⁷ (-)-wnl vs. (+)-wnl	83.3	88.9	77.8	55.6	55.6	77.8	83.3	3.2	63.0	7.4	73.1	5.8	59.4
10 ⁻⁹ (-)-wnl vs. (+)-wnl	72.2	66.7	61.1	61.1	72.2	77.8	66.7	3.2	70.4	4.9	68.5	2.7	59.4
10 ⁻¹¹ (-)-wnl vs. (+)-wnl	77.8	61.1	55.6	50.0	61.1	66.7	64.8	6.7	59.3	4.9	62.0	3.9	59.4
10 ⁻¹³ (-)-wnl vs. (+)-wnl	88.9	88.9	66.7	61.1	61.1	66.7	81.5	7.4	63.0	1.9	72.2	5.4	59.4
10 ⁻¹⁵ (-)-wnl vs. (+)-wnl	72.2	66.7	55.6	66.7	83.3	61.1	64.8	4.9	70.4	6.7	67.6	3.9	59.4
10 ¹⁹ (-)-wnl vs. (+)-wnl	44.4	55.6	50.0	66.7	83.3	55.6	50.0	3.2	72.2	8.5	61.1 57.4	6.4 2.7	59.4
10^{-21} (-)-wni vs. (+)-wni	50.0	55.6	72.2	66.7	61.1	30.0 44 4	59.3	3.Z 6.7	57.4	4.9	58.3	4.2	59.4 59.4
10^{-23} (-)-wnl vs. (+)-wnl	66.7	55.6	44.4	55.6	55.6	44.4	55.6	6.4	51.9	3.7	53.7	3.4	59.4
PO assays		0010		00.0			0010	011	0.110	0.1		0.11	
10 ⁻¹³ (-)-wnl vs. (+)-wnl	72.2	77.8	94.4	66.7	61.1	72.2	81.5	6.7	66.7	3.2	74.1	4.7	59.4
10 ⁻¹³ (-)-wnl vs. solvent	83.3	83.3	66.7	88.9	94.4	88.9	79.2	4.2	90.7	1.9	84.3	3.9	59.4
(-)-car vs. solvent													
10 ⁻³ (-)-car vs. solvent	83.3	77.8	83.3	72.2	100.0	72.2	81.5	1.9	81.5	9.3	81.5	4.2	59.4
10^{-5} (-)-car vs. solvent	77.8	83.3	83.3	72.2	94.4	83.3	81.5	1.9	83.3	6.4	82.4	3.0	59.4
10^{-7} (-)-car vs. solvent	/5.0	75.0	79.2	66.7	61.1	70.0	76.4	1.4	68.5	4.9	/2.5	2.9	59.4
10° (-)-car vs. solvent	50.0	00.7 72.2	01.1 72.2	83.3	00.7	12.2	61.1	3.2	74.1	4.9	67.6 75.0	3.9	59.4
10^{-13} (-)-car vs. solvent	61.1	61 1	72.2	00.0 83.3	94.4 88 Q	88.0	64.8	7.4	87.0	3.7 1 Q	75.9	0.Z	59.4 59.4
10^{-15} (-)-car vs solvent	77.8	66.7	72.2	77.8	61.1	77.8	72.2	3.2	72.2	5.6	72.2	2.9	59.4
10 ⁻¹⁷ (-)-car vs. solvent	66.7	72.2	61.1	88.9	77.8	77.8	66.7	3.2	81.5	3.7	74.1	4.0	59.4
10 ⁻¹⁹ (-)-car vs. solvent	72.2	72.2	72.2	66.7	61.1	61.1	72.2	0.0	63.0	1.9	67.6	2.2	59.4
10 ⁻²¹ (-)-car vs. solvent	66.7	61.1	55.6	55.6	44.4	55.6	61.1	3.2	51.9	3.7	56.5	3.0	59.4
10 ⁻²³ (-)-car vs. solvent	61.1	61.1	61.1	50.0	55.6	55.6	61.1	0.0	53.7	1.9	57.4	1.9	59.4
10 ⁻²⁰ (-)-car vs. solvent	55.6	61.1	55.6	61.1	38.9	44.4	57.4	1.9	48.1	6.7	52.8	3.7	59.4
PU assays	70.0	77.0	70.0	70.0	70.0	70.0	74.4	4.0	70.0	0.0	744	4.0	F0.4
10^{-11} (-)-car vs. solvent	12.2	(1.8	12.2	70.8	79.2	70.8	74.1	1.9	/3.6	2.8	74.1	1.9	59.4
10 (-)-car vs. (-)-car	44.4	01.1	44.4	38.9	61.1	44.4	50.0	5.6	48.1	6.7	50.0	5.6	59.4

Table ST1. COCRs of WT and ΔD mice in a Y-maze for serial 100-fold diluted odourants.

	CC	DCRs of	f individ	lual WT	mice (%)	avg. of	0 5 14	avg. of	0 5 14	avg. of 6	0.5.14	COCR
Odourant pairs	wt1	wt2	wt3	wt4	wt5	wt6	3 mice	5.E.M.	3 mice	5.E.M.	VV I mico	5.E.M.	for $P = 0.05$
(1) corve colvert	wei	WLZ	wio	WLT	wito	wite	(WIT-5)		(₩14-0)		mice		0.05
(+)-car vs. solvent	70.0	70.0	70.0	04.4	02.2	02.2	70.0	0.0	07.0	2.7	70.6	2.7	50.4
10^{-5} (+)-car vs. solvent	12.2	12.2	72.2	94.4	03.3	03.3	74.4	0.0	07.0	3.7	79.0	3.7	59.4
10^{-1} (+)-car vs. solvent	03.3	77.0	12.2	00.9	70.0	00.9	74.1	4.9	05.2	3.7	79.0	3.7	59.4
10^{-} (+)-car vs. solvent	70.0	11.0	00.9	11.0	12.2	03.3	01.0 66.7	3.7	62.0	3.2	79.0	2.3	59.4
10^{-1} (+)-car vs. solvent	12.2	01.1	00.7 77.9	66.7	61.1	77.0	74.1	3.2	60.U	1.9	04.0	1.9	59.4
10 (+)-car vs. solvent	00.7	77.0	11.0	00.7	70.0	11.0	74.1	3.7	00.0	4.9	71.3	3.0	59.4
10^{-15} (+)-car vs. solvent	70.0	77.0	00.7	61.1	12.2	00.7	70.9	4.9	64.0	1.9	72.2	2.9	59.4
10^{-17} (+)-car vs. solvent	12.2	77.0	88.9	61.1	60.7	66.7	79.6	4.9	64.8 50.2	1.9	12.2	4.1	59.4
10 (+)-car vs. solvent	01.1	12.2	11.0	01.1	01.1	0.66	70.4	4.9	59.3	1.9	04.0	3.4	59.4
10^{10} (+)-car vs. solvent	55.6	55.6	61.1	0.60	55.6	01.1	57.4	1.9	57.4	1.9	57.4	1.2	59.4
10^{21} (+)-car vs. solvent	61.1	61.1	50.0	61.1	66.7	61.1	57.4	3.7	63.0	1.9	60.2	2.2	59.4
10 ²⁰ (+)-car vs. solvent	50.0	50.0	55.6	55.6	50.0	55.6	51.9	1.9	53.7	1.9	52.8	1.2	59.4
PO assays		00.7	77.0			77.0	70.4	0.7	04.5	1.0	75.0	0.4	50.4
10° (-)-car vs. solvent	66.7	66.7	77.8	83.3	83.3	77.8	70.4	3.7	81.5	1.9	75.9	3.1	59.4
(-)-car vs. (+)-car													
10 ⁻³ (-)-car vs. (+)-car	72.2	94.4	72.2	77.8	83.3	66.7	79.6	7.4	75.9	4.9	//.8	4.1	59.4
10^{-5} (-)-car vs. (+)-car	72.2	66.7	83.3	72.2	66.7	77.8	74.1	4.9	72.2	3.2	73.1	2.7	59.4
10 ⁻ (-)-car vs. (+)-car	66.7	72.2	66.7	83.3	72.2	88.9	68.5	1.9	81.5	4.9	75.0	3.7	59.4
10 ⁻⁹ (-)-car vs. (+)-car	61.1	61.1	72.2	66.7	61.1	72.2	64.8	3.7	66.7	3.2	65.7	2.2	59.4
10 ⁻¹¹ (-)-car vs. (+)-car	66.7	77.8	83.3	61.1	66.7	61.1	75.9	4.9	63.0	1.9	69.4	3.7	59.4
10 ⁻¹³ (-)-car vs. (+)-car	55.6	61.1	55.6	72.2	50.0	77.8	57.4	1.9	66.7	8.5	62.0	4.4	59.4
10 ⁻¹⁵ (-)-car vs. (+)-car	66.7	66.7	66.7	66.7	55.6	88.9	66.7	0.0	70.4	9.8	68.5	4.5	59.4
10 ⁻¹⁷ (-)-car vs. (+)-car	72.2	61.1	72.2	61.1	55.6	77.8	68.5	3.7	64.8	6.7	66.7	3.5	59.4
10 ⁻¹⁹ (-)-car vs. (+)-car	61.1	61.1	66.7	61.1	55.6	61.1	63.0	1.9	59.3	1.9	61.1	1.4	59.4
10 ⁻²¹ (-)-car vs. (+)-car	44.4	50.0	61.1	55.6	50.0	61.1	51.9	4.9	55.6	3.2	53.7	2.7	59.4
10 ⁻²³ (-)-car vs. (+)-car	55.6	44.4	61.1	44.4	55.6	55.6	53.7	4.9	51.9	3.7	52.8	2.8	59.4
PO assays													
10 ⁻⁵ (-)-car vs. solvent	94.4	66.7	83.3	88.9	66.7	83.3	81.5	8.1	79.6	6.7	80.6	4.7	59.4
nTMT vs dpg													
10 ⁻⁹ nTMT vs. solvent	94.4	61.1	50.0	66.7	66.7	72.2	68.5	13.4	68.5	1.9	68.5	6.0	59.4
10 ⁻¹¹ nTMT vs. solvent	66.7	66.7	55.6	66.7	72.2	77.8	63.0	3.7	72.2	3.2	67.6	3.0	59.4
10 ⁻¹³ nTMT vs. solvent	83.3	72.2	61.1	83.3	83.3	88.9	72.2	6.4	85.2	1.9	78.7	4.2	59.4
10 ⁻¹⁵ nTMT vs. solvent	83.3	72.2	61.1	77.8	66.7	94.4	72.2	6.4	79.6	8.1	75.9	4.9	59.4
10 ⁻¹⁷ nTMT vs. solvent	77.8	77.8	66.7	61.1	55.6	72.2	74.1	3.7	63.0	4.9	68.5	3.7	59.4
10 ⁻¹⁹ nTMT vs. solvent	66.7	66.7	61.1	66.7	66.7	72.2	64.8	1.9	68.5	1.9	66.7	1.4	59.4
10 ⁻²¹ nTMT vs. solvent	88.9	55.6	55.6	72.2	50.0	61.1	66.7	11.1	61.1	6.4	63.9	5.9	59.4
10 ⁻²³ nTMT vs. solvent	66.7	61.1	55.6	55.6	44.4	50.0	61.1	3.2	50.0	3.2	55.6	3.2	59.4
PO assays													
10 ⁻²¹ nTMT vs. solvent	72.2	66.7	61.1	61.1	72.2	61.1	66.7	3.2	64.8	3.7	65.7	2.2	59.4

Table ST1. COCRs of WT and ΔD mice in a Y-maze for serial 100-fold diluted odourants (continued).

	CC	OCRs o	f individ	lual ∆D	mice (%)	avg. of		avg. of		avg. of 6		COCR
Odourant pairs	ΔD1	ΔD2	ΔD3	ΔD4	ΔD5	ΔD6	3 mice (AD1-3)	S.E.M.	3 mice (AD4-6)	S.E.M.	ΔD mice	S.E.M.	for $P = 0.05$
(-)-wnl vs. solvent							(4010)						0.00
10 ⁻³ (-)-wnl vs. solvent	66.7	87.5	91.7	61.1	61.1	61.1	81.9	7.7	61.1	0.0	71.5	5.8	59.4
10 ⁻⁵ (-)-wnl vs. solvent	61.1	83.3	77.8	61.1	61.1	61.1	74.1	6.7	61.1	0.0	67.6	4.2	59.4
10 ⁻⁷ (-)-wnl vs. solvent	77.8	66.7	66.7	75.0	91.7	83.3	70.4	3.7	83.3	4.8	76.9	4.0	59.4
10 ⁻⁹ (-)-wnl vs. solvent	77.8	66.7	77.8	72.2	72.2	83.3	74.1	3.7	75.9	3.7	75.0	2.4	59.4
10 ⁻¹¹ (-)-wnl vs. solvent	83.3	77.8	77.8	77.8	72.2	66.7	79.6	1.9	72.2	3.2	75.9	2.3	59.4
10 ⁻¹³ (-)-wnl vs. solvent	66.7	72.2	72.2	72.2	66.7	61.1	70.4	1.9	66.7	3.2	68.5	1.9	59.4
10 ⁻¹³ (-)-wnl vs. solvent	61.1	66.7	61.1	66.7	61.1	66.7	63.0	1.9	64.8	1.9	63.9	1.2	59.4
10 '' (-)-wnl vs. solvent	66.7	61.1 55.0	50.0	66.7	61.1	66.7	59.3	4.9	64.8	1.9	62.0	2.7	59.4
10^{-21} (-)-wnl vs. solvent	50.0	50.0	22.2	29.0	50.0	61.1	01.1	5.0 5.6	61.1 50.0	3.2	01.1 47.2	2.9	59.4
10^{-23} () which is solvent	38.0	55.6	33.3 44 4	38.9	55.6	50.0	44.4	5.0 4 Q	48.1	0.4 4 Q	47.2	4.0	59.4 59.4
10 (-)-whi vs. solvent	50.5	55.0	44.4	50.5	55.0	50.0	40.5	4.5	40.1	4.5	47.2	5.1	55.4
PO assays													
10 ⁻¹³ (-)-wnl vs. solvent	72.2	66.7	77.8	77.8	66.7	61.1	72.2	3.2	68.5	4.9	71.3	3.3	59.4
10 ⁻¹³ (-)-wnl vs. (-)-wnl	50.0	50.0	38.9	61.1	50.0	50.0	46.3	3.7	53.7	3.7	50.0	2.5	59.4
(+)-wnl vs. solvent													
10 ⁻³ (+)-wnl vs. solvent	72.2	61.1	50.0	55.6	61.1	66.7	61.1	6.4	61.1	3.2	61.1	3.2	59.4
10° (+)-wnl vs. solvent	72.2	72.2	72.2	66.7	72.2	72.2	72.2	0.0	70.4	1.9	71.3	0.9	59.4
10' (+)-wnl vs. solvent	66.7	66.7	83.3	66.7	66.7	55.6	/2.2	5.6	63.0	3.7	67.6	3.6	59.4
10° (+)-wnl vs. solvent	72.2	12.2	77.0	00.7	72.0	72.2	72.2	0.0	68.5 70.0	1.9	70.4	1.2	59.4
10^{-13} (+)-WnI vs. solvent	77.0 55.6	55.6	77.0 55.6	61.1	12.2	28.0	74.1	3.7	12.2	0.0	73.1 51.0	1.7	59.4
10^{-15} (+)-whi vs. solvent	61.1	61 1	55.0 61.1	77.8	44.4	50.9	61.1	0.0	40.1 57.4	10.7	59.3	3.4 4 7	59.4 59.4
10^{-17} (+)-whi vs. solvent	44.4	61.1	44.4	61.1	44.4	50.0	50.0	5.6	51.9	4.9	50.9	3.3	59.4
		0		•		0010	00.0	0.0	0.110			0.0	
PO assays													
10 ⁻¹¹ (+)-wnl vs. solvent	77.8	66.7	77.8	72.2	72.2	72.2	74.1	3.7	72.2	0.0	73.1	1.7	59.4
10 ⁻⁹ (+)-wnl vs. (+)-wnl	61.1	55.6	33.3	55.6	50.0	44.4	50.0	8.5	50.0	3.2	50.0	4.1	59.4
(-)-wnl vs. (+)-wnl													
10 ⁻³ (-)-wnl vs. (+)-wnl	27.8	50.0	55.6	61.1	38.9	44.4	44.4	8.5	48.1	6.7	46.3	4.9	59.4
10 ⁻⁵ (-)-wnl vs. (+)-wnl	38.9	33.3	38.9	38.9	55.6	44.4	37.0	1.9	46.3	4.9	41.7	3.1	59.4
10 ⁻ (-)-wnl vs. (+)-wnl	55.6	44.4	66.7	44.4	33.3	44.4	55.6	6.4	40.7	3.7	48.1	4.7	59.4
10 ⁻⁹ (-)-wnl vs. (+)-wnl	38.9	66.7	55.6	38.9	44.4	50.0	53.7	8.1	41.7	2.8	48.9	5.4	59.4
10 ⁻¹³ (-)-wnl vs. (+)-wnl	55.6	61.1 50.0	50.0	33.3	55.6	38.9	55.6	3.2	42.6	6.7	49.1	4.4	59.4
10 (-)-wni vs. (+)-wni	00.7	50.0	01.1	01.1	55.0	50.0	59.5	4.9	55.0	3.2	57.4	2.1	59.4
PO assays													
10 ⁻¹³ (-)-wnl vs. (+)-wnl	54.2	54.2	54.2	62.5	54.2	54.2	54.2	0.0	56.9	2.8	55.6	1.4	59.4
10 ⁻¹³ (-)-wnl vs. solvent	70.8	70.8	66.7	66.7	66.7	70.8	69.4	1.4	68.1	1.4	68.8	0.9	59.4
(-)-car vs. solvent													
10 ⁻³ (-)-car vs. solvent	66.7	77.8	77.8	66.7	72.2	66.7	74.1	3.7	68.5	1.9	71.3	2.2	59.4
10 ⁻³ (-)-car vs. solvent	55.6	77.8	83.3	83.3	83.3	72.2	72.2	8.5	79.6	3.7	75.9	4.5	59.4
10' (-)-car vs. solvent	72.2	83.3	6.11	12.2	66.7	56.7	//.8	3.2	68.5	1.9	/3.1	2.7	59.4
10^{-11} (-)-car vs. solvent	۲ <i>۱</i> .۵ مرم	11.8	<u>გი</u> ი	0/ /	01.1	72.2	/9.6 01 E	1.9	70.4	4.9	/5.0	3.1	59.4
10^{-13} () corve solvent	ວວ.ວ ຊາງ	12.2 77 0	66.7	94.4 83.2	72.2	72.2	01.0 75.0	4.9	19.0	27	0U.0 75 0	4.0	59.4
10^{-15} (-)-car vs. solvent	61.1	66.7	66.7	66.7	72.2	61 1	64 R	4.9	66.7	3.7	65.7	2.7	59.4 59.4
10^{-17} (-)-car vs. solvent	77.8	61.1	72.2	72.2	55.6	66.7	70.4	4.9	64.8	4.9	67.6	3.3	59.4
10 ⁻¹⁹ (-)-car vs. solvent	61.1	55.6	50.0	61.1	72.2	50.0	55.6	3.2	61.1	6.4	58.3	3.4	59.4
PO assays	-					-							
10 ⁻⁹ (-)-car vs. solvent	83.3	66.7	72.2	66.7	72.2	66.7	74.1	4.9	68.5	1.9	71.3	2.7	59.4
10 ⁻⁹ (-)-car vs. (-)-car	55.6	55.6	55.6	55.6	55.6	38.9	55.6	0.0	50.0	5.6	52.8	2.8	59.4

Table ST1. COCRs of WT and ΔD mice in a Y-maze for serial 100-fold diluted odourants (continued).

Odourant pairs	CC	CRs o	f indivic	lual ΔD	mice (%)	avg. of	SEM	avg. of	SEM	avg. of 6	SEM	COCR
Outurant pairs	ΔD1	ΔD2	ΔD3	ΔD4	ΔD5	ΔD6	(ΔD1-3)	3.E.IVI.	(ΔD4-6)	3.E.IVI.	ΔD mice	3.E.IVI.	0.05
(+)-car vs. solvent							<u> </u>		,				
10 ⁻³ (+)-car vs. solvent	72.2	72.2	72.2	61.1	72.2	61.1	72.2	0.0	64.8	3.7	68.5	2.3	59.4
10 ⁻⁵ (+)-car vs. solvent	61.1	72.2	72.2	55.6	55.6	61.1	68.5	3.7	57.4	1.9	63.0	3.1	59.4
10 ⁻⁷ (+)-car vs. solvent	77.8	77.8	77.8	77.8	72.2	66.7	77.8	0.0	72.2	3.2	75.0	1.9	59.4
10 ⁻⁹ (+)-car vs. solvent	72.2	77.8	61.1	72.2	66.7	61.1	70.4	4.9	66.7	3.2	68.5	2.7	59.4
10 ⁻¹¹ (+)-car vs. solvent	72.2	83.3	72.2	66.7	66.7	61.1	75.9	3.7	64.8	1.9	70.4	3.1	59.4
10 ⁻¹³ (+)-car vs. solvent	72.2	72.2	61.1	61.1	61.1	61.1	68.5	3.7	61.1	0.0	64.8	2.3	59.4
10 ⁻¹⁵ (+)-car vs. solvent	66.7	50.0	55.6	66.7	55.6	55.6	57.4	4.9	59.3	3.7	58.3	2.8	59.4
PO assays													
10 ⁻¹¹ (+)-car vs. solvent	61.1	66.7	66.7	66.7	66.7	66.7	64.8	1.9	66.7	0.0	65.7	0.9	59.4
(-)-car vs. (+)-car													
10 ⁻³ (-)-car vs. (+)-car	61.1	61.1	55.6	66.7	55.6	61.1	59.3	1.9	61.1	3.2	60.2	1.7	59.4
10 ⁻⁵ (-)-car vs. (+)-car	61.1	72.2	66.7	72.2	55.6	61.1	66.7	3.2	63.0	4.9	64.8	2.7	59.4
10 ⁻⁷ (-)-car vs. (+)-car	72.2	61.1	61.1	66.7	55.6	55.6	64.8	3.7	59.3	3.7	62.0	2.7	59.4
10 ⁻⁹ (-)-car vs. (+)-car	55.6	72.2	61.1	72.2	55.6	55.6	63.0	4.9	61.1	5.6	62.0	3.3	59.4
10 ⁻¹¹ (-)-car vs. (+)-car	50.0	55.6	66.7	50.0	44.4	44.4	57.4	4.9	46.3	1.9	51.9	3.4	59.4
10 ⁻¹³ (-)-car vs. (+)-car	61.1	55.6	55.6	61.1	66.7	50.0	57.4	1.9	59.3	4.9	58.3	2.4	59.4
10 ⁻¹⁵ (-)-car vs. (+)-car	55.6	50.0	61.1	61.1	55.6	50.0	55.6	3.2	55.6	3.2	55.6	2.0	59.4
10 ⁻¹⁷ (-)-car vs. (+)-car	50.0	55.6	61.1	61.1	61.1	50.0	55.6	3.2	57.4	3.7	56.5	2.2	59.4
10 ⁻¹⁹ (-)-car vs. (+)-car	50.0	55.6	66.7	55.6	61.1	50.0	53.7	1.9	55.6	3.2	54.6	1.7	59.4
PO assays													
10 ⁻¹¹ (-)-car vs. solvent	77.8	72.2	77.8	72.2	83.3	66.7	75.9	1.9	74.1	4.9	75.0	2.4	59.4
nTMT vs dpg													
10 ⁻⁷ nTMT vs. solvent	61.1	61.1	66.7	66.7	61.1	66.7	63.0	1.9	64.8	1.9	63.9	1.2	59.4
10 ⁻⁹ nTMT vs. solvent	83.3	72.2	66.7	61.1	66.7	88.9	74.1	4.9	72.2	8.5	73.1	4.4	59.4
10 ⁻¹¹ nTMT vs. solvent	77.8	72.2	77.8	72.2	72.2	88.9	75.9	1.9	77.8	5.6	76.9	2.7	59.4
10 ⁻¹³ nTMT vs. solvent	77.8	94.4	83.3	77.8	83.3	72.2	85.2	4.9	77.8	3.2	81.5	3.1	59.4
10 ⁻¹⁵ nTMT vs. solvent	77.8	66.7	83.3	77.8	72.2	66.7	75.9	4.9	72.2	3.2	74.1	2.7	59.4
10 ⁻¹⁷ nTMT vs. solvent	77.8	88.9	83.3	55.6	50.0	61.1	83.3	3.2	55.6	3.2	69.4	6.5	59.4
10 ⁻¹⁹ nTMT vs. solvent	77.8	55.6	72.2	50.0	55.6	50.0	68.5	6.7	51.9	1.9	60.2	4.8	59.4
10 ⁻²¹ nTMT vs. solvent	44.4	61.1	50.0	50.0	55.6	50.0	51.9	4.9	51.9	1.9	51.9	2.3	59.4
PO assays													
10 ⁻¹⁷ nTMT vs. solvent	61.1	83.3	77.8	61.1	66.7	83.3	74.1	6.7	70.4	6.7	72.2	4.3	59.4

Table ST1. COCRs of WT and ΔD mice in a Y-maze for serial 100-fold diluted odourants (continued).

	Odourants											
			(–)-wnl			Total of		(+)-wnl				
	Tuning	classes of OS	Ns/ORs		The	target-	The	0.0	Tuning classes of OSNs/ORs			
Odourant concentration	(–)-wnl*	(–)-/(+)-wnl	(+)-wnl	overlap	largest class	best ORs	largest class	overlap	(–)-wnl	(–)-/(+)-wnl	(+)-wnl*	
10 pM	1 (1: <mark>0</mark>)	1 (1: <mark>0</mark>)	0 (<mark>0:0</mark>)	50%	(—),		()/(+)	100%	0 (<mark>0:0</mark>)	1 (1: <mark>0</mark>)	0 (<mark>0:0</mark>)	
TOTIM	50%	50%	0%	(1/2)	(–)/(+)	>	(-)/(+)	(1/1)	0%	100%	0%	
100 pM	1 (1: <mark>0</mark>)	1 (1: <mark>0</mark>)	0 (<mark>0:0</mark>)	50%	(—),	,	()/(+)	100%	0 (<mark>0:0</mark>)	1 (1: <mark>0</mark>)	0 (<mark>0:0</mark>)	
100 1101	50%	50%	0%	(1/2)	(–)/(+)		(-)/(+)	(1/1)	0%	100%	0%	
1 uM	3 (<mark>2:1</mark>)	1 (1: <mark>0</mark>)	0 (<mark>0:0</mark>)	25%	()	,	(–)/(+),	50%	0 (<mark>0:0</mark>)	1 (1: <mark>0</mark>)	1 (1: <mark>0</mark>)	
ιμινι	75%	25%	0%	(1/4)	(-)	-	(+)	(1/2)	0%	50%	50%	
10 uM	14 (7 : 7)	2 (<mark>2:0</mark>)	0 (<mark>0:0</mark>)	25%	()	,	(–)/(+),	80%	2 (<mark>2:0</mark>)	2 (<mark>2:0</mark>)	1 (1: <mark>0</mark>)	
το μινι	87.5%	12.5%	0%	(4/16)	(-)	>	()	(4/5)	40%	40%	20%	
100 µM ³	38 (<mark>21:17</mark>)	3 (<mark>3:0</mark>)	4 (<mark>2:2</mark>)	42%	(_)		()	95%	12 (<mark>6:6</mark>)	3 (<mark>3:0</mark>)	5 (<mark>3:2</mark>)	
	84%	7%	9%	(19/45)	()		()	(19/20)	60%	15%	25%	

Table ST2. Dose-dependent subpopulations of wine lactone-responsive OSNs/ORs. Of 1,746 olfactory sensory neurons (OSNs) (1,207 dorsal zone: 539 ventral zone) assayed by Ca^{2+} imaging, 2, 5, 17 and 46 OSNs/ORs responded to either or both wine lactone enantiomers at 10-100 nM, 1, 10, 100 μ M, respectively. They were classified by their tuning to target enantiomers. Target-best OSNs/ORs* are those more sensitive to the target enantiomer than to non-target enantiomer. Percentage of each class responsive to the target at a given concentration is listed in the lower row. OR overlap indicates percentage (Numbers) of overlapping OSN/OR in enantiomer OR codes at each concentration. (–)-winl, (–)-wine lactone; (+)-winl, (+)-wine lactone.

						(Odouran	ts					
			(–)-car				Total				(+)-car		
	Т	uning classe	s of OSNs/OR	ls		The	of	The			Tuning classes	s of OSNs/OF	Rs
Odourant conc.	(-)-car*	(–)-car /others	(-)-/(+)-car	(+)-car	OR overlap	largest class	best ORs	largest class	OR overlap	(–)-car	(-)-/(+)-car	(+)-car /others	(+)-car*
4 14	4 (<mark>2:2</mark>)	2 (1:1)	3 (2:1)	0 (0:0)	55%			(-)/(+),	55%	2 (<mark>0:2</mark>)	3 (2:1)	2 (1:1)	2(1.5:0.5)
τ μινι	45%	22%	33%	0%	(5/9)	()	>	(+)‡	(5/9)	22%†	33%	22%	22%(11)
10M	18(7.5:10.5)	6 (<mark>2:4</mark>)	44 (20:24)	3 (2.5:0.5)	79%	()/())	_	()/())	62%	9 (4:5)	44 (20:24)	8 (2.5:5.5)	21(5.5:15.5)
το μινι	25.5%(7)	8.5%(3)	62%(5.5)	4%(1.5)	(56/71)	(-)/(+)	-	(-)/(+)	(51/82)	11%(5)	53.5%(5)	10%(3.5)	25.5%(3.5)
			Ident	tified carvone	-responsi	ve ORs a	and their	r sensitiv	ities to ca	rvone enanti	omers		
	<i>car-c5</i> (+)car(10)												
4 14			<i>car-n266</i> less								<i>car-n</i> 266 greater		
1 μΜ			car-b85								car-b85		
			greater								less		
			car-n272								car-n272		
			greater								less		
	car-c10												
	(+)car(100)												car-h158
													(-)car(100)
			car-b130								car-b130		() = (= =)
10 uM			greater								less		
то µім			car-n270								car-n270		
			greater								less		
	<i>car-257</i> (+)car(100)												
			car-n271								car-n271		
			equal								equal		
	car-c260												
													car-c258
100 uM			car-c6								car-c6		
.00 μινι			equal								equal		
			car-c255 less								car-c255 greater		
	car-c15		1000								groutor		

Table ST3. Dose-dependent subpopulations of carvone-responsive OSNs/ORs. Of 2,740 OSNs/ORs assayed by Ca^{2+} imaging, 13 and 89 OSNs/ORs (dorsal zone: ventral zone) responded to either or both of carvone enantiomers at 1 and 10 μ M, respectively, and were classified by their tuning to target odourants. Target-best OSNs/ORs* are those more sensitive to the target enantiomer than to the non-target enantiomer. Percentage of each class responsive to target at a given concentration is listed in the lower rows. Percentage† indicates OSNs/ORs with response amplitudes less than the half of the others. The percentages in parentheses indicate OSNs/ORs that were prepared from uncertain zones and counted in each zone by a factor of 1/2. OR overlap indicates percentage (numbers) of overlapping OSN/OR in enantiomer OR codes at each concentration. The largest class‡ is the sum of (+)-car and (+)-car/others OSNs/ORs. In the lower part, relative response amplitudes of 15 identified carvone ORs are shown with the lowest responsive concentrations (μ M) of target (left column) and non-target carvone in parentheses (see Fig. 3).

Figure S2. Odour responses of the most sensitive OSNs for wine lactones in mice. Odour responses were measured using intracellular Ca²⁺-imaging. A, OSN tuned to 10 nM (-)-wnl . B, OSN tuned to 10 nM (-)-wnl and (+)-wnl. C, OSN tuned to 1 μ M (+)-wnl. D and E, OSNs tuned to 1 μ M (-)-wnl. (-)-ro: (2*S*,4*R*)- (-)-cis-rose oxide; (+)-ro:(2*R*,4*S*)-(+)-cis-rose oxide. The arrows indicate the time at which odourant solutions of the indicated concentrations were applied to the OSNs for 4 s. The odourants that evoked characteristic odour responses are indicated by the asterisks. All OSNs, except for that shown in E, were obtained from the dorsal zone.

Odourant pairs	significance between	of difference 2 strains	WT	mice	ΔD	mice
	F value	P value	COCR (%) (n = 6)	S.E.M.	COCR (%) (n = 6)	S.E.M.
(-)-wnl vs. solvent						
10 ⁻³ (-)-wnl vs. solvent	4.13	7.0 × 10 ⁻²	87.0	4.7	71.5	5.8
10 ⁻⁵ (-)-wnl vs. solvent	5.52	4.1 × 10 ⁻²	77.8	1.4	67.6	4.2
10 ⁻⁷ (-)-wnl vs. solvent	0.61	0.45	72.2	4.5	76.9	4.0
10 ⁻⁹ (-)-wnl vs. solvent	0.07	0.80	74.1	3.1	75.0	2.4
10 ⁻¹¹ (-)-wnl vs. solvent	0.58	0.46	79.6	4.2	75.9	2.3
10 ⁻¹³ (-)-wnl vs. solvent	5.35	4.3 × 10 ⁻²	79.6	4.5	68.5	1.9
10 ⁻¹⁵ (-)-wnl vs. solvent	47.57	4.2 × 10 ⁻⁵	79.6	1.9	63.9	1.2
10 ⁻¹⁷ (-)-wnl vs. solvent	12.86	5.0 × 10 ⁻³	75.9	2.7	62.0	2.7
10 ⁻¹⁹ (-)-wnl vs. solvent	5.18	4.6 × 10 ⁻²	71.3	3.3	61.1	2.9
10 ⁻²¹ (-)-wnl vs. solvent	18.06	1.7 × 10 ⁻³	67.6	2.7	47.2	4.0
10 ⁻²³ (-)-wnl vs. solvent	6.86	2.6 × 10 ⁻²	59.3	3.1	47.2	3.1
(+)-wnl vs. solvent						
10 ⁻³ (+)-wnl vs. solvent	9.79	1.1 × 10 ⁻²	76.6	3.9	61.1	3.2
10 ⁻⁵ (+)-wnl vs. solvent	2.92	0.12	77.8	3.5	71.3	0.9
10 ⁻⁷ (+)-wnl vs. solvent	5.08	4.8 × 10 ⁻²	75.7	4.2	67.6	3.6
10 ⁻⁹ (+)-wnl vs. solvent	21.00	1.0 × 10 ⁻³	83.1	3.1	70.4	1.2
10 ⁻¹¹ (+)-wnl vs. solvent	0.09	0.76	74.5	4.1	73.1	1.7
10 ⁻¹³ (+)-wnl vs. solvent	54.55	2.4 × 10 ⁻⁵	82.9	2.3	51.9	3.4
10 ⁻¹⁵ (+)-wnl vs. solvent	14.72	3.3 × 10 ⁻³	75.2	3.1	59.3	4.7
10 ⁻¹⁷ (+)-wnl vs. solvent	31.87	2.1 × 10 ⁻⁴	75.2	2.8	50.9	3.3
(-)-wnl vs. (+)-wnl						
10 ⁻³ (-)-wnl vs. (+)-wnl	15.37	2.9 × 10 ⁻³	69.4	3.4	46.3	4.9
10 ⁻⁵ (-)-wnl vs. (+)-wnl	6.36	3.0 × 10 ⁻²	54.3	3.9	41.7	3.1
10 ⁻⁷ (-)-wnl vs. (+)-wnl	11.45	7.0 × 10 ⁻³	73.1	5.8	48.1	4.7
10 ⁻⁹ (-)-wnl vs. (+)-wnl	13.54	4.3 × 10 ⁻³	68.5	2.7	48.9	5.4
10 ⁻¹¹ (-)-wnl vs. (+)-wnl	4.78	5.4 × 10 ⁻²	62.0	3.9	49.1	4.4
10 ⁻¹³ (-)-wnl vs. (+)-wnl	6.01	3.4 × 10 ⁻²	72.2	5.4	57.4	2.7

Table ST4. Significance of the COCR differences between WT and ΔD mice.

Odourant pairs	significance between	of difference 2 strains	WT	mice	ΔD	mice
	F value	P value	COCR (%) (n = 6)	S.E.M.	COCR (%) (n = 6)	S.E.M.
(-)-car vs. solvent						
10 ⁻³ (-)-car vs. solvent	4.24	6.7 × 10 ⁻²	81.5	4.2	71.3	2.2
10 ⁻⁵ (-)-car vs. solvent	1.45	0.26	82.4	3.0	75.9	4.5
10 ⁻⁷ (-)-car vs. solvent	0.03	0.87	72.5	2.9	73.1	2.7
10 ⁻⁹ (-)-car vs. solvent	2.21	0.17	67.6	3.9	75.0	3.1
10 ⁻¹¹ (-)-car vs. solvent	0.41	0.54	75.9	6.2	80.6	4.0
10 ⁻¹³ (-)-car vs. solvent	0.00	1.00	75.9	5.3	75.9	2.7
10 ⁻¹⁵ (-)-car vs. solvent	3.70	0.08	72.2	2.9	65.7	1.7
10 ⁻¹⁷ (-)-car vs. solvent	1.58	0.24	74.1	4.0	67.6	3.3
10 ⁻¹⁹ (-)-car vs. solvent	5.14	4.7 × 10 ⁻²	67.6	2.2	58.3	3.4
(+)-car vs. solvent						
10 ⁻³ (+)-car vs. solvent	6.43	3.0 × 10 ⁻²	79.6	3.7	68.5	2.3
10 ⁻⁵ (+)-car vs. solvent	12.34	5.6 × 10 ⁻³	79.6	3.7	63.0	3.1
10 ⁻⁷ (+)-car vs. solvent	2.22	0.17	79.6	2.3	75.0	1.9
10 ⁻⁹ (+)-car vs. solvent	1.21	0.30	64.8	1.9	68.5	2.7
10 ⁻¹¹ (+)-car vs. solvent	0.07	0.79	71.3	3.0	70.4	3.1
10 ⁻¹³ (+)-car vs. solvent	4.49	6.0 × 10 ⁻²	72.2	2.9	64.8	2.3
10 ⁻¹⁵ (+)-car vs. solvent	7.67	2.0 × 10 ⁻²	72.2	4.1	58.3	2.8
(-)-car vs. (+)-car						
10 ⁻³ (-)-car vs. (+)-car	28.13	3.5 × 10 ⁻⁴	84.3	4.2	60.2	1.7
10 ⁻⁵ (-)-car vs. (+)-car	8.55	1.5 × 10 ⁻²	77.8	3.5	64.8	2.7
10 ⁻⁷ (-)-car vs. (+)-car	9.13	1.3 × 10 ⁻²	73.1	2.7	62.0	2.7
10 ⁻⁹ (-)-car vs. (+)-car	1.60	0.23	68.5	3.7	62.0	3.3
10 ⁻¹¹ (-)-car vs. (+)-car	27.17	3.9 × 10 ⁻⁴	75.9	3.1	51.9	3.4
10 ⁻¹³ (-)-car vs. (+)-car	2.43	0.15	64.8	3.4	58.3	2.4
10 ⁻¹⁵ (-)-car vs. (+)-car	10.61	8.6 × 10 ⁻³	66.7	2.9	55.6	2.0
10 ⁻¹⁷ (-)-car vs. (+)-car	17.90	1.7 × 10 ⁻³	75.0	3.7	56.5	2.2
10 ⁻¹⁹ (-)-car vs. (+)-car	8.43	1.6 × 10 ⁻²	67.6	2.7	54.6	1.7
nTMT vs. solvent						
10 ⁻⁹ nTMT vs. solvent	0.40	0.54	68.5	6.0	73.1	4.4
10 ⁻¹¹ nTMT vs. solvent	5.02	4.9 × 10 ⁻²	67.6	3.0	76.9	2.7
10 ⁻¹³ nTMT vs. solvent	0.30	0.59	78.7	4.2	81.5	3.1
10 ⁻¹⁵ nTMT vs. solvent	0.09	0.77	75.9	4.9	74.1	2.7
10 ⁻¹⁷ nTMT vs. solvent	0.01	0.91	68.5	3.7	69.4	6.5
10 ⁻¹⁹ nTMT vs. solvent	1.67	0.23	66.7	1.4	60.2	4.8
10 ⁻²¹ nTMT vs. solvent	3.72	8.3 × 10 ⁻²	63.9	5.9	51.9	2.3

Table ST4. Significance of the COCR differences between WT and ΔD mice (continued).

Figure S3. Dose-dependency of the peak areas of diluted odourant solutions in gas chromatography-mass spectrometry (GC-MS). The peak area per unit dose seemed too large for the 10^{-9} -w/w odourant solution compared with those at higher concentrations. This was likely due to background noise. This result suggests that the detection limit of this GC-MS measurement is approximately 10 ppb for (*R*)-(-)-carvone. The theoretical curve (dashed line) is the plot of the peak areas at the concentration (C_x) with correction by the term -(peak_area_at_ 10^{-9}) + (peak_area_at_ $10^{-3} \times C_x/10^{-3}$)

target	mea	sured peak area	(a.u.)		dilution factor (D, ratio of peak area per unit dose)				
(w/w)	dilution 1 (D1)	dilution 2 (D2)	dilution 3 (D3)	average		D1	D2	D3	
				± S.E.M.	average	1 01	1.00	1 02	
10 ⁻³	7 029 438 5	6 806 454 0	6 703 118 0	6.85 × 10 ⁶	average	1.01	1.00	1.02	
10	7,020,400.0	0,000,404.0	0,700,110.0	\pm 9.63 × 10 ⁴		1 18	1 11	1.07	
10 ⁻⁵	83 102 0	75 072 5	71 889 0	7.70 × 10 ⁴		1.10	1.11	1.07	
10	03,192.0	15,512.5	71,005.0	\pm 3.30 × 10 ³		1.04	0.90	1 21	
10-7	1 033 5	803 5	1 181 0	1.04 × 10 ³		1.04	0.50	1.21	
10	1,000.0	093.5	1,101.0	\pm 8.30 × 10 ¹		0.82	1.00	0.77	
10 ⁻⁹	178 5	210.0	321.0	2.40×10^{2}		0.02	1.00	0.77	
10	176.5	176.5 219.0 321.0		\pm 4.24 × 10 ¹	D _{avg}	1.0	109 ± 0.05	515	

Table ST5. Peak areas in GC-MS and calculation of the dilution factors for the 100-fold dilution series. The dilution factors were obtained as the ratios of peak areas per unit dose between subsequent concentrations. (R)-(–)-carvone was used as the standard odourant. The dose-dependency of the peak areas was shown in Supplementary Information Fig. S3.

Target concentration (C) (w/w)	Number of dilution steps (N)	Accumulated average dilution factor $(A_{avg} = D_{avg}^N)$	Estimated conc. = C × A _{avg} (w/w)	Accumulated maximum dilution factor $(A_{max} = D_{max}^N)$	Estimated maximum conc. = C × A _{max} (w/w)
10 ⁻³	1	1.01	1.0 × 10 ⁻³	1.21	1.2 × 10 ⁻³
10 ⁻⁵	2	1.02	1.0 × 10 ⁻⁵	1.47	1.5 × 10 ⁻⁵
10 ⁻⁷	3	1.03	1.0 × 10 ⁻⁷	1.78	1.8 × 10 ⁻⁷
10 ⁻⁹	4	1.04	1.0 × 10 ⁻⁹	2.15	2.2 × 10 ⁻⁹
10 ⁻¹¹	5	1.06	1.1 × 10 ⁻¹¹	2.60	2.6 × 10 ⁻¹¹
10 ⁻¹³	6	1.07	1.1 × 10 ⁻¹³	3.15	3.2 × 10 ⁻¹³
10 ⁻¹⁵	7	1.08	1.1 × 10 ⁻¹⁵	3.82	3.8 × 10 ⁻¹⁵
10 ⁻¹⁷	8	1.09	1.1 × 10 ⁻¹⁷	4.62	4.6 × 10 ⁻¹⁷
10 ⁻¹⁹	9	1.10	1.1 × 10 ⁻¹⁹	5.60	5.6 × 10 ⁻¹⁹
10 ⁻²¹	10	1.11	1.1 × 10 ⁻²¹	6.78	6.8 × 10 ⁻²¹
10 ⁻²³	11	1.13	1.1 × 10 ⁻²³	8.21	8.2 × 10 ⁻²³
10 ⁻²⁵	12	1.14	1.1 × 10 ⁻²⁵	9.94	9.9 × 10 ⁻²⁵

Table ST6. Estimated odourant concentrations for the 100-fold dilution series. Averaged dilution factor, Davg = 1.0109 ± 0.0515 , and the maximum dilution factor, D_{max} = 1.21, are shown in Supplementary Information Table ST5.