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Supplementary Appendix 

This document has been provided by the authors to give reviewers additional information about 

their work. 

 

Supplement to: Diagnostic performance analysis for diabetic cardiovascular autonomic 

neuropathy based on short-term heart rate variability using Bayesian methods: Preliminary 

analysis. 
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1. Overview 

W We used a Bayesian latent class model to estimate the sensitivity and specificity of 

HRV test or/and Ewing’s test for CAN in the absence of a gold standard, as described by 

Branscum et al. [1]. The latent class analysis allows the characterization of a discrete latent 

class (here the true disease status) by discrete observed variables. In this model, both tests 

are equally considered as imperfect. There are unknown parameters about which inference 

must be made: the CAN population prevalence, and the sensitivity and specificity of each of 

the two tests. Bayesian approach can simultaneously estimate all five unknown parameters. 

These methods proceeds in two steps: first, a prior distribution summarizes the available 

pre-experimental information about the parameters. Subsequently, the prior distribution is 

updated via Bayes Theorem to a posterior distribution, using the data and the usual 

multinomial likelihood function. Marginal posterior densities can be derived for each 

parameter by integration, from which 95% marginal posterior credible intervals can be 

calculated. Since the integration here is analytically intractable, the Gibbs Sampler, a Monte 

Carlo approach to calculating marginal densities, is employed. The above methods allow for 

simultaneous inferences to be made for all unknown parameters, which takes full advantage 

of all the information contained in the data, as well as formally incorporating prior 

information, when available. Data were analyzed using SPSS16.0 (USA) and WinBUGS 14 

for the Bayesian analysis. 
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2. Prior distribution 

Prior distributions can be estimated based on a review of the literature and/or expert 

opinion in the absence of data. Published evaluations of the Ewing’s test indicated a good 

sensitivity (0.7 to 1.0) and specificity (0.7 to 1.0), which has a beta distribution with 

parameters (α, β) [2,3,4,5]. Previous studies demonstrated that performances of HRV to 

assess CA activity are similar to those of Ewing’s test [4,6,7]. We made a hypothesis for the 

short-term HRV test with sensitivity and specificity of a beta distribution between 0.7 and 

1.0, respectively. Finally, the prior distribution of prevalence was considered beta between 

0.1 and 0.5 [3,4,8]. The same parameters of prior distribution for HRV test alone were 

estimated in total sample, DM, HT and MS patients. The two tests used here rely on analysis 

of HRV attributes. As recommended by Dendukuri et al. [9], in the main analysis the tests 

were also considered conditionally independent model. The particular beta prior density for 

each test parameter was selected by matching the center of the range with the mean of the 

beta distribution, given by α/(α+β), and matching the variance of the beta distribution, given 

by square root of (αβ)/(( α+β)
2
( α+β+1)) with one quarter of the total range.  
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3. One diagnostic test 

Let A and B be the observed number of positive and negative test results, respectively, 

in the sample of A + B = N subjects (Table a1). Let Y1 and Y2 be the information that is 

missing when there is no gold standard, that is, the number of true positive test results out of 

A and B, respectively. Thus, Y1 is the number of true positives, and Y2 is the number of false 

negatives. Such missing information has been termed "latent data".  

 

Table a1: Observed and latent data in the case of one diagnostic 

test In the absence of a gold standard, presented in a 2 x 2 table 

  True 

  Positive Negative 
Total 

Positive Y1 A-Y1 A 
Test 

Negative Y2 B-Y2 B 

 Total Y1+Y2 N-Y1-Y2 N 

 

 

The likelihood function of the observed and latent data is given by 
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Prior information in the form of a beta density will be assumed. A random variable (0≤θ≤1) 

has a beta distribution with parameters (α, β) if it has a probability density given by  
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 , where B(α, β), the beta function evaluated at (α, β), is the 

normalizing constant. This family of distributions was selected since its region of positive 

density, from 0 to 1, matches the range of all parameters of interest in this study. In addition, 

it also has the advantage of being the conjugate prior distribution for the binomial likelihood, 

a property that simplifies the derivation of the posterior distributions. Let (απ, βπ), (αSen, βSen), 

and (αSpe, βSpe) represent the prior beta parameters for π, Sen and Spe, respectively. Since the 

joint posterior distribution is proportional to the product of the likelihood function and the 

prior distribution.  

Inference is possible using a Gibbs sampler algorithm. The basic idea is as follows. 
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Conditional on knowing the exact values of the prevalence and all diagnostic test parameters, 

it is possible to derive posterior distributions of the latent data Y1 and Y2. Conversely, if Y1 

and Y2 are known, then deriving posterior distributions of the prevalence and diagnostic test 

parameters given the prior distributions requires only a straightforward application of Bayes' 

theorem. An algorithm that alternates between these two steps can thus be devised, similar in 

spirit to the expectation maximization algorithm that is commonly used in latent class analysis. 

The Gibbs sampler algorithm provides random samples from the marginal posterior densities 

of each parameter of interest. These random samples can then be used to reconstruct the 

marginal posterior densities, or summaries of these densities, such as their means, medians, or 

standard deviations, as well as probability interval summaries.  

Implementation of the Gibbs sampler requires the specification of the full conditional 

distributions of the parameters, i.e., the conditional distributions of each parameter given the 

values of all of the other parameters. It is straightforward to show from likelihood function 

that the following conditional distributions must hold:  
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The Gibbs sampler operates as follows. Arbitrary starting values are chosen for each 

parameter. A sample of size m is then drawn from each full conditional distribution, in turn. 

The sampled values from the previous iterations are used in the conditional distributions for 

subsequent iterations. A cycle of the algorithm is completed when all conditional 

distributions have been sampled at least once. The entire cycle is repeated a large number of 

times. The random samples thus generated for each parameter can be regarded as a random 

sample from the correct posterior marginal distribution. For the above model, Y1 and Y2 are 
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generated from expressions app 1.1 and app1.2, respectively, given the starting values of the 

other parameters. Then, π is generated from equation app1.3 conditional on the Y1 and Y2 

variates just sampled. Drawing Sen and Spe from densities given in expressions app1.4 and 

app1.5, respectively, using the same values of Y1 and Y2 completes the first cycle. Positive 

and negative predictive values can be computed after each cycle from Y1/A and (b-Y2)/B, 

respectively. The random samples generated by repeating the above cycle the desired 

number of times are then used to reconstruct the marginal posterior densities of each 

parameter and to find credible sets, marginal posterior means or medians, or other 

inferences.  
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4. Two diagnostic tests (conditional independence model) 

The methods of the previous section can be extended to the situation where results of 

two diagnostic tests for the same disease are available on a randomly selected sample of 

subjects, where neither test can be considered a gold standard. There are unknown five 

parameters about which inference must be made: the population prevalence of CA 

dysfunction (π), and the sensitivity (S1) and specificity (C1) of the test1, and sensitivity (S2) 

and specificity (C2) of the Test2. Let U1 be the observed number of positive test1 and test2 

results, and U2 be the observed number of positive test1 and negative test2 results, and U3 

the observed number of negative test1 and positive test2 results, and U4 be the observed 

number of negative test1 and test2 results, in the sample of U1+U2+U3+U4 = N subjects 

(Table a2).  

 

Table a2: Observed data from two diagnostic tests, In the 

absence of a gold standard 

  Test2 

  Positive Negative 
Total 

Positive U1 U2 U1+U2 
Test1 

Negative U3 U4 U3+U4 

 Total U1+U3 U2+U4 N 

 

 

Let the unobserved latent data Y1, Y2, Y3, and Y4 represent the number of true positive 

subjects out of the observed cell values U1, U2, U3 and U4, respectively. Since any subject, 

whether truly possessing the disease in question or not, can test positively or negatively on 

each test, there are eight possible combinations.  
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Table a3: Likelihood contributions of all possible combinations of observed and latent data for 

the case of two independence diagnostic tests 

No. of sub Truth Test1 result Test2 result Likelihood Contribution 

Y1 Positive Positive Positive πS1S2 

Y2 Positive Positive Negative πS1(1-S2) 

Y3 Positive Negative Positive π(1-S1)S2 

Y4 Positive Negative Negative π(1-S1)(1-S2) 

U1-Y1 Negative Positive Positive (1-π)(1-C1)(1-C2) 

U2-Y2 Negative Positive Negative (1-π)(1-C1)C2 

U3-Y3 Negative Negative Positive (1-π)C1(1-C2) 

U4-Y4 Negative Negative Negative (1-π)C1C2 

Note: The likelihood is proportional to the product of each entry In the last column of the table 

raised to the power of the corresponding entry In the first column of the table. 

 

The likelihood function of the observed and latent data is given by (Table a3): 
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We used standard distributional families to represent our prior information. The choice 

of distributions discussed below is not unique and they may be replaced by other suitable 

densities, as needed. The prevalence is assumed to follow a beta prior distribution with 

parameters α and β, π~beta(απ, βπ). The sensitivities and specificities are also assumed to 

have beta prior densities such that Sj~beta(αSj, βSj), and Cj~beta(αCj, βCj), j=1,2. The Gibbs 

sampler can again be used to construct the marginal posterior densities of all parameters of 

interest. For two independence diagnostic tests, the full conditional distributions are as 

follows:  
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5. Two diagnostic tests (conditional dependence model) 

Assume that we have results from two different dichotomous tests Tj, j=1,2, from a 

sample of N subjects such that a positive result on the jth test is denoted by Tj=1 and a 

negative result by Tj=0. Let D denote the latent true disease status such that D=1 among 

diseased subjects and D=0 among nondiseased subjects. To model the conditional 

dependence between two diagnostic tests recommended by Dendukuri et al., the conditional 

dependence between tests may be estimated using a measure such as the covariance between 

tests within each disease class. We denote the covariance between the two tests among the 

diseased and nodiseased subjects as covs and covc, respectively. Here, covs=P(T1=1, 

T2=1|D=1)-S1S2, and covc= P(T1=0, T2=0|D=0)-C1C2. 

 

Table a4: Likelihood contributions of all possible combinations of observed and latent data for 

the case of two dependence diagnostic tests 

No. of sub Truth Test1 result Test2 result Likelihood Contribution 

Y1 Positive Positive Positive π(S1S2+covs) 

Y2 Positive Positive Negative π(S1(1-S2)-covs) 

Y3 Positive Negative Positive π((1-S1)S2-covs) 

Y4 Positive Negative Negative π((1-S1)(1-S2) +covs) 

U1-Y1 Negative Positive Positive (1-π)((1-C1)(1-C2) +covc) 

U2-Y2 Negative Positive Negative (1-π)((1-C1)C2-covc) 

U3-Y3 Negative Negative Positive (1-π)(C1(1-C2) -covc) 

U4-Y4 Negative Negative Negative (1-π)(C1C2+covc) 

Note: The likelihood is proportional to the product of each entry In the last column of the table 

raised to the power of the corresponding entry In the first column of the table. 

 

The likelihood function of the observed and latent data is given by (Table a4): 
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    We used standard distributional families to represent our prior information. The choice 

of distributions discussed below is not unique and they may be replaced by other suitable 

densities, as needed. The prevalence is assumed to follow a beta prior distribution with 
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parameters α and β, π~beta(απ, βπ). The sensitivities and specificities are also assumed to 

have beta prior densities such that Sj~beta(αSj, βSj), and Cj~beta(αCj, βCj), j=1,2. The feasible 

range of the covariance is determined by the sensitivities among the disease subjects and the 

specificities among the nondiseased subjects. The covariance parameters are taken to have 

uniform prior distribution, covs~uniform(0,min(S1,S2)-S1S2) and covc~uniform(0, min(C1,C2) 

-C1C2), where min(a,b) is the minimum of a and b. The Gibbs sampler can again be used to 

construct the marginal posterior densities of all parameters of interest. For two independence 

diagnostic tests, the full conditional distributions are as follows:  
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Gibbs sampling is used to sample in turn from distribution app2.10 to distribution 

app2.20 in a similar fashion to the procedure used for the case of one diagnostic test outlined 

previously. The positive and negative predictive values for each cycle of the Gibbs algorithm 
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are again obtained directly from the relevant fractions of the true positive or negative 

subjects in each cell of the 2 by 2 table to the total observed number of subjects in that cell. 

Throughout, the Gibbs sampler was run for 100,000 cycles, the first 10,000 to assess 

convergence and the last 90,000 for inference. Each analysis was repeated from several 

different starting values, and convergence was assumed only if all runs provided very similar 

posterior distributions. Convergence of the algorithm here appeared to occur within the first 

100-200 cycles, as evidenced by the monitoring of selected percentiles of the posterior 

samples. In general, the rate of convergence will depend on the starting values and the 

particulars of the data set and prior distributions. A computer program written in S-PLUS 

implementing all of the methods described in this paper is available from the first author 

(albert.tang@163.com).  
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6. WinBUGS program code for two independence diagnostic test  

// 

model; 

{ pi ~ dbeta(api,bpi)    

 sen1 ~ dbeta(as1,bs1)    

 spe1 ~ dbeta(ac1,bc1)    

 sen2 ~ dbeta(as2,bs2)    

 spe2 ~ dbeta(ac2,bc2)   

   

 api<-x[1]document+x[10]+x[11]+x[4]+api0  

 bpi<-n-(x[1]+x[10]+x[11]+x[4])+bpi0  

  

 as1<-x[1]+x[10]+as10  

 bs1<-x[11]+x[4]+bs10  

 ac1<-u[11]+u[4]-(x[11]+x[4])+ac10  

 bc1<-u[1]+u[10]-(x[1]+x[10])+bc10  

  

 as2<-x[1]+x[11]+ as20  

 bs2<-x[10]+x[4]+ bs20  

 ac2<-u[10]+u[4]-(x[10]+x[4])+ac20  

 bc2<-u[1]+u[11]-(x[1]+x[11])+bc20  

  

 p[1] <- pi * sen1 * sen2/(pi * sen1 * sen2 + (1 - pi) * (1 - spe1) * (1 - spe2))  

 p[10] <- pi * sen1 * (1-sen2)/(pi * sen1 * (1-sen2) + (1 - pi) * (1 - spe1) * spe2)  

 p[11] <- pi * (1-sen1) *sen2/(pi * (1-sen1) *sen2 + (1 - pi) *  spe1 * (1-spe2))  

 p[4] <- pi * (1-sen1) * (1-sen2)/(pi * (1-sen1) * (1-sen2) + (1 - pi) * spe1 * spe2)  

   

   for(i in 1:N)  

 { x[i] ~ dbin(p[i],u[i]) 

 }   

} 

List(data format...) 

//
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