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Supplementary Figure 1: London transit network with N = 2217 nodes, 2854 geometric edges, and 15
non-geometric edges (which we have made publicly available, as we discussed in Sec. III A of the main
manuscript). (a) The geometric edges (blue), which we take from Ref. [1], are roads between intersections;
and the non-geometric edges (red), which we take from Ref. [2], give connections between metro stations.
Some nodes (i ∈ P ⊂ V , where |P| = 11) correspond to both intersections and metro stations, whereas
other nodes (i ∈ V \ P) correspond only to intersections. Each node i ∈ V has an intrinsic location
{w(i)} based on its latitude and longitude. (b) Histogram of the frequencies of the nodes’ total degrees {di}
(i.e., di = d

(G)
i + d

(NG)
i ), where the mean is 〈di〉 ≈ 2.59. (c) Histogram of the frequencies of the edge

lengths {χij}, where χij = m(i, j) is the Euclidean distance between locations w(i) and w(j) for each edge
(i, j) ∈ E [see Eq. (16)]. See Supplementary Note 1 for further discussion.
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Supplementary Figure 2: Activation times {x(i)
j } for nodes i ∈ V for a WTM contagion on the London

transit network, which we initiate with cluster seeding centered at a node j near the Bond Street Station.
(a) For small thresholds, such as T = 0.02, nodes near metro stations have small activation times, so the
contagion does not follow the geometric edges (i.e., the roads). (b) For moderate threshold values, such as
T = 0.18, the activation times have a large positive correlation with the Euclidean distances between the
intrinsic node locations {w(i)} (given by latitude and longitude). Therefore, the WFP and ANC phenomena
of WTM contagions with this initialization depend significantly on the value of T . Although this is not
“typical” of all WTM contagions on this network, such situations have a significant effect on the resulting
WTM maps. See Supplementary Note 1 for further discussion.
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Supplementary Figure 3: Equilibrium contagion sizes and geometry of WTM maps on the London transit
network. (a) Histogram of the frequency of sizes C(target)

i for the target node sets and sizes C(source)
i for

the source node sets. Nodes tend to have either very large or very sizes of the target and source node sets,
so we assign nodes into four classes: (1) large C(target)

i and large C(source)
i , (2) small C(target)

i and large
C

(source)
i , (3) large C(target)

i and small C(source)
i , and (4) small C(target)

i and small C(source)
i . In practice

(as we discuss in Supplementary Note 1), we compare these values to N/2 to assign nodes to classes. (b)
Fraction of nodes in classes (1)–(4). All nodes shift from class (1) to class (4) as T increases; however, for
the approximate range T ∈ (0.1, 0.25), nodes are only in classes (1)–(3). (c) Pearson correlation coefficient
ρ for the WTM map (solid curves), Isomap (horizontal dotted line), and a 2D Laplacian eigenmap (horizontal
dashed line). For the WTM map, we show results for the regular (“reg”), reflected (“ref”), and symmetric
(“sym”) versions of the WTM map. For each version, we handle the activation times of infinity in two
ways: we either (1) set these activation times to be 2N and consider the complete matrix of activation times
(“full”) as we proceeded with our studies of synthetic networks; or (2) we neglect these values and examine
only the remaining submatrix of activation times (“part”) after removing appropriate rows and columns. For
the values of T for which nodes are exclusively in classes (1) and (2) [i.e., for T in the approximate range
(0.1, 0.2)], we find that ρ increases for the WTM maps when we neglect the activation times of infinity.
For the WTM maps in which we set the activation times of infinity to 2N , the values of ρ for T ' 0.1 are
considerably smaller than those for T / 0.1. This is especially prominent in the symmetric and reflected
WTM maps. See Supplementary Note 1 for further discussion.
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Supplementary Figure 4: (Top row) For a given value of the metro proximity ψi (i.e., the length of the
shortest path from a node i to a metro station), we show the fraction of nodes that we assign to the four
classes (1)–(4) based on the sizes of their target and source node sets (see the text). (a) For T = 0.16, almost
all nodes are in class (1), though a few nodes are in class (2). The latter are located ψi = 2 edges from a
metro station. (b) For T = 0.18, most nodes are in class (1), but some nodes are in class (2). These are either
2–3 edges from a metro station, or they are “isolated” nodes that are distant from the other nodes (including,
by definition, metro stations). (c) For T = 0.2, nodes are in classes (1)–(3). As before, nodes in class (2) are
either 2–3 edges from a metro station or are isolated. The nodes in class (3) are relatively isolated. (Bottom
row) Properties of the metro proximities {ψi}. (d) Frequency of nodes with a given metro proximity ψi. (e)
Scatter plot of the nodes’ total degrees {di} versus their metro proximities {ψi}. (f) For each node i, we
plot the mean length of the shortest paths from that node to the remaining nodes versus its metro proximity
ψi. Note that isolated nodes, which are by definition distant from metro stations, are also distant from other
nodes. See Supplementary Note 1 for further discussion.
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Supplementary Figure 5: Egocentric correlation coefficients {ρ̂i(T )} for WTM maps applied to the Lon-
don transit network. We show results for (top panels) the map Vsto{x(i)} and (bottom panels) the map
Vsto{y(i)}. For both maps, we neglect activation times that are infinite (see Supplementary Note 1). (Left
column) In panels (a) and (d), we plot the egocentric correlations {ρ̂i(T )} versus the metro proximities {ψi}
for thresholds T ∈ {0.1, 0.18}. We only show values for nodes that are not in class (2). The solid curve
indicates the mean of ρ̂i(0.1) for a given value of ψi, and the dashed curve indicates the mean of ρ̂i(0.18)
for a given value of ψi. Note that increasing T typically leads to an increase of ρ̂i(T ) in both panels (a)
and (d). (Center column) We plot [ρ̂i(0.18) − ρ̂i(0.1)] versus ψi. The solid curves indicate the mean val-
ues for a given ψi. Observe that the values of ρ̂i(T ) are typically larger for T = 0.18 than they are for
T = 0.1. (Right column) We plot the observed frequencies of [ρ̂i(0.18) − ρ̂i(0.1)] for nodes j ∈ V . Note
that the frequencies are rather heterogeneous, and they appear to have a heavy tail (see the arrows): although
[ρ̂i(0.18) − ρ̂i(0.1)] tends to be small and positive for most nodes j ∈ V , there are some nodes for which
[ρ̂i(0.18)− ρ̂i(0.1)] is rather large. See Supplementary Note 1 for further discussion.
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Supplementary Figure 6: Inference of noisy edges in the London transit network that we studied in Sec. I F
of the main manuscript. We show results for WTM maps using various values of the threshold parameter
T . (a) We show receiver operating characteristic (ROC) curves for the classification of edges in the London
transit network as geometric or non-geometric based on WTM maps in addition to a “local” approach based
on the Jaccard index [4]. (b) ROC curves for inferring the noisy edges in a noisy 2D square lattice. (c) We
plot the the areas under the ROC curves (AUC) for various values of T . We use crosses to indicate the values
of T that we used in panel (b). See Supplementary Note 2 for further discussion.
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Supplementary Figure 7: ROC curves for the classification of edges as geometric or non-geometric based
on WTM maps with various WTM thresholds T . The four panels (a)–(d) indicate results for four networks,
which we generate so that their geometric edges have a tunable amount of stochasticity, which we implement
by creating geometric edges and then removing some percentage of them uniformly at random. Note that
an increased amount of stochasticity generally decreases the inference accuracy. See Supplementary Note 2
for further discussion.
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Supplementary Figure 8: Example networks with N = 20 nodes, a mean geometric degree of 〈d(G)
i 〉 =

4, and a mean non-geometric degree of 〈d(NG)
i 〉 = 2, for four families of noisy geometric networks on

a ring manifold: family (a), the noisy ring lattice (which we also discuss in the main manuscript), for
which nodes are evenly spaced and have constant geometric and non-geometric degrees; family (b), for
which the nodes are evenly spaced, have constant geometric degrees, and have heterogeneous non-geometric
degrees; family (c), for which we sample the node locations from the unit circle in R2 using a stochastic
process (see the text), and the nodes have heterogeneous geometric degree and constant non-geometric
degrees; and family (d), for which we randomly sample the node locations from the unit circle in R2, and
the nodes have heterogeneous geometric and non-geometric degrees. (As we discuss in the text, we do the
sampling uniformly at random.) The top row depicts example networks, where blue solid and red dashed
lines indicate geometric and non-geometric edges, respectively. The center row depicts the corresponding
adjacency matrices; blue pixels indicate geometric edges that align along the diagonal, whereas red pixels
indicate non-geometric edges that arise randomly. The bottom row depicts the corresponding distributions
for the geometric (red), non-geometric (blue), and total (grey) degrees. Note that the geometric degrees are
identical for families (a) and (b), with d(G)

i = 4, whereas they are heterogeneous with mean 〈d(G)
i 〉 = 4 for

families (c) and (d). For families (a) and (c), the non-geometric degrees are identical (d(NG)
i = 2), whereas

they are heterogeneous with mean 〈d(NG)
i 〉 = 2 for families (b) and (d). See Supplementary Note 3 for

further discussion.
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Supplementary Figure 9: Node-specific critical thresholds for the (T, α) parameter plane, where α denotes
the ratio of the mean non-geometric degree 〈d(NG)

i 〉 to the mean geometric degree 〈d(G)
i 〉. We plot Eqs. (3)

and (4) for nodes with |δ(G)
i | ≤ 2 and |δ(NG)

i | ≤ 2. We show these curves for the example degrees d(G)
i = 20

and d(NG)
i ∈ [0, 20]. Panels (a)–(d), respectively, depict the appropriate choices for δ(G)

i and δ(NG)
i for the

heterogeneities in network families (a)–(d). If the perturbations of the node degrees are both sufficiently
small compared to the nodes’ degrees, then we still obtain four qualitatively different contagion regimes for
all nodes. We again characterize these different regimes based on the presence versus absence of WFP and
ANC. However, because of the heterogeneity of the nodes’ degrees, transitions between these regimes in
the (T, α) parameter plane occur at different values for different nodes. That is, the boundaries between
the WTM contagion regimes have “thickened.” We note for any fixed |δ(G)|, |δ(NG)| > 0 that the perturbed
curves approach those that correspond to δ(G) = δ(NG) = 0 as the mean geometric and non-geometric
degrees increase. See Supplementary Note 3 for further discussion.

8



10
1

10
2

10
3

10
4

10
5

10
−3

10
−1

10
1

10
3

10
5

network size (N )

ru
n
ti
m
e
(δ

t)
in

s

Dependence on N

 

 

0 0.2 0.4
80

100

120

140

160

180

200

threshold (T )

ru
n
ti
m
e
(δ

t)
in

s

Dependence on T

0 100 200
0

100

200

300

400

500

degree of nodes (d)

ru
n
ti
m
e
(δ

t)
in

s

Dependence on d

 

 

α = 0

α = 0.2

α = 1/3

α = 1/2

α = 1

T = 0.05

T = 0.2

T = 0.35

T = 0.45

(a) (b) (c)

Supplementary Figure 10: Computational costs from experiments with Supplementary Algorithm 1. We
use the run time δt (in seconds) to measure the cost of constructing WTM maps with threshold T for
noisy ring lattices with N nodes. (a) We plot the observed values of δt (symbols) versus N for several
choices of T . Note that δt varies only slightly with respect to T , whereas the dependence on N is much
stronger. We show results for (d(G), d(NG)) = (10, 2); that is, α = 0.2 and d = 12. The solid lines
indicate the inferred scaling behaviors O(N ζ); as we illustrate in Supplementary Table 1, the scalings are
approximately quadratic O(N2). (b) We plot observed values of δt for a noisy ring lattice with N = 2000
nodes with various choices for the node degree d = d(G) + d(NG). We show results for various d for several
choices of the ratio α = d(NG)/d(NG). For all values of α, we observe that δt scales approximately linearly
with d. Networks with large values of α promote transmission via ANC, which saturates the network
in fewer time steps than that for smaller α, which subsequently leads to considerably smaller run times
(e.g., see the results for α ≥ 1/2 versus α < 1/2). (c) The solid curve indicates δt versus the WTM
threshold T ; the shaded region near the curve indicates the standard deviation over 10 realizations for a
given threshold T . When a contagion saturates the network, so that all nodes eventually adopt the contagion
(i.e., T ≤ T (WFP)

0 ≈ 0.4167), observe that δt tends to increase with T . By contrast, when a contagion does
not spread (i.e., T ' 0.4167), then δt is very small compared to the values when the contagion does spread.
We also note that the abrupt jumps in δt are well-aligned with the critical thresholds given by Eqs. (7)
and (13). The shaded region near the curve indicates the standard deviation (in units of time δt) over 10
realizations for a given threshold T . See Supplementary Note 5 for further discussion.
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Supplementary Figure 11: We study the topology of a point cloud U by examining the persistent homology
that is induced by a Vietoris-Rips filtration. This entails examining simplicial complexes that are created by
forming, for every set of points, a simplex (e.g., an edge, a triangle, a tetrahedron, etc.) whose diameter is at
most r. Increasing r from 0 and considering how a simplicial complex evolves yields a filtration. In panel
(a), we show a point cloud U = {u(i)} that consists of a noisy sample of the unit circle. In this example,
there are n = 10 points in J = 2 dimensions. In panels (b)–(d), we show U (r) for r ∈ {0.22, 0.6, 0.85}.
One can approximate the homology of U (r) using a Vietoris-Rips complex that is given by the nodes, edges,
and triangles that we show in the panels. The first 1-cycle in U (r) occurs at r = 0.22. It is a result of the
noisy sampling, and it is filled in almost immediately as r increases. In panel (c), we show the dominant
1-cycle (i.e., the 1-cycle that corresponds to the ring and persists across many spatial scales). It is born at
r = 0.5 and persists until r ≈ 0.81. Identifying a single persistent 1-cycle indicates that the point cloud lies
on a ring manifold. See Supplementary Note 7 for further discussion.
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Supplementary Figure 12: A β1 persistence diagram that summarizes the 1D features (i.e., 1-cycles) that are
revealed by the filtration U (r) in Supplementary Fig. 11. It contains two points, which correspond to the two
observed 1-cycles. One point (the red diamond) indicates a 1-cycle that persists over a long range of spatial
scales. Its lifetime l1 = rd(1)− rb(1) is thus large. The second point (the yellow square) indicates another
1-cycle. Its small lifetime l2 = rd(2)− rb(2) indicates that it dies a short time after it is born, so it does not
persist over many spatial scales. The large difference ∆ = l1 − l2 in the top two lifetimes indicates that the
point cloud contains a single dominant 1-cycle and offers strong evidence that the point cloud lies on a ring
manifold. See Supplementary Note 7 for further discussion.
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Supplementary Figure 13: We show a grid of β1 persistence diagrams for point clouds that result from
the application of WTM maps with various values of the threshold T to noisy ring lattices for various
values of the ratio α = d(NG)/d(G) of non-geometric edges to geometric edges. We show results for
T = 0, 0.05, . . . , 0.5 for networks with N = 200 nodes each with d(G) = 20 geometric edges and d(NG) ∈
{0, 2, . . . , 20} non-geometric edges. For a given point cloud, we apply a Vietoris-Rips filtration to yield
the β1 persistence diagram that summarizes the multiscale 1D features (i.e., 1-cycles or loops). In each
persistence diagram, we use a red diamond to mark the most persistent 1-cycle, a yellow square to mark the
second most persistent 1-cycle, and white circles to indicate the remaining 1-cycles that we find. Note that
the lifetime li of a given point i corresponds to the height above the diagonal (the cyan lines). We shade
the background color of each persistence diagram according to the difference ∆ = l1 − l2 between the two
largest lifetimes. Note that ∆ ∈ [0, 1] due to normalization. (See Sec. III F of the main manuscript and
Supplementary Note 7.) The magnitude of ∆ provides strong evidence regarding whether or not a given
point cloud arises from a 1D ring topology. In the main manuscript, we thus summarize our topological
analysis with the parameter ∆. [For example, see Fig. 6(c) of the main manuscript.] Note that we do not
do any calculations (as indicated by the empty squares) for WTM maps in which any node has an activation
time of infinity [i.e., when there is at least one pair (i, j) such that x(i)

j = ∞]. See Supplementary Note 7
for further discussion.
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Supplementary Figure 14: We study the geometry of symmetric WTM maps by calculating a Pearson cor-
relation coefficient ρ to compare node-to-node distances for the WTM map {z(i)} ∈ RN to those for the
node locations {w(i)} ∈ R2 on the ring manifold. (See Sec. III D of the main manuscript.) We show these
values of ρ in the (T, α) parameter plane, where α is the ratio of the number N〈d(NG)

i 〉/2 of non-geometric
edges to the number N〈d(G)

i 〉/2 of geometric edges. Panels (a)–(d), respectively, illustrate results for net-
work families (a)–(d). For each panel, we construct a noisy ring network with N = 1000 nodes and mean
geometric degree 〈dGi 〉 = 40, and we vary the mean non-geometric degree 〈d(NG)

i 〉 ∈ [0, 40] to study the
parameter range α ∈ [0, 1]. The solid and dashed curves, respectively, give the theoretical approximations
from Eqs. (3) and (4) with δ(G)

i = δ
(NG)
i = 0. See Supplementary Note 8 for further discussion.
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Supplementary Figure 15: We study the geometry of symmetric WTM maps by calculating a Pearson cor-
relation coefficient ρ as a function of WTM threshold T to compare node-to-node distances for the WTM
map {z(i)} ∈ RN to those for the node locations {w(i)} ∈ R2 on a ring manifold. Panels (a)–(d), re-
spectively, illustrate results for network families (a)–(d), and they amount to vertical cross sections of the
corresponding contour plots in Supplementary Fig. 14 (i.e., for a constant value of α). In each panel, we
study WTM maps on a noisy ring network with N = 1000 nodes with α = 1/3 for several choices of
mean node degrees: (〈d(G)

i 〉, 〈d
(NG)
i 〉) = (6, 2) (red triangles), (〈d(G)

i 〉, 〈d
(NG)
i 〉) = (12, 4) (blue squares),

and (〈d(G)
i 〉, 〈d

(NG)
i 〉) = (24, 8) (magenta × symbols). We also plot ρ for a 2D Laplacian eigenmap [27]

(dashed lines) and for the Isomap algorithm [23] (dotted lines). In all panels and for all mapping algorithms,
increasing mean node degree tends to increase ρ, so the ability of the maps to translate the underlying ring
manifold’s geometry to a point cloud improves with increasing mean node degree for these experiments.
Additionally, note that the curves for the largest mean degree (magenta × symbols) remain more consistent
across the panels. See Supplementary Note 8 for further discussion.

13



0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N = 200

N = 500

N = 1000

N = 1500

N = 2000

threshold (T )

c
o
rr

e
la

ti
o
n

c
o
e
ff

ic
ie

n
t

(ρ
)

Ring with constant d
(G)
i and constant d

(NG)
i

 

 

N = 200

N = 500

N = 1000

N = 1500

N = 2000

(a)

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 200

N = 500

N = 1000
N = 1500

N = 2000

threshold (T )

c
o
rr

e
la

ti
o
n

c
o
e
ff

ic
ie

n
t

(ρ
)

Ring with constant d
(G)
i and varying d

(NG)
i

(b)

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N = 200

N = 500

N = 1000

N = 1500
N = 2000

threshold (T )

c
o
rr

e
la

ti
o
n

c
o
e
ff

ic
ie

n
t

(ρ
)

Ring with varying d
(G)
i and constant d

(NG)
i

(c)

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 200

N = 500

N = 1000

N = 1500

N = 2000

threshold (T )

c
o
rr

e
la

ti
o
n

c
o
e
ff

ic
ie

n
t

(ρ
)

Ring with varying d
(G)
i and varying d

(NG)
i(d)

Supplementary Figure 16: We study the geometry of symmetric WTM maps by calculating a Pearson cor-
relation coefficient ρ as a function of WTM threshold T to compare node-to-node distances for the WTM
map {z(i)} ∈ RN to those for the node locations {w(i)} ∈ R2 on a ring manifold. Panels (a)–(d), re-
spectively, illustrate results for network families (a)–(d), and they amount to vertical cross sections of the
corresponding contour plots in Supplementary Fig. 14 (i.e., for a constant value of α), although we show
results for several choices of network size N . In each panel, we study WTM maps on a noisy ring network
with 〈d(G)

i 〉 = 24 and 〈d(NG)
i 〉 = 8 (i.e., α = 1/3), and we show curves of ρ versus T for networks of sizes

N = {200, 500, 1000, 1500, 2000}. We also plot ρ for a 2D Laplacian eigenmap [27] (dashed lines) and
for the Isomap algorithm [23] (dotted lines). In all panels and for all mapping algorithms, increasing the
network size N tends to decrease ρ, except for WTM maps that are characterized by WFP and little (or no)
ANC. See Supplementary Note 8 for further discussion.
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Supplementary Figure 17: We examine the dimensionality of point clouds that result from symmet-
ric WTM maps that we apply to networks on a ring manifold by studying their embedding dimension
P = min{p|Rp < 0.05}, where Rp denotes the residual variance for the projection onto Rp. (See Sec. III E
of the main manuscript.) We plot P in the (T, α) parameter plane for networks with N = 200 nodes,
mean geometric degree 〈d(G)

i 〉 = 20, and various values of the non-geometric degree 〈d(NG)
i 〉. As before,

panels (a)–(d), respectively, illustrate the results for network families (a)–(d). We use solid and dashed
curves, respectively, to indicate the theoretical critical threshold values given by Eqs. (3) and (4) with
δ

(G)
i = δ

(NG)
i = 0. In all panels, we see that WTM maps for the contagion regime that we predict to

be characterized by WFP but no ANC yield point clouds with an embedding dimension of P ≈ 2, which
agrees with the fact that a ring manifold is embedded in R2. This low-dimensional structure persists into
the regime that we predict has both WFP and ANC, although the embedding dimension P increases as
one moves away from the regime that exhibits WFP and no ANC. See Supplementary Note 8 for further
discussion.
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Supplementary Figure 18: We study the dimensionality of point clouds that result from symmetric WTM
maps by showing their embedding dimension P as a function of T for networks withN = 200 and α = 1/3.
One can construe these curves of P versus T as vertical cross sections for the contour plots in Supplementary
Fig. 17; we show results for several choices of mean node degrees: (〈d(G)

i 〉, 〈d
(NG)
i 〉) = (6, 2) (red trian-

gles), (〈d(G)
i 〉, 〈d

(NG)
i 〉) = (12, 4) (blue squares), and (〈d(G)

i 〉, 〈d
(NG)
i 〉) = (18, 6) (magenta × symbols).

As before, panels (a)–(d) correspond to network families (a)–(d). In all panels, we identify the correct di-
mension (i.e., P = 2) for the regime that we expect WTM contagion to exhibit WFP without ANC [i.e.,
T ∈ (1/4, 3/8)] if the mean node degrees are sufficiently large (see magenta × symbols). The curves for
the other mean degrees also consistently depict small values of P for a similar range of threshold T . We
also plot P versus T for the point clouds that we obtain by mapping the nodes based on shortest paths, as in
Isomap [23] (horizontal dotted lines). For these experiments, P ≥ 10 from Isomap in all panels, although
it appears to decrease systematically with increasing mean node degrees. See Supplementary Note 8 for
further discussion.
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Supplementary Figure 19: We study the topology of symmetric WTM maps by calculating the difference
∆ = l1 − l2 between the largest lifetimes for 1D features (i.e., for 1-cycles); see Sec. III F of the main
manuscript. We normalize the lifetime difference so that ∆ ∈ [0, 1]. Panels (a)–(d), respectively, show
results for network families (a)–(d). Each network has N = 200 nodes, a mean geometric degree of
〈d(G)
i 〉 = 20, and various mean non-geometric degrees 〈d(NG)

i 〉 ∈ [0, 20]. The solid and dashed curves,
respectively, give the approximate bifurcation curves from Eqs. (3) and (4) with δ(G)

i = δ
(NG)
i = 0. Panel

(a) is similar to Fig. 6(c) of the main manuscript. In all panels, we observe evidence that the point clouds
that result from WTM maps that correspond to contagions with WFP but no ANC lie on a ring manifold.
However, this evidence becomes weaker (as indicated by smaller values of ∆) as the networks become more
heterogeneous [e.g., compare panel (d) to panel (a)]. See Supplementary Note 8 for further discussion.
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Supplementary Figure 20: We study the topology of symmetric WTM maps by plotting ∆ as a function of T
for N = 200 and α = 1/3. As before, panels (a)–(d) correspond, respectively, to network families (a)–(d).
One can construe the curves of ∆ versus T as vertical cross sections of the contour plots in Supplementary
Fig. 19; we consider several different choices of mean node degrees: (〈d(G)

i 〉, 〈d
(NG)
i 〉) = (6, 2) (red tri-

angles), (〈d(G)
i 〉, 〈d

(NG)
i 〉) = (12, 4) (blue squares), and (〈d(G)

i 〉, 〈d
(NG)
i 〉) = (24, 8) (magenta × symbols).

Note that introducing heterogeneity tends to decrease the ability to identify the ring topology in the point
cloud with ∆. For example, note that the values of ∆ in panels (b) and (c) are smaller than those in panel
(a), and the values of ∆ in panel (d) are smaller than those in panels (b) and (c). Additionally, in panel (c)
and panel (d), we see that when the mean degrees are too small (e.g., see red triangles), then ∆ ≈ 0 for all
thresholds T . Thus, we do not find evidence of the ring topology for these point clouds. See Supplementary
Note 8 for further discussion.
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Supplementary Figure 21: We study the (left column) geometry, (center column) dimensionality, and (right
column) topology for symmetric WTM maps applied to noisy geometric networks with node locations
{w(i)} that we sample randomly from a ring manifold, where the parameter s controls the amount of het-
erogeneity that we introduce into the spacing of the nodes along the ring. (Recall that we used s = 1/2 to
define network families (c) and (d).) We show results for various values of the threshold T for networks with
N = 200 nodes, mean geometric degree 〈d(G)

i 〉 = 24, and mean non-geometric degree 〈d(NG)
i 〉 = 8. We

consider both non-geometric degrees that are (top row) constant across the nodes, as in network family (c)
and (bottom row) heterogeneous, as in family (d). Note that increasing heterogeneity in node spacing on the
manifold, which in turn increases the heterogeneity in the geometric degrees {d(G)

i } (although their mean
is constant), tends to lead to a decrease in the ability of the symmetric WTM maps to recover the properties
of the underlying manifold in the resulting point cloud. One sees this mostly clearly when examining the
geometry and topology, as there are significant drops in ρ and ∆ as s increases. The dotted lines in panels
(a), (b),(d), and (e) indicate the values that we observe for the mapping of nodes based on shortest paths, as
in the Isomap algorithm. The dashed lines in panels (a) and (d) indicate values for a 2D Laplacian eigenmap.
See Supplementary Note 8 for further discussion.
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Inferred run time scaling: δt = 10ΓN ζ

threshold T exponent ζ prefactor Γ

0.05 2.1675 −6.5207
0.2 2.1407 −6.3416
0.35 2.1440 −6.2792
0.45 2.2195 −6.8987

Supplementary Table 1: For various choices of threshold T , we infer the scaling behavior that relates the
computational cost (i.e., the run time δt) to the network size N . For our inference procedure, we assume
a power-law relationship δt = 10ΓN ζ , and we fit the constants Γ and ζ using a least-squares fit. In this
fit, the horizontal coordinates are log(N), and the vertical coordinates are log(δt) (We neglect the results
for N = 32 in our fitting procedure.) Note that the exponents are approximately quadratic: ζ ≈ 2. See
Supplementary Note 5 for further discussion.
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Supplementary Note 1 Complex Contagions on a London Transit Network

The primary goal of our work has been to develop the notion of a WTM map and to demonstrate the
utility of using such maps for examining WTM contagions on noisy geometric networks. Specifically, we
conducted a detailed examination that contrasts wavefront propagation (WFP) along geometric edges versus
the appearance of new contagion clusters (ANC) due to the presence of non-geometric, “noisy” edges. We
have focused on synthetic networks—and, in particular, on noisy geometric networks on a ring manifold—
and we conducted a bifurcation analysis to guide our study. However, one can use WTM maps on far more
general types of networks such as noisy geometric networks that are constructed from empirical data. (More
generally, one can also use contagion dynamics that one constructs from other types of spreading processes.)
This allows two important applications to real systems: (1) one can study the extent to which a contagion
on a network exhibits spatial phenomena such as WFP versus non-spatial phenomena such as ANC; and (2)
one can infer (potentially) unknown low-dimensional structure in a network. In this section, we highlight
these ideas for an empirical network that describes transit infrastructure in a part of London.

Description of the London Transit Network

As we illustrate in Supplementary Fig. 1(a), we study WTM contagions on a London transit network
that includes both roads (which we interpret as short-range, geometric edges) and metro lines (which we
interpret as long-range, non-geometric edges). The nodes V = {1, . . . , N} (where N = 2217) in the
network correspond to intersections, and we obtain the edges from Refs. [1] (road data) and [2] (metro
data). We construct the merged network (which we have posted, as we discussed in Sec. III A of the main
text), by utilizing the latitudinal and the longitudinal coordinates to place the locations of metro stations at
the nearest intersection of roads. Thus, the nodes V consist of two sets: (1) nodes P ⊂ V that correspond to
both metro stations and intersections and thus have both geometric and non-geometric edges; and (2) nodes
V \ P that correspond to intersections and have only geometric edges (i.e., roads). Additionally, because
the network of metro lines in Ref. [2] covers a much larger spatial area than the road network in Ref. [1],
we include only metro stations in the convex hull of the road network. (There are |P| = 11 such stations.)
In Supplementary Fig. 1(b), we show histograms of the frequencies of the nodes’ total degrees {di}, where
di = d

(G)
i + d

(NG)
i and the mean is 〈di〉 ≈ 2.59. In Supplementary Fig. 1(c), we show histograms of the

frequencies of the edge lengths {χij}, where χij = m(i, j) is the Euclidean distance between locations
w(i) and w(j) [see Eq. (16)] for each edge (i, j) ∈ E . In practice, we give node i an intrinsic location of
w(i) = [w

(i)
1 , w

(i)
2 ]T , where w(i)

1 and w(i)
2 denote, respectively, the intersection’s latitudinal and longitudinal

coordinate. We normalize each set of coordinates to have unit variance [see Supplementary Fig. 1(a)]. In
general, such a projection from a patch on the surface of a sphere (e.g., the Earth’s surface) to a 2D plane
might not be justified. However, the effect of this projection to a plane is negligible in this case due to the
very small size of the patch.

Before analyzing WTM contagions and WTM maps for the London transit network, let’s consider the
following experiment. In Supplementary Fig. 2, we illustrate that the extent to which a WTM contagion
adheres to the network’s underlying manifold–the Earth’s surface—can be very sensitive to a variety of
factors, including the contagion seed and the WTM threshold T . We plot the London transit network and
color each node i ∈ V according to its activation time x(i)

j for a single contagion that we initialize with
cluster seeding centered at a node j, which we take to be near the Bond Street Station. In panels (a) and (b),
we show {x(i)

j } for nodes i ∈ V with thresholds of T = 0.02 and T = 0.18, respectively. Note for T = 0.02
that the contagion spreads via both roads and metro lines, so the contagion includes ANC. By contrast,
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for T = 0.18, the contagion does not spread across the metro lines; rather, it spreads via WFP along the
roads. As we shall see, this extreme sensitivity to the threshold T for the behavior of WTM contagions is
not typical for all contagion seeds. Nevertheless, we find that such rare cases can have a large impact on the
network’s WTM maps.

Numerical Results for the Geometry of WTM Maps

In this section, we study the geometry of WTM contagions on the London transit network that we studied
in Sec. I F of the main text by examining the geometry of WTM maps. As before, we study geometry through
the Pearson correlation coefficient ρ given by Eq. (18). We do not study the dimensionality and topology
because of the large computational time that it would entail.

To guide our investigation, we first study the equilibrium sizes of contagions (i.e., the number of infected
nodes after the contagion stops spreading [3]). Our motivation is as follows. Recall that for WTM maps
to be well-defined, all activation times {x(i)

j } must be finite. In our numerical experiments for synthetic
networks, we therefore focused on this situation (e.g., see the main text and Supplementary Note 8), and
we chose to handle activation times that were infinite by setting them to be 2N . Even with the restriction
to finite activation times, we found a rich set of diverse qualitative dynamics. However, for the London
transit network, the most interesting WTM maps occur for threshold values T that involve activation times
of infinity. For this example, we must account for activation times of infinity more carefully to be able to
study WTM contagions with WTM maps in such situations.

We thus begin by studying the equilibrium sizes of WTM contagions that we initialize with cluster
seeding centered at each node i ∈ V . Specifically, for a given threshold T , we study the size C(target)

i of
each node i’s “target node set” (which we define as the set of nodes {j} such that x(j)

i is finite) and the size
C

(source)
i of its “source node set” (which we define as the set of nodes {j} such that x(i)

j is finite). In other
words, node j is in the target node set for node i if a contagion that is initialized at node i eventually spreads
to node j, and node j is in the source node set for node i if a contagion that is handle at node j eventually
spreads to node i.

In Supplementary Fig. 3(a), we show histograms of the frequencies of (top panel) C(target)
i and (bottom

panel) C(source)
i for the network nodes for WTM contagions with threshold values of T ∈ {0, 0.1, 0.2, 0.3}

that we initialize with cluster seeding. As expected, the WTM contagions infect almost all (or all) of the
nodes when T is small, whereas they spread to just a small number of nodes (or even 0 nodes) when
T is sufficiently large. For example, observe for most nodes that C(target)

i and C(source)
i are approximately

N = 2217 for T ≤ 0.2, whereas they are very small for most nodes for T = 0.3. Additionally, the target and
source node sets seem to exhibit dichotomous behavior in our experiments: they are often either very large
(i.e., equal to or only a bit smaller thanN ) or very small (i.e., approximately 1). We observe this feature both
for the values of T that we depict as well as for other values of T . (We examined T ∈ {0.01, 0.02, . . . , 0.5}.)
Motivated by this observation, we assign the nodes to four classes for a given T : (1) nodes i with large
C

(target)
i and large C(source)

i that can initiate large contagions and also adopt most contagions; (2) nodes i
with smallC(target)

i and largeC(source)
i that do not initialize large contagions but adopt almost all contagions;

(3) nodes i with large C(target)
i and small C(source)

i that initialize large contagions but almost never adopt
contagions; and (4) nodes i with small C(target)

i and small C(source)
i that neither initialize large contagions

nor adopt many contagions. In this classification, we arbitrarily take N/2 to be the boundary between
“large” and “small” for both types of division.
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In Supplementary Fig. 3(b), we examine the fraction of nodes in each class as a function of T . For
sufficiently small T (e.g., T < 0.1), almost all network nodes are in class (1) and almost all WTM contagions
saturate the entire network. However, for large T (e.g., T > 0.35), all nodes are in class (4) because no
contagions spread if the threshold is sufficiently large. The transitions between the different classes are
interesting. Specifically, observe for the approximate range T ∈ (0.1, 0.2) that a small fraction of nodes
moves from class (1) to class (2). Moreover, for the approximate range T ∈ (0.2, 0.25), class (2) and class
(3) each contain only a small fraction of the nodes. Class (4) remains empty until T ≥ 0.25, and it then
grows as we increase T until all nodes are in class (4) for T ' 0.35.

In Supplementary Fig. 3(c), we plot the Pearson correlation coefficient ρ from Eq. (18) to compare the
geometry of the nodes’ original locations {w(i)} to point clouds that result from WTM maps. We show
results for the regular, reflected, and symmetric versions of the WTM map. (See Sec. I C of the main
text.) We consider two different methods for handling the activation times of infinity [which necessarily
arise whenever nodes are in classes (2)–(4)]. We either set the activation times to 2N and investigate the
complete matrix of activation times, or we consider only finite activation times by using only the associated
submatrix of activation times (after removing appropriate rows and columns that contain activation times of
infinity). To illustrate our analysis, consider the latter case for the map Vsto{x(i)}. We project each point
x(i) ∈ RN onto RJ with J ≤ N by ignoring the dimensions that correspond to WTM contagions that are
initialized with cluster seeding at nodes in class (2). This corresponds to considering the point cloud {x̂(i)},
where x̂(i) = Ωx(i) and the J ×N projection matrix Ω has entries Ωjkj = 1, where j ∈ {1, . . . , J}, the set
{k1, k2, . . . , kJ} indicates the nodes that are not in class (2), and all other entries Ωjk are equal to 0. For the
reflected WTM map, we consider the map {i}sto{y(i)} only for nodes i that are not in class (2). Finally, for
the symmetric WTM map, we consider the map {i}sto{ẑ(i)}, where ẑ(i) = Ωz(i), and we only map nodes
i ∈ V that are not in class (2).

Returning our attention to Supplementary Fig. 3(c), note for the reflected and symmetric WTM maps
that we calculate the Pearson correlation coefficients ρ only for the mapped points. As expected, ρ for the
WTM maps depends significantly on T , and one can observe that shifts in ρ are well-aligned with changes
in C(target)

i and C(source)
i . The approximate range of thresholds T ∈ (0.1, 0.2) is particularly interesting, as

we observe that values of ρ for WTM maps increase when we neglect the activation times that are infinite.
These larger ρ values, in turn, indicate an improved agreement between the nodes’ original locations and
the geometry of the point clouds that result from the WTM maps. By contrast, for WTM maps in which we
handle activation times of infinity by setting them to 2N , we find that the values of ρ are smaller for T ' 0.1
than they are for T / 0.1. That is, when we handle the activation times of infinity in this way, we find that
the WTM map becomes significantly distorted away from the known spatial embedding on Earth’s surface.

We now attempt to gain some insight into which nodes we assign to classes (1)–(4). In Supplementary
Fig. 4, we investigate the importance of the nodes’ metro proximities {ψi}, where ψi denotes the length of
a shortest path on the London transit network from node i to a metro station (i.e., ψi = 0 for nodes that are
metro stations, ψi = 1 for their neighbors, and so on). We consider nodes that are at least 20 edges from any
metro station to be “isolated.” In the top row, for a given value of the metro proximity ψi, we plot the fraction
of nodes at that proximity in each of the four classes. Panels (a), (b), and (c), respectively, give results for
threshold values of T = 0.16, T = 0.18, and T = 0.2, which are characteristic of the range of T in which
we observe large values of ρ for the WTM maps [see Supplementary Fig. 3(c)]. Note for T = 0.16 that
almost all nodes are in class (1), but several are in class (2). Interestingly, all nodes in class (2) are located
ψi = 2 edges from metro stations. It follows that a WTM contagion tends not to spread very far when we
initialize it with cluster seeding centered at such nodes. For T = 0.18, we again find that some nodes are
in class (2), whereas the majority of nodes are in class (1). However, the nodes in class (2) are either 2–3
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edges from a metro station or they are isolated nodes, which are distant from all other nodes (including, by
definition, metro stations). For T = 0.2, we find that nodes are in classes (1)–(3). As before, nodes in class
(2) are either 2–3 edges from a metro station or are isolated. The nodes in class (3)—which are the class of
nodes that are typically not reached by WTM contagions initialized with cluster seeding—are all relatively
isolated, so one can construe them as peripheral nodes in the network [2]. Interestingly, our experimental
results suggest that the inability to reach a node [i.e., nodes in classes (3) and (4)] is related to a global
network property (i.e., whether it is “isolated”), whereas the inability to seed a large contagion [i.e., nodes
in classes (2) and (4)] depends on both local and global network properties.

In the bottom row of Supplementary Fig. 4, we show properties of the metro proximities {ψi} for the
London transit network. In panel (d), we show a histogram of the frequencies of nodes at a given metro
proximity ψi, and we note that most nodes are 5–20 edges from a metro station. In panel (e), we give a
scatter plot of the nodes’ total degrees {di} versus their metro proximities {ψi}. Note that the metro stations
(for which ψi = 0) have large degrees relative to the other nodes: their mean degree is 5, whereas the mean
degree of all nodes is approximately 2.59. In panel (f), we show that isolated nodes, which by definition are
distant from metro stations, also tend to be distant to other nodes in the London transit network. Specifically,
for each node i, we plot the mean length of the shortest path from it to the remaining nodes j ∈ V \ {i}
versus its metro proximity ψi. Nodes with large values of ψi are also more distant (on average) to the other
nodes. It is therefore appropriate to use the term “isolated” to describe these nodes.

Combining the results from Supplementary Figs. 3 and 4, we find when we ignore the activation times of
infinity that WTM maps have larger values of ρ when T is in the approximate interval (0.1, 0.2) than when
T takes other values. The activation times of infinity result from the existence of a few nodes i such that
WTM contagions that we initialize with cluster seeding centered at those nodes tend not to spread very far.
These nodes tend to be in class (2), and they are often either 2–3 edges from metro stations or are isolated
nodes. Finally, when T is sufficiently large so that nodes belong to class (3) (e.g., as occurs for T > 0.2),
then the values of ρ are comparatively very small. Recall that nodes in class (3), which almost never adopt
contagions, are relatively isolated nodes in the network.

“Egocentric” Analysis of Geometry

Thus far, we have studied geometry through the Pearson correlation coefficient ρ given by Eq. (18). As
we discussed in Sec. III D of the main text (and also see Supplementary Note 7), ρ describes the correlation
between node-to-node distances {m(i, j)} for the intrinsic locations {w(i)} [see Eq. (16)] and node-to-node
distances {m(WTM)(i, j)} for the point clouds {x(i)}, {y(i)}, or {z(i)} that result from a WTM map [see
Eq. (17)]. We calculate the correlation ρ using the N(N − 1)/2 unordered pairs of nodes (i, j) ∈ V × V
(where i 6= j), and one can interpret it as comparing the geometry of these two point clouds at a “network
level.” To gain further insight, we now compare the geometry of the two point clouds at a “node level”
by computing “egocentric” correlation coefficients that consider only node-to-node distances that involve a
particular node i. Specifically, we study a set of Pearson correlation coefficients {ρ̂i(T )} for a given i ∈ V .

We introduce the egocentric correlation coefficient ρ̂i(T ) for the regular WTM map Vsto{x(i)}, and we
note that one can apply it to any version of a WTM map. For each node i, we study the Pearson correlation
coefficient ρ̂i(T ) that relates node-to-node distances {m(i, j)} from node i to all nodes j ∈ V with respect
to the intrinsic locations {w(i)} [see Eq. (16)] to the node-to-node distances {m(WTM)(i, j)} from node i
to all nodes {j} ∈ V for a point cloud {x(i)} that results from a WTM map [see Eq. (17)]. Specifically, we
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compute

ρ̂i(T ) =

∑N
j=1

[
m(i, j)−m(i, j)

][
m(WTM)(i, j)−m(WTM)(i, j)

]
√∑N

j=1

[
m(i, j)−m(i, j)

]2√∑N
j=1

[
m(WTM)(i, j)−m(WTM)(i, j)

]2 , (1)

where the bar above a variable indicates that we are taking its mean for all nodes j ∈ V . Note the strong
similarity between Eq. (1) and Eq. (18); the only difference is that the summations in Eq. (1) are over j
rather than over both j and i.

In Supplementary Fig. 5, we study egocentric correlation coefficients {ρ̂i(T )} for WTM maps on the
London transit network for two values of the threshold T . In the top panels, we show results for the map
Vsto{x(i)}; in the bottom panels, we show results for the map Vsto{y(i)}. For both maps, we handle the
activation times of infinity by neglecting them. In the left column, we plot egocentric Pearson correlation
coefficients {ρ̂i(T )} versus the metro proximities {ψi} for the threshold values T ∈ {0.1, 0.18}. We show
values only for nodes that are not in class (2). Note that the larger value of T tends to have larger values
of ρ̂i(T ) in both panels (a) and (d). We highlight this feature further in the center column by plotting
[ρ̂i(0.18) − ρ̂i(0.1)] versus ψi. The solid and dashed curves, respectively, indicate the mean values for
T = 0.1 and T = 0.18 for a given ψi. In the right column of Supplementary Fig. 5, we plot histograms of
the frequencies of observed values [ρ̂i(0.18) − ρ̂i(0.1)], and we note that they appear to have heavy tails:
[ρ̂i(0.18)− ρ̂i(0.1)] tends to be small and positive for most nodes j ∈ V , but there are some nodes for which
[ρ̂i(0.18)− ρ̂i(0.1)] is rather large.

Summary of Experiments with the London Transit Network

We studied WTM contagions on a London transit network in which nodes are intersections that are
connected either by roads (which we interpreted as geometric edges) or by metro lines (which we interpreted
as non-geometric edges). Similar to our study of WTM contagions on synthetic networks, we found that
WFP and ANC arise for WTM contagions on this empirical network, and the type of epidemic propagation
depends significantly on the contagion threshold T . We studied these WFP and ANC by analyzing the
geometry of WTM maps, and we observed that the geometry of point clouds that result from WTM maps
agree better with the geometry of the nodes’ intrinsic locations on Earth’s surface for values of T in the
approximate range (0.1, 0.2) than for other values of T . To obtain this result, we examined situations with
activation times of infinity in two different ways: (1) setting those times to be 2N , as in the synthetic
examples in the main text; and (2) ignoring these values in our subsequent calculations. We found the latter
approach to be more useful for the London transit network. Our investigation led us to assign nodes into
four classes based on their ability to initiate large contagions and consistently adopt contagions, and our
calculations yielded an interesting connection between the proximity of nodes to metro stations and their
behavior with respect to WTM contagions.
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Supplementary Note 2 Denoising Networks with WTM Maps

The embedding of a network into a metric space has numerous applications, ranging from the control and
optimization of dynamics to network “denoising” (i.e., the identification of spurious and missing edges). In
this section, we highlight one application of WTM maps: the identification of noisy edges.

Our methodology for denoising proceeds as follows. Given the WTM map for a network, we determine
the length m(WTM)(i, j) [given by Eq. (17) in Supplementary Note 7] in the embedding space of each edge
(i, j) ∈ E . Because we expect non-geometric edges to have larger lengths than geometric edges, examining
the set of edge lengths {m(WTM)(i, j)}(i,j)∈E allows one to infer edge type. For example, by studying the
distribution of edge lengths, one can choose a partitioning threshold to partition the edges into classes (i.e.,
geometric and non-geometric) by comparing their lengths to the partitioning threshold. There exist various
heuristic approaches for selecting such a partitioning threshold, so we will consider all possible partitioning
thresholds in our experiments. To do this, we construct receiver operating characteristic (ROC) curves that
examine the fraction of false positives and false negatives as the partitioning threshold is increased from the
smallest edge length to the largest edge length.

To gauge the performance of this approach for denoising networks, we compare our results to a popular
approach based on subgraph statistics. For each edge (i, j) ∈ E , we compute the Jaccard index |Ni ∩
Nj |/|Ni ∪ Nj | to measure the overlap of the set Ni , {k ∈ V : Aik 6= 0} of nodes that neighbor node
i with the set Nj , {k ∈ V : Ajk 6= 0} of nodes that neighbor node j [4]. Similar to our approach of
comparing the edge lengths to some partitioning threshold, one can compare the edges’ Jaccard indices to a
partitioning threshold and then vary the partitioning threshold to yield a ROC curve. This allows for a direct
comparison between the two approaches.

Note that the approach of Ref. [4] is “local”—i.e., each edge is classified based on the properties of the
subgraph that contains nodes and edges that are adjacent to that edge—whereas denoising based on WTM
maps is a “global” approach that uses an entire network for the denoising procedure.

Denoising the London Transit Network

In our first experiment, we examine the utility of WTM maps for identifying the metropolitan lines in
the London transit system that we study in Sec. I F of the main text. Because this noisy geometric network
results from the merging of two network layers—a road network and the metropolitan system—our aim
in this context is to disaggregate the two network layers based on the assumption that metropolitan lines
connect nodes that are farther apart than those that are connected by roads. In this experiment, we purposely
do not utilize the known node locations, as we are interested in the ability of WTM maps to identify the
metro lines based on the network structure alone.

In Supplementary Fig. 6(a), we plot ROC curves for symmetric WTM maps that we construct with
various choices of the WTM threshold T . For these maps, we set the activation times of infinity to 2N .
Perfect inference of the noisy edges would correspond to a ROC curve in which the true-positive rate is
always 1 for any nonzero false-positive rate. We also note that the ROC curves for the WTM depend
strongly on T . For T = 0.1, the curve shows poor performance, similar to what one obtains using a Jaccard-
index approach [4]. For larger T (i.e., T ' 0.1), denoising based on WTM maps outperforms this other
approach. Recall for the London transit network that when T surpasses 0.1, we observe an increase in WFP
[which is indicated by the larger values of ρ in Supplementary Fig. 3(c) when T surpasses 0.1]. The fact the
ROC curves are still very high in Supplementary Fig. 6(a) when T > 0.2 is somewhat unexpected, because
we previously observed that there is disagreement between the geometry of WTM maps and the geometry
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of the actual London transit network for this range [see the drop in ρ values that occurs in Supplementary
Fig. 3(c) as T surpasses 0.2]. Interestingly, these results imply that the length of edges in the WTM map can
still be very predictive for classifying edges as geometric or non-geometric even when the geometry of the
WTM map disagrees with that of the actual network.

Here, we perform additional experiments to explore network properties that can help to shed light on
these results.

Denoising Noisy Two-Dimensional Square Lattices

We now do an experiment to highlight that local algorithms based on an assumption about the local net-
work structure—e.g., a prevalence of 3-cycles (i.e., triangles) [4]—can be very inaccurate if that assumption
is invalid. In particular, modern road networks are known to exhibit a prevalence of subgraphs other than
3-cycles [5] (e.g., city blocks can give rise to 4-cycles), and we therefore expect the lack of 3-cycles to be a
significant factor that influences the results in Supplementary Fig. 6(a).

In our experiment, we examine the inference of noisy edges for a synthetic noisy geometric network with
N = 402 nodes that are embedded as a 2D lattice with periodic boundary conditions. To construct the “sub-
strate” geometric network, we place d(G) = 4 geometric edges for each node to connect nearest-neighbor
nodes both horizontally and vertically. We then add 402 non-geometric (i.e., “noisy” edges) uniformly at
random to pairs of nodes that are not already connected by a geometric edge. Therefore, each node has
d(NG) = 2 non-geometric edges on average. We note that this procedure—which adds non-geometric edges
to a network that already has geometric edges—is identical to the procedure that we used for families (b)
and (d) of the noisy ring networks in Supplementary Note 3.

In Supplementary Fig. 6(b), we plot ROC curves for the inference of noisy edges via symmetric WTM
maps using various values of the WTM threshold T . As before, we set the activation times of infinity to
2N . Note that the best ROC curve corresponds to T = 0.3, and that the ROC curves for WTM maps with
T ∈ {0.2, 0.3, 0., 4} are much better than that for the Jaccard-index approach.

To more precisely compare the different ROC curves for different T , in Supplementary Fig. 6(c), we
plot the area under the ROC curve (AUC) as a function of T (dashed curve). We use crosses to indicate the
values of T that we used to generate Supplementary Fig. 6(b). To gauge the performance of inference using
WTM maps, we note that the best attainable AUC is a value of 1 (which is almost reached for the WTM
map with T = 0.3). Using the horizontal red line, we show the AUC for the Jaccard-index approach. Its
value is approximately 0.5, indicating that it is comparable to random guessing in this scenario.

Denoising Noisy Ring Lattices with Removal of Geometric Edges

In our final experiment, we examine the effect of of stochasticity on the inference of noisy edges. In
particular, we explore the inference of noisy geometric networks in which we have removed some percentage
of the geometric edges. We consider family (a) (see Supplementary Note 3) of the noisy ring lattices, in
which nodes are evenly placed on the unit circle in R2. We construct networks with N = 200 nodes,
where each node has d(NG) = 1 non-geometric edge and we consider various choices of geometric degree
d(G). We then remove some percentage of the Nd(G)/2 geometric edges—chosen uniformly at random—
to include stochasticity. A nice feature of this experiment is that we can simultaneous increase d(G) and
increase the edge-removal percentage so that the expected number of geometric edges (after removals)
remains constant. In this procedure, note that although the number of geometric edges after removal is
constant by construction, the mean length of the geometric edges tends to increase as we consider higher
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levels of stochasticity (i.e., by adding and then removing a larger number of edges).
In Supplementary Fig. 7, we plot ROC curves for the inference of noisy edges using symmetric WTM

maps in which we set the activation times of infinity to 2N . In panels (a)–(d), we show results for four
networks, which we construct using progressively larger values of d(G) and in which remove an associated
larger percentage of geometric edges so that, on average, every node has d(G) = 20 geometric edges after
the removals. In each panel, we depict ROC curves for several values of the WTM threshold T as well
as for the Jaccard-index approach. Note that the ROC curves generally become lower as one moves from
panel (a) to (d). In panel (a), for example, WTM maps for all T values and the Jaccard-index approach
lead to the accurate inference of the noisy edges. In panel (d), however, we find that the WTM map with
T = 0.2 leads to the best ROC curve. Our main finding is that incorporating stochasticity into the presence
of geometric edges inhibits the successful inference of noisy edges. Depending on the value of T and
the network parameters, denoising based on WTM maps can perform either better or worse than a local
approach based on the Jaccard index.

Summary of Experiments for Denoising Networks

Our experiments highlight the use of WTM maps for the denoising of networks. We now briefly dis-
cuss the advantages and drawbacks of this novel technique in comparison to other approaches; an in-depth
exploration would be very interesting, but it is well beyond the scope of the present paper. One class of
previous approaches are “local” approaches that make an assumption about local network properties, such
as a prevalence of 3-cycles (i.e., triangles), and then infer “noisy” edges to be the ones that do not follow this
assumption. One can attempt to infer whether a particular edge is consistent with such an assumption by
examining a Jaccard index or another subgraph statistic [4,6,7]. Because these are “local” approaches, they
have the advantage of being fast and straightforward to compute. In contrast, our approach based on WTM
maps is reminiscent of “global” approaches that leverage a model for an entire network (i.e., as opposed to
a model for the local subgraph structure) to find edges that do not adhere to the model [8–10]. We note that
these prior efforts often have focused on the problem of identifying missing (rather than spurious) edges,
although these problems are closely related [9].

In our experiments, we have illustrated examples of noisy geometric networks in which a global ap-
proach based on WTM maps can be advantageous to a local approach. We demonstrated that the global
perspective of the WTM can be beneficial for denoising networks that fail to have a sufficient prevalence
of 3-cycles (so that methods based on, e.g., the Jaccard index, do not perform well in those scenarios).
We have demonstrated this situation both for the London transit network and for noisy 2D square lattices.
Furthermore, even in scenarios in which 3-cycles are prevalent, we found that the WTM and Jaccard-index
approaches show similar levels of performance [see Supplementary Fig. 7(a)]. For noisy ring lattices that
also include stochasticity in the geometric edges, we found (depending on the value of the WTM threshold
T ) that an approach based on WTM maps can lead to either higher or lower AUC values than an approach
based on the Jaccard index.
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Supplementary Note 3 Generalizations of the Noisy Ring Lattice

In the main text, we analyzed the WTM on noisy ring lattices. In this section, we review our construction of
noisy ring lattices and introduce three additional families of noisy geometric networks that use an underlying
ring manifold. In these families, we introduce heterogeneity into the nodes’ geometric and non-geometric
degrees, which we now denote, respectively, by d(G)

i and d(NG)
i for a given node i. We denote their means

over the nodes by 〈d(G)
i 〉 = N−1

∑
i d

(G)
i and 〈d(NG)

i 〉 = N−1
∑

i d
(NG)
i , respectively. We therefore adjust

our definition of the ratio α to denote the ratio of the mean non-geometric degree to the mean geometric
degree:

α = 〈d(NG)
i 〉/〈d(G)

i 〉 . (2)

We note that it is equivalent to state that α denotes the ratio of the number of non-geometric edges to the
number of geometric edges in a given network.

Families of Noisy Geometric Networks on a Ring Manifold

We now define four families of noisy geometric networks on a ring manifold given by the unit circle
in R2. We label these families as (a), (b), (c), and (d). In Supplementary Fig. 8, we illustrate an example
network for each family and plot its corresponding adjacency matrix and degree distribution.

• Family (a). To generate the noisy ring lattice that we studied in the main text, we place N nodes evenly on the
unit circle in R2 so that each node i has location w(i) = [cos(θi), sin(θi)]

T with θi = 2πi/N . We then add
geometric edges between neighboring node pairs (i, j) ∈ V ×V , so that each node i has exactly d(G)

i = 〈d(G)
i 〉

geometric edges. That is, we connect each node to its nearest d(G)
i /2 neighbors on each side, and we note that

d
(G)
i is even because of symmetry. We then assign non-geometric edges randomly using (a slight modification

of) the configuration model [11] so that each node has exactly d(NG)
i = 〈d(NG)

i 〉 non-geometric edges. As in
the configuration model, we connect ends of edges (i.e., “stubs”) to each other uniformly at random, but we
disallow self-edges and multi-edges. Our implementation of the configuration model is a slight modification
of the original version, because we want to guarantee that the set of geometric edges is disjoint from the set
of non-geometric edges. Specifically, if we propose a candidate edge between two nodes that would lead to a
disallowed situation (i.e., it would lead to a self-edge, multi-edge, or an edge that is already a geometric edge),
then we discard the candidate edge, and we propose a new candidate edge as prescribed by the configuration
model. The resulting network is a (〈d(G)

i 〉 + 〈d(NG)
i 〉)-regular network that contains N〈d(G)

i 〉/2 geometric
edges and N〈d(NG)

i 〉/2 non-geometric edges. The geometric edges form a deterministic backbone (as in the
Newman-Watts variant [12, 13] of the Watts-Strogatz model [14]), whereas we obtain non-geometric edges
through a stochastic process.

• Family (b). Our first generalization of the noisy ring lattice in family (a) is to allow heterogeneity in the
number of non-geometric edges that are incident to a given node i (i.e., its non-geometric degree d(NG)

i ). The
total number of non-geometric edges is still equal to the constant N〈d(NG)

i 〉/2, but we now distribute them

uniformly at random among the N ·(N−1−d(G))
2 possible edge locations that are unoccupied by geometric edges.

Hence, the subgraph that consists only of non-geometric edges limits to an Erdős-Rényi (ER) network when
N � d(G) [11]. The distribution of non-geometric degrees is thus a binomial distribution that is centered at
〈d(NG)
i 〉.

• Family (c). Our second generalization of (a) is to allow heterogeneity in the node locations on the unit circle in
R2. Constraining geometric edges by distance, in turn, leads to heterogeneity in the number of geometric edges
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that are incident to a given node i (and hence in its geometric degree d(G)
i ). To make such a generalization in

a tunable manner, we assign the node locations (or, equivalently, the angles {θi} in the case of the unit circle)
to be evenly spaced as for family (a), and we then perturb these locations using a random variable δθi, so that
the location for each node i is given by [cos(θi + δθi), sin(θi + δθi)]

T . We consider a Gaussian-distributed
random variable δθi ∼ N

(
0, (s 2πN )2

)
, where one can vary s to adjust the amount of heterogeneity in node

location along a ring manifold. The choice s = 0 recovers the original node locations, and s→∞ corresponds
to sampling locations on the unit circle uniformly at random. Unless we specify otherwise, we use s = 1/2.
To generate geometric edges, we choose a parameter ε > 0 and place edges between all pairs of nodes i and j
such that |θi − θj | < ε. To compare networks from family (c) to networks from families (a) and (b), for which
the nodes have the identical geometric degree d(G)

i = 〈d(G)
i 〉, we choose the parameter ε so that each network

in family (c) has exactly N〈d(G)
i 〉/2 edges.

• Family (d). Our final network family combines the generalizations from families (b) and (c) so that there is
heterogeneity in the non-geometric degrees {d(NG)

i } (where the mean is 〈d(NG)
i 〉), the geometric degrees {d(G)

i }
(where the mean is 〈d(G)

i 〉), and the node locations {w(i)}.

Perturbed Bifurcation Results

Equations (1) and (2) in the main text give sequences of critical thresholds that determine WFP and ANC
for large networks of family (a). Recall that the degrees d(G)

i and d(NG)
i for each node i are deterministic and

constant for family (a). However, here we introduce various types of stochasticity (and hence heterogene-
ity) for these degrees in network families (b)–(d). Because of such heterogeneity, the critical thresholds that
we derived previously for network family (a) no longer accurately describe the WTM contagion dynamics.
However, based on numerical experiments, we find that Eqs. (1) and (2) in the main text still describe con-
tagion dynamics at a given node i if we use the correct geometric and non-geometric degrees. Specifically,
the ability of node i to adopt a contagion via WFP when it has no infected non-geometric neighbors is given
approximately by Eq. (13) with the substitutions d(G)stod

(G)
i and d(NG)stod

(NG)
i . Similarly, the ability of

node i to adopt a contagion via ANC is given approximately by Eq. (7) with the substitutions d(G)stod
(G)
i

and d(NG)stod
(NG)
i . Hence, for each node i ∈ V , there are sequences of critical thresholds, {T (WFP)

k } and
{T (ANC)

k }, that are (potentially) specific to that node. Consequently, the nodes can exhibit qualitatively
dissimilar contagion dynamics with respect to WFP and ANC. For example, for a given threshold T , some
nodes can have geometric and non-geometric degrees that support WFP but no ANC, whereas other nodes
can have degrees that support both WFP and ANC. Nevertheless, one can construe the bifurcation analy-
sis that we developed for family (a) as an approximate bifurcation analysis for the other families. In this
light, note that if the degree heterogeneities are sufficiently small compared to the mean degrees, then we
still identify four different qualitative regimes of WTM contagion dynamics that are marked by the absence
versus presence of WFP and ANC. However, the boundaries that separate these regimes are perturbations of
what we found for family (a).

More precisely, for each node i, let δ(G)
i = d

(G)
i − 〈d(G)

i 〉 denote the difference between its geometric
degree and the mean geometric degree. Similarly, let δ(NG)

i = d
(NG)
i − 〈d(NG)

i 〉 denote the difference
between its non-geometric degree and the mean non-geometric degree. Restricting our attention to the
critical thresholds given by Eqs. (1) and (2) in the main text for k = 0 (although one can write similar
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expressions for other values of k), we can express the critical thresholds in terms of δ(G)
i and δ(NG)

i as

T
(ANC)
0 (δ

(G)
i , δ

(NG)
i ) ,

1 +
δ
(NG)
i

〈d(NG)
i 〉

α−1 + 1 +
(δ

(G)
i +δ

(NG)
i )

〈d(NG)〉

(3)

T
(WFP)
0 (δ

(G)
i , δ

(NG)
i ) ,

1 +
δ
(G)
i

〈d(G)
i 〉

2 + 2α+
2(δ

(G)
i +δ

(NG)
i )

〈d(G)
i 〉

. (4)

Expressions (3) and (4) summarize the effect of degree heterogeneity on the critical thresholds that de-
scribe a WTM contagion at a given node i. When there is no degree heterogeneity (e.g., family (a),
where δ(G)

i = δ
(NG)
i = 0), we recover our results from the main text: T (ANC)

0 (0, 0) = 1/(α−1 + 1)

and T (WFP)
0 (0, 0) = 1/(2 + 2α). Meanwhile, when δ(G)

i and δ(NG)
i are both small compared to their re-

spective means 〈d(G)
i 〉 and 〈d(NG)

i 〉, the perturbed critical thresholds are approximately equal to those for the
mean degree. In other words, T (ANC)

0 (δ
(G)
i , δ

(NG)
i ) ≈ T (ANC)

0 (0, 0) when (δ
(G)
i + δ

(NG)
i )/〈d(NG)

i 〉 is small,
and T (WFP)

0 (δ
(G)
i , δ

(NG)
i ) ≈ T

(WFP)
0 (0, 0) when (δ

(G)
i + δ

(NG)
i )/〈d(G)

i 〉 is small. We therefore interpret
our bifurcation analysis for network family (a) as an approximate bifurcation analysis for network families
(b)–(d). We expect our interpretation to be increasingly accurate as the mean degrees become larger relative
to the heterogeneity in the degrees.

In Supplementary Fig. 9, we plot curves that indicate the node-specific critical thresholds given by
Eqs. (3) and (4) for the (T, α) parameter plane. We show results for d(G) = 20 and d(NG) ∈ [0, 20] for
several choices of δ(G)

i and δ
(NG)
i such that |δ(G)

i | ≤ 2 and |δ(NG)
i | ≤ 2. Panels (a)–(d), respectively,

demonstrate the heterogeneity that arises in δ(G)
i and δ(NG)

i from network families (a)–(d). Note for all
panels that there exist parameter regimes in which the nodes support similar contagion phenomena (i.e.,
WFP and no ANC, WFP and ANC, no WFP and ANC, or no WFP and no ANC) even through their degrees
are heterogeneous. Therefore, one can construe the set of curves that one obtains for multiple values of
δ

(G)
i and δ(NG)

i as a “thickening” of the boundary between regions of qualitatively different dynamics. In
other words, as we vary parameters, we see that the transitions between regions of different dynamics can
occur for slightly different parameter values for different nodes in a network. Note, however, that this
interpretation does not take into account the distribution of node degrees, as we have only shown the critical
threshold curves in Supplementary Fig. 9 for degrees that are near the mean degrees (i.e., for |δ(G)

i | ≤ 2

and |δ(NG)
i | ≤ 2). As we discussed in this Supplementary Note, families (b)–(d) lead to networks with

heterogeneous node degrees, and it is then possible that |δ(G)
i | > 2. (For example, the non-geometric degrees

follow a binomial distribution for families (b) and (d).) Therefore, one can construe our bifurcation analysis
for family (a) as an approximate bifurcation analysis for families (b)–(d) only when the heterogeneities in
the two types of degrees are both sufficiently small when compared to the means 〈d(G)

i 〉 and 〈d(NG)
i 〉.
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Supplementary Note 4 A Set of Filtrations Defines a Metric

In this section, we prove that the set of activation times for a WTM contagion with threshold T on a network
induces a metric on the node set V = {1, 2, . . . , N}. Let x̃(i)

j denote the activation time (which we assume
to be finite for all node pairs (i, j) ∈ V × V) for node i for a contagion initialized with the seed node j.
We will show that

(
V,m(WTM)(i, j)

)
is a discrete metric space with metric m(WTM)(i, j) = x̃

(i)
j + x̃

(j)
i .

However, rather than showing this result for the specific case of a WTM contagion, we will prove a more
general result using the observation that the growing set of infected nodes during one realization of a WTM
contagion defines a “filtration” of the node set V . We will therefore prove that any “complete” and “con-
sistent” set of filtrations (see the definitions below) on a finite set V induces a metric on V . Subsequently,
because the filtrations that result from realizations of a WTM contagion on a given network with conta-
gion seeds {j} for j ∈ {1, . . . , N} satisfy the conditions of completeness and consistency, it follows that
m(WTM)(i, j) = x̃

(i)
j + x̃

(j)
i is a metric on V whenever x̃(j)

i <∞ for every i, j ∈ V .

Complete and Consistent Filtrations

Before proving that the set of activation times—and, more generally, any “complete” and “consistent”
set of “filtrations”—leads to a metric, we give a few definitions.

Definition: Filtration.
Consider a sequence of sets Nt for t ∈ {1, 2, . . . }. The sequence of sets is called a filtration [15–17] if it
has the property that Nt ⊆ Nt+1 for all t1.

Definition: Completeness.
Let V be a finite set with cardinality |V| = N . We define a set of filtrations to be complete if there are N
filtrations of the following form: for every j ∈ V , there exists a filtration such that

{j} = N0(j) ⊆ N1(j) ⊆ N2(j) ⊆ · · · ⊆ Nt∗j (j) = V. (5)

Note that the filtration {Nt(j)} consists of nested sets Nt(j), where the innermost set is the element {j}
and the outermost set (i.e., the t∗j th set) is the complete set V of indices.

Definition: Consistency.
Let V be a finite set with cardinality |V| = N , and consider a set of filtrations in which the jth filtration
corresponds to nested sets {Nt(j)} that are indexed by t. We define the set of filtrations to be consistent if,
for any two filtrations {Nt(i)} and {Nt(j)} from the set, the following is true:

Nt(i) ⊆ Nτ (j) =⇒ Nt+1(i) ⊆ Nτ+1(j) , (6)

where the indices t and τ can be different from each other.

1One can also define a filtration sequence of filtrations using the superset relation Nt ⊇ Nt+1. Additionally, one can also
generalize the notion of a filtration to concepts like “zigzag filtrations,” which allow both subset and superset relations amidst the
sequence of sets [18].
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Filtration-Induced Metrics

Theorem: A Metric Induced by Filtrations.

Let V be a finite set with cardinality |V| = N , and letNt(j) denote sets that define a complete and consistent
set of filtrations on V . Additionally, let t(i)j denote the smallest index t such that i ∈ Nt(j). It then follows

that m(i, j) = t
(j)
i + t

(i)
j defines a metric on the set V .

Proof: First, we show that m(i, j) ≥ 0 and that m(i, j) = 0 implies i = j. Note that t(i)j ≥ 0 for any

i, j ∈ V; this implies that m(i, j) ≥ 0. Similarly, m(i, j) = 0 requires t(i)j = t
(j)
i = 0, which in turn

requires that N0(j) = {i} (and N0(i) = {j}). However, we know by definition that {j} = N0(j) (and
{i} = N0(i)), so it must be the case that i = j. It is trivial to show that m(i, j) = m(j, i). Finally, we
complete the proof by showing that m(i, j) satisfies the triangle inequality: m(i, j) ≤ m(i, k) + m(k, j).
This step is a bit more complicated, and it relies on the completeness and consistency of the set of filtra-
tions. Using the definition of m(i, j), it suffices to show that t(i)j ≤ t

(k)
j + t

(i)
k . Using the notation a = t

(i)
j ,

b = t
(k)
j , and c = t

(i)
k , we will prove that a ≤ b + c. Because the result is trivial when b ≥ a due to

the non-negativity of c, we can assume that a > b. By definition, it must be the case that i ∈ Na(j),
k ∈ Nb(j), and i ∈ Nc(k). Because b < a, it must also be the case that Nb(j) ⊆ Na(j). We now consider
{k} = N0(k) ⊆ Nb(j), which uses the completeness of the filtrations. Using the consistency property, it
follows that N1(k) ⊆ Nb+1(j), N2(k) ⊆ Nb+2(j), and so on. Repeating this procedure demonstrates that
Nc(k) ⊆ Nb+c(j). Noting that i ∈ Nc(k), it follows that i ∈ Nb+c(j). It follows, in turn, that t(i)j ≤ b+ c,
which is equivalent to a ≤ b+ c.

Corollary: A Metric Induced by WTM Contagions.
Consider a network with node set V and edge set E that consists of a single connected component. Let x̃(i)

j

denote the activation time of node i for a WTM contagion with seed {j}. As before, we assume that x̃(i)
j is

finite for all node pairs (i, j) ∈ V×V . It then follows thatm(i, j) = x̃
(j)
i + x̃

(i)
j is a metric on the node set V .

Proof: It suffices to show thatN realizations of a WTM contagion with the set of contagion seeds S(j) = {j}
(for j ∈ V) produces a complete and consistent set of filtrations on V . It will be convenient to use the notation
t
(i)
j = x̃

(i)
j . We first prove completeness. LetNt(j) denote the set of nodes for realization j that have adopted

the contagion by time t. Note that N0(j) = S(j) = {j} for each j. Additionally, Nt(j) ⊆ Nt+1(j) for

any t, as nodes cannot unadopt a contagion during a time step. Therefore, the sequence {Nt(j)}
t∗j
t=0 yields a

filtration of the node set V that satisfies Eq. (5). It follows that the set of filtrations of the form {Nt(j)}t
∗
i
t=0

(for j ∈ V) is a complete set of filtrations. We now prove consistency. Consider two realizations of a
WTM contagion on a single network. Let Nti(i) ⊂ V denote the set of nodes that are adopters at time ti
for the ith realization, and let Ntj (j) ⊂ V denote the set of nodes that are adopters at time tj for the jth
realization. To have consistency, it must be true thatNti+1(i) ⊆ Ntj+1(j) ifNti(i) ⊆ Ntj (j). Suppose that
ti and tj are times such that Nti(i) ⊆ Ntj (j), and consider the spreading that occurs for a WTM contagion
during one time step. By definition, the update rule for each node is identical across all realizations of a
WTM contagion. (In other words, for a node k, the fraction of infected neighbors fk must surpass T for

33



adoption.) Additionally, for any node k ∈ V , increasing the infection size can only increase fk. Hence, if
fk > T for some node k when nodes Nti(i) are infected, then fk > T is also true if we instead consider
a superset of Nti(i) to be infected. Thus, the set Nti+1(i) of adopters at time step t = ti + 1 must satisfy
Nti+1(i) ⊆ Ntj+1(j). The N realizations of a WTM contagion with seeds S(j) = {j} (where j ∈ V)

thus produce to a complete and consistent set of filtrations on V for which t(i)j = x
(i)
j . It follows that the

activation times define a metric on the node set V .
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Supplementary Note 5 Algorithm for Constructing WTM Maps

In this section, we describe our algorithm for constructing WTM maps and discuss its computational com-
plexity. We also conduct numerical simulations to illustrate the scaling of computation time with respect to
network size N and mean node degree d = N−1

∑
i,j Aij . We thereby confirm that the typically observed

computational cost of our algorithm scales quadratically with N and linearly with d. That is, for N nodes
and M = Nd/2 edges, the typical computational cost is O(NM).

Algorithm and Computational Complexity

We begin by describing our algorithm for constructing a WTM map. (See the pseudocode in Algorithm 1
for a summary.) For a WTM map of a network with N nodes, we implement N realizations of a WTM
contagion. We simulate the jth realization with cluster seeding by initializing the nodes in the contagion
seed S(j) = {j}∪{k|Ajk 6= 0} (i.e., node j and its neighbors) as infected and all other nodes as uninfected.
The activation time for the seed nodes is t = 0. That is, x(i)

j = 0 for i ∈ S(j). After initialization, we
simulate a WTM contagion for time steps t = 1, 2, . . . until the dynamics reaches equilibrium. In other
words, we reach a time step in which no new node becomes infected; this is guaranteed to occur at some
time t < N . When considering the set of nodes that can become infected during a given time step t, it is
sufficient to check only the subset of nodes i ⊂ V that are (1) not yet infected and (2) adjacent to a node
that was infected during the previous time step (i.e., at time t− 1). Therefore, as the contagion spreads, it is
important to record which nodes adopt the contagion during each time step. Given such a list, upon reaching
time step t, we examine the neighbors of all nodes that became infected at time t− 1. Any uninfected node
i (among those neighbors) whose ratio fi of infected neighbors to total neighbors satisfies fi > T then
becomes infected at time t (which we record as its activation time).

We now comment on the computational complexity of Supplementary Algorithm 1. There are N dif-
ferent contagions (because of cluster seeding centered at node j ∈ V). For each one, we need to calculate
the activation time of every node i ∈ V . Therefore, the computational complexity of computing a WTM
map is at least O(N2). Because we examine the neighbors of recently infected nodes at each time step,
our algorithm also scales linearly with the node degree d = d(G) + d(NG) (which is identical for every node
i ∈ V in the experiments below), giving a total complexity of O(N2d). However, there is scope to speed
up the construction of WTM maps. If one constructs the dissimilarity matrix that encodes shortest paths
between nodes (e.g., as required by Isomap [23]) using a “naive” method, then its computational complex-
ity is also O(N2). However, one can speed up the problem of computing shortest paths using Djikstra’s
algorithm [19], and we expect that similar improvements are possible for WTM maps.

Before we numerically support the O(N2d) computational complexity, we comment on the worst-case
scenario, which has a complexity of O(N3). This situation corresponds to a network in which every node
is connected to every other node and exactly one node adopts the contagion at each time step for every
contagion. Although such a scenario is technically feasible with general WTM contagion dynamics [20],
this cannot arise in the WTM contagions that we study (and we also note that one can also analyze such a
pathological situation using mean-field theory [21]) because we set Ti = T for all i ∈ V in our experiments.
Finally, although our implementation of Supplementary Algorithm 1 is sufficiently fast for the purposes of
the present paper, we note that one can speed it up further by parallelizing it because the different initial
conditions are independent of each other.
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Supplementary Algorithm 1 Construction of a WTM map with threshold T for a network with N nodes
1: for each node j ∈ V = {1, . . . , N} do
2: Initialize cluster seeding by infecting j and its neighbors; record their activation times as 0
3: Run WTM contagion dynamics:
4: while dynamics has not reached equilibrium do
5: for i is a neighbor of a node that was infected during the last time step do
6: if i is still uninfected then
7: if fraction of activated neighbors fi > T then
8: infect node i and record its activation time
9: end if

10: end if
11: end for
12: end while
13: end for

Numerical Investigation of Computational Cost

We implement Supplementary Algorithm 1 in both MATLAB and C++. In our discussion, we focus
on our C++ implementation (which we have made publicly available, as we discussed in Sec. III A of the
main text). We conduct numerical experiments to study the scaling behavior of the computational cost with
respect toN and 〈d〉. All of the results that we report in the present section are mean values that we compute
using 10 realizations for a particular choice of parameter values. We run these simulations on a computer
with the following specifications: Debian GNU/Linux 7 operating system; 32 GB RAM memory; and 8
processor cores (Intel Core i7-4770 CPU @ 3.40GHz).

In Supplementary Fig. 10(a), we show the run times δt (in seconds) of our algorithm. These give
computational costs for constructing WTM maps for noisy ring lattices with various sizes N ∈ [32, 31623],
which we construct while keeping the node degrees fixed at (d(G), d(NG)) = (10, 2). We show results for
thresholds T = {0.05, 0.2, 0.35, 0.45}. Note for these values of T that the dependence of δt on N is much
stronger than the dependence of δt on T . The symbols in Supplementary Fig. 10(a) give the observed
computation times, and the solid lines give the inferred scaling behavior, which we assume takes the form
δt = 10ΓN ζ for some constants ζ and Γ. In Supplementary Table 1, we summarize the fitted values for
exponent ζ and the prefactor Γ for various values of T . (As we discuss in the table caption, we use a least-
squares fit.) We find that ζ ≈ 2 for all T , supporting our claim of quadratic scaling behavior. We neglect
the observed values of δt for N = 32 for our fitting procedure because we are interested in the scaling as
N →∞.

In Supplementary Fig. 10(b), we investigate the dependence of the computational cost on node degree d.
In this experiment, we fix N = 2000 and T = 0.35 [which yields the largest values of δt in Supplementary
Fig. 10(a)], and we vary d ∈ {12, 24, . . . , 96}. We plot the observed values of δt versus d for several choices
of the ratio α = d(NG)/d(NG). For all values of α, we observe positive scaling with d that we expect to be
linear. As expected, we find that δt is much smaller when α ≥ 1/2 than when α < 1/2. For large values
of α, WTM contagions tend to either not spread at all (e.g., when T is large) or spread very quickly due
to frequent ANC (e.g., when T is small). Therefore, the number of time steps that are necessary to reach
equilibrium is small. This, in turn, yields a small value of δt.

In Supplementary Fig. 10(c), we further explore the dependence of δt on WFP and ANC by plotting
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δt versus threshold T for a noisy ring lattice with N = 10000 nodes and (d(G), d(NG)) = (2, 10). (In this
case, α = 0.2.) First, note that there is a very large drop in δt near T = T (WFP)

0 ≈ 0.4167 that corresponds
to the bifurcation that separates the region in which the contagion spreads from the one in which it does
not. For T ' 0.4167, the contagion spreads to just a few additional nodes (or no additional nodes), so it
requires very few time steps for to reach an equilibrium state. For T ≤ 0.4, the contagion spreads faster as
T increases, which leads in turn to larger values of δt. Finally, note that there are several sharp jumps in δt;
these correspond to the bifurcations in the contagion dynamics [see Eqs. (7) and (13)].
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Supplementary Note 6 Additional Theory for Noisy Ring Lattices

In this section, we extend the bifurcation analysis that we presented in Sec. III B of the main text. In
particular, we provide further details on our analysis for two contagion phenomena: wavefront propagation
(WFP) along a network’s underlying manifold and the appearance of new clusters (ANC) of a contagion
due to transmission across non-geometric edges.

Appearance of New Contagion Clusters (ANC)

ANC describes a contagion transmission in which a node becomes infected exclusively due to exposure
via non-geometric edges. That is, the node’s neighbors from geometric edges must not already be infected.
As we discussed in Secs. I D and III B of the main text, we are able to describe this phenomenon with a
sequence of critical thresholds:

T
(ANC)
k ,

d(NG) − k
d(G) + d(NG)

, k = 0, 1, . . . , d(NG) , (7)

where d(G) and d(NG), respectively, denote a node’s geometric and non-geometric degree for the noisy
ring lattice with N nodes. (A node’s “geometric degree” is its number of geometric stubs, that is, the
number of its stubs that obey the original geometric space constraints, and a node’s “non-geometric degree”
is its number of non-geometric stubs.) For T ∈

[
T

(ANC)
k+1 , T

(ANC)
k

)
, a node adopts a contagion if at least

(d(NG)−k) non-geometric neighbors are infected. For T ≥ T (ANC)
0 , the contagion cannot spread exclusively

by exposure to the contagion via non-geometric edges. In this section, we show by considering spreading
exclusively on the subgraph that includes all nodes but only non-geometric edges that the rate of ANC of a
WTM contagion increases as the contagion threshold T decreases.

We first consider the probability that a given node has exactly k infected non-geometric neighbors, given
that q(t) of the N nodes are infected at time step t. First, consider the case k = 1, in which a node i has
exactly one infected non-geometric neighbor. Given that node i has d(NG) non-geometric edges (which we
label as e1, . . . , ed(NG)), there are d(NG) possible outcomes with k = 1. For example, e1 is incident to an
infected node and the remaining edges are incident to uninfected nodes, e2 is incident to an infected node
and the remaining edges are incident to uninfected nodes, and so on. Recalling that we place non-geometric
edges uniformly at random for the noisy ring lattice, the probability that edge e1 is incident to an infected
node is q(t)

N−1 , as there are q(t) such potential infected nodes and there are N − 1 other nodes (because there
are no self-edges). If edge e1 is incident to an infected node, then the probability that edge e2 is incident
to an uninfected node is N−1−q(t)

N−2 . If edges e1 and e2 are incident, respectively, to an infected node and an

uninfected node, then the probability that edge e3 is incident to an uninfected node is N−1−q(t)−1
N−3 . We can

continue arguing similarly for the other edges. Taking into account that there are d(NG) possible outcomes
in which the d(NG) edges are incident to exactly one infected node, the probability that a node has exactly
one infected non-geometric neighbor is

P (1) = d(NG) ×
q(t)

(∏d(NG)−2
k′=0 N − 1− q(t)− k′

)

∏d(NG)−1
k′=0 (N − 1− k′)

. (8)
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More generally, the probability that a node has exactly k infected non-geometric neighbors is

P (k) =

(
d(NG)

k

) (∏k−1
k′=0 q(t)− k′

)(∏d(NG)−1−k
k′=0 N − 1− q(t)− k′

)

∏d(NG)−1
k′=0 (N − 1− k′)

. (9)

For fixed d(NG) � N and q(t) = O(N), Eq. (9) simplifies to

P (k) ≈
(
d(NG)

k

)[
q(t)

N

]k [
1− q(t)

N

]d(NG)−k
. (10)

We now estimate the expected contagion size g(t) of a WTM contagion that spreads exclusively via
ANC. In other words, we neglect exposures to the contagion from geometric edges, as we are assuming that
they do not contribute to spreading. We define

k(ANC)(T ) = max
{
k′ | T (ANC)

k′ > T
}
. (11)

It follows that the minimum number of non-geometric neighbors that need to be infected for a node i to
adopt the WTM contagion is (d(NG) − k(ANC)). Using Eq. (9) and Eq. (11), we estimate that the expected
contagion growth satisfies

g(t+ 1) = g(t) + [N − g(t)]
k(ANC)∑

k′=0

P (d(NG) − k′) , (12)

where we calculate the expectation for g(t) over the ensemble of noisy ring lattices. We again stress that
Eq. (12) estimates the size of a WTM contagion for ANC independent of WFP and does not account for the
joint effect of spreading via both geometric and non-geometric edges. It therefore gives a lower bound for
the size of the contagion [i.e., q(t)] for the regime that exhibits ANC but no WFP.

Wavefront Propagation (WFP)

WFP describes the situation in which a contagion cluster expands because a node in its “boundary,”
which we define as the set of nodes that are adjacent via a geometric edge to an infected node in the contagion
cluster, becomes infected at time step t. In the main text, we found that WFP has the following sequence of
critical thresholds:

T
(WFP)
k ,

d(G)/2− k
d(G) + d(NG)

, k = 0, 1, . . . ,
d(G)

2
. (13)

Assuming that the non-geometric edges of nodes in the contagion cluster’s boundary are incident to nodes
that are not infected, a wavefront propagates with a speed of k+1 nodes per time step for T ∈

[
T

(WFP)
k+1 , T

(WFP)
k

)
.

For T ≥ T
(WFP)
0 , there is no WFP. For a contagion that consists of a single cluster that is expanding via

WFP in both directions along a noisy ring lattice, the size q(t) of the contagion (i.e., the number of nodes
that have adopted the contagion) for time t ∈ {0, 1, 2, . . . } has a lower bound of

h(t) = (1 + d(G) + d(NG))︸ ︷︷ ︸
seed nodes

+2k(WFP)t , (14)
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where
k(WFP) , 1 + max{k′ | T (WFP)

k′ > T} (15)

and the factor of 2 accounts for WFP in both directions along the ring.
Note that h(t) is a lower bound for q(t) because we have assumed that the non-geometric edges of

nodes in the contagion cluster’s boundary are incident to nodes that are not infected. This assumption is not
always valid, so Eq. (14) is a lower bound because the invalidation of this assumption can only increase the
rate of WFP. That is, nodes in a contagion cluster’s boundary will adopt a contagion even if the number of
geometric neighbors that are infected is smaller than what is required by Eq. (13).

Above we showed that the expected probability that a non-geometric edge of a node is incident to an
infected node is q(t)/(N − 1) ≈ q(t)/N . Similarly, for a node with a non-geometric degree of d(NG), the
expected probability that none of its non-geometric edges are incident to an infected node is approximately
[1 − q(t)/N ]d

(NG)
. This is therefore the probability that our WFP analysis given by Eq. (13) is valid for

a given node at a given time step t. For large networks (i.e., N � 1) and early stages of a contagion
(i.e., q(t) � N ), the probability that our assumption is valid is approximately equal to 1. In this situation,
Eqs. (13)–(15) accurately describe WFP (and the spread of the contagion). However, when q(t) ≈ N , our
assumption is almost certainly invalid, and we observe accelerated speeds of WFP. Interestingly, for large
networks (i.e., N � 1), we find that such acceleration occurs infrequently early in a WTM contagion and
that it occurs rather frequently towards the end of a contagion [i.e., just before q(t) → N , which is when a
contagion saturates a network]. Accelerated WFP is improbable [because q(t) is small, but N is large] in
the early stages of a contagion on a large network. When t = 0, for example, q(0) = d(G) + d(NG) � N .
However, during the late stages of a contagion [i.e., q(t) ≈ N ], accelerated WFP is very likely at every
time step. Therefore, for small q(t), Eq. (14) is both a lower bound for q(t) and an approximation for it.
In general, the speed of WFP increases with time until it reaches an upper bound of d(G)/2 nodes per time
step. This bound corresponds to the situation in which all nodes that are incident via geometric edges to one
side of a contagion cluster become infected during each time step. Note that there is no acceleration of WFP
when k(WFP) = d(G)/2, as the wavefront is already propagating at its fastest rate.
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Supplementary Note 7 Extended Discussion of Point-Cloud Analyses

In this section, we provide further details on our approach to analyzing the point clouds that result from
WTM maps. In particular, we provide a detailed discussion of the following three items:

1. The Pearson correlation coefficient ρ, which we use to investigate a point cloud’s geometry.

2. The embedding dimension P , which we use to investigate a point cloud’s dimensionality.

3. The difference ∆ = l1− l2 in lifetimes of the two most persistent 1-cycles [i.e., one-dimensional (1D)
holes], which we use to investigate a point cloud’s topology.

We restrict our discussion of the above items for a point cloud that results from a regular WTM map
Vsto{x(i)}, but one can apply the same techniques to any point cloud, including one that results from a
reflected WTM map Vsto{y(i)} or a symmetric WTM map Vsto{z(i)}. (See Sec. I C of the main text for
further discussion of these maps.)

We find for certain WTM contagion parameters that the structure of the point cloud that results from a
WTM maps can reveal manifold structure in the original network and that one can quantify such structure
using the values of ρ, P , and ∆. Importantly, one can thus use our approach to study not only manifold
structure in networks but also the WTM contagion dynamics itself (e.g., uncovering the extent to which
WFP dominates ANC or vice versa).

Analysis of Geometry

Studying the geometry of a point cloud such as {x(i)}i∈V that results from a WTM map can reveal
the extent to which the geometry of a WTM contagion follows the underlying geometry of a network. We
investigate the extent to which the distance between two nodes in a point cloud that results from a WTM map
relates to the distance between those nodes in the original metric-space embedding of the noisy geometric
network. Specifically, we restrict our attention to noisy geometric networks in which the nodes V have
intrinsic locations {w(i)}i∈V ∈ M on a manifoldM ⊂ Rp. That is, they lie in a p-dimensional ambient

space Rp that we equip with the Euclidean norm ‖w‖2 =
√∑p

k=1w
2
k. We require the dimension p to

be equal to the point cloud’s “embedding dimension”. In other words, there is no subspace of dimension
smaller than p that one can define by a hyperplane that captures the manifold. Using the Euclidean metric,
the distance between nodes i and j in the ambient space is

m(i, j) =

√√√√
p∑

k=1

(
w

(i)
k − w

(j)
k

)2
. (16)

We also use the Euclidean norm for the point cloud {x(i)} ∈ RN that results from a WTM map. The
distance between node i and node j in such a point cloud is thus given by

m(WTM)(i, j) =

√√√√
N∑

k=1

(
x

(i)
k − x

(j)
k

)2
. (17)
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Given two sets of distances m and m(WTM), we compute the Pearson correlation coefficient

ρ =

∑N
i=1

∑N
j=i+1

[
m(i, j)−m(i, j)

][
m(WTM)(i, j)−m(WTM)(i, j)

]
√∑N

i=1

∑N
j=i+1

[
m(i, j)−m(i, j)

]2√∑N
i=1

∑N
j=i+1

[
m(WTM)(i, j)−m(WTM)(i, j)

]2 (18)

between all non-identical, unordered pairs (i, j) ∈ V × V . Because i 6= j for distinct nodes, there are
N(N − 1)/2 such pairs.

Note that calculating Eq. (18) requires the activation time x(i)
j to be finite for all nodes i and realizations

j of a WTM contagion. Unfortunately, this is not the case whenever there is a node that never becomes
activated. Indeed, x(i)

j = ∞ for all nodes other than the seed if the threshold T is too large. (For instance,

T ≥ max{T (WFP)
0 , T

(ANC)
0 } is too large for the example of the noisy ring lattice.) For practical purposes,

we set x(i)
j = 2N in such cases, where we note that x(i)

j ≤ N−1 for any numerical simulation in which node
i eventually becomes infected. In Supplementary Note 1, we discuss other methods for handling situations
with activation times of infinity.

Analysis of Dimensionality

We study the dimensionality of a point cloud that results from a WTM map by exploring its embedding
dimension. For a manifoldM ⊂ Rp, we define the embedding dimension P as the minimum hyperplane
dimension over all hyperplanes that span the manifoldM. Because a point cloud typically contains noise,
which can potentially increase the dimensionality above that of an underlying manifold, we estimate em-
bedding dimension using residual variance [22, 23].

Given the set of points {x(i)}i∈V ∈ RN , we consider each i ∈ V and let {x̂(i)(p)} denote the linear
projection onto Rp that we obtain from principal component analysis (PCA) [22, 23]. Let ρ(p) denote the
Pearson correlation coefficient that relates node-to-node distances m(WTM) from the original point cloud to
node-to-node distances

m(p)(i, j) =

√√√√
p∑

k=1

[
x̂

(i)
k (p)− x̂(j)

k (p)
]2

(19)

in the projected point cloud. It follows that ρ(p) is given by Eq. (18) with the substitutionm(i, j)stom(p)(i, j).
The residual variance of such a linear dimension reduction is Rp = 1 − (ρ(p))2. We estimate the

embedding dimension as the smallest dimension P such that the residual variance is (strictly) less than
0.05. That is, P = min{p|Rp < 0.05}. For our calculations of embedding dimension, we only consider
dimensions up to P = 20, as this simplifies the computational overhead of calculating P . Our motivation for
this simplification (besides reducing computational cost) is that we are particularly interested in determining
whether or not P is close to the known embedding dimension (e.g., P = 2 for the unit circle in R2, in which
our noisy ring lattices are embedded).
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Analysis of Topology

In this section, we explain how to analyze the topology of a point cloud that results from a WTM map.
We present our analysis for a general point cloud U = {u(i)}ni=1 ∈ RJ (i.e., there are n points u(i) in J
dimensions). We note for a typical WTM map, for which we map all N nodes based on N contagions, that
one obtains a point cloud {u(i)} with n = J = N .

A set U has a very simple topology. If u(i) 6= u(j) for i 6= j, then U consists of N distinct connected
components that correspond to the points {u(i)}. There are no 1-cycles in U . To infer the topology of a
meaningful underlying manifold (if present) that gives rise to a point cloud, we consider its topology across
different spatial scales. In particular, we are interested in the topology of the sets

U (r) =
⋃

i∈{1,...,n}

{u ∈ RJ : ||u(i) − u||2 ≤ r} (20)

for different values of r ∈ [0,∞). That is, we study the topology of sets that we construct as the union of
radius-r balls centered at points u(i) ∈ U . Note that U (0) = U . We choose to use the Euclidean norm, but it
is also possible to use other norms.

We start with an example. In Supplementary Fig. 11, we show a noisy point cloud that we sample from
a ring manifold. In particular, we sample the points uniformly from a unit circle in R2, and we add a small
amount of noise to their locations in the embedding space R2. When r = 0, there are 10 distinct connected
components, which correspond to the individual points. As we increase r, four of the components merge to
create a 1-cycle [see Supplementary Fig. 11(b)]. As we continue to increase r, this 1-cycle fills in very soon
after its birth. After it is filled in, another 1-cycle appears when r = 0.5 [see Supplementary Fig. 11(c)].
This 1-cycle persists for a larger range of r values than the first 1-cycle, and it appears to correspond to a
ring manifold that underlies the point cloud. This illustrates that one can study the topology of a point cloud
by examining 1-cycles that persist across different spatial scales. To make this statement more quantitative,
we employ tools from persistent homology [15–17].

For every set U (r), one can assign homology groups Hc(U (r)), where c ∈ {0, 1, 2, . . . }. The rank βc
of the group Hc(U (r)) counts the number of c-dimensional topological features that are present in U (r). In
particular, β0 counts the number of connected components, β1 counts the number of 1-cycles (which one
can construe as a 1D hole or loop), and β2 counts the number of cavities [i.e., two-dimensional (2D) holes].
The fact that U (r) ⊆ U (r′) for r ≤ r′ is very important. As we discussed earlier in this section, a sequence of
sets with this property is a filtration. Thus, for any sequence {ri} that satisfies ri ≤ ri+1 for i ∈ {1, 2, . . . },
the sequence of sets {U (ri)} forms a filtration of R2. Examining changes of the topological features across
the different elements of {U (ri)} reveals multiple-scale topological features of the point cloud {u(i)}.

In the present paper, we are interested in understanding the birth and death of 1-cycles of U (r) as we vary
r. The quantity β1 encodes such information, which one can summarize by drawing a persistence diagram.
In Supplementary Fig. 12, we show the β1 persistence diagram for the point cloud in Supplementary Fig. 11.
The diagram contains two points, which correspond to the two 1-cycles that we discussed previously. The
horizontal (“birth”) axis of the point is the value of r at which the 1-cycle corresponding to this point first
appears in U (r), and the vertical (“death”) axis indicates when the 1-cycle is filled in. Enumerating the points
i = 1, 2, . . . for every point i with coordinates (rb(i), rd(i)) in the persistence diagram (where rb denotes
when a feature is born and rd denotes when a feature dies), we define the “lifetime” li = rd(i) − rb(i),
and we denote the set of lifetimes of all points by L = {l1, l2, . . . } (which we order such that l1 ≥ l2 ≥
. . . ). Topological features with longer lifetimes (i.e., ones that are more persistent) indicate more dominant
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features in a point cloud. In our example, there is one point with a very short lifetime that corresponds to
a 1-cycle that arises for a single spatial scale due to the noisy sampling. The other point has a much larger
lifetime, which indicates that its associated 1-cycle persists across many spatial scales. We thereby identify
the ring structure of the sampled manifold. For the purpose of identifying whether or not a point cloud lies
on a ring manifold, we summarize persistence diagrams by using the difference ∆ = l1 − l2 between the
most persistent lifetimes. Large values of ∆ correspond to persistence diagrams that consist of a single point
with a large lifetime, as we expect for a point cloud that lies on a ring manifold.

In practice, computing the persistent homology of a set U (r) is complicated. However, the so-called
“Nerve Theorem” [24] guarantees that the homology of U (r) is the same as the homology of a corresponding
Čech complex, which simplifies analysis but is computationally expensive to construct. Therefore, we study
an approximation of the Čech complex that is known as the Vietoris-Rips complex. For a given point cloud
U = {u(1),u(2), . . . ,u(n)} ∈ RJ and r ∈ R, the Vietoris-Rips complex VR(r) consists of the simplices
(u(s1),u(s2), . . . ,u(sk)) such that ‖u(si) − u(sj)‖2 ≤ r for all si and sj . In the present paper, we are
interested only in identifying the 1-cycles in VR(r), so it is sufficient for us to use only 0-simplices (i.e.,
points), 1-simplices (i.e., line segments), and 2-simplices (i.e., triangles).

To compute persistent homology, we use the software package PERSEUS [25] (version 3.0 Beta), and
we also check some of our results using the JAVAPLEX Persistent Homology Library [26]. To construct
Vietoris-Rips filtrations VR(r) for a point cloud that results from a WTM map (e.g., {x(i)}), we use Eq. (17)
to define distances between points. As an input to PERSEUS, we use the dissimilarity matrix in which the
entry in the ith row and jth column encodes the distance between nodes i and j given by Eq. (17).

In Supplementary Fig. 13, we study β1 persistence diagrams for point clouds that result from the appli-
cation of WTM maps to noisy ring lattices. We thereby reveal the absence versus presence of 1-cycles in the
point cloud. We analyze the β1 persistence diagrams for several values of the WTM threshold T ∈ [0, 0.5]
and several choices for non-geometric degrees d(NG) ∈ [0, 20] for networks with N = 200 nodes and a geo-
metric degree of d(G) = 20 (which implies that α = d(NG)/d(G) ∈ [0, 1]). A red diamond in Supplementary
Fig. 13 represents the point that corresponds to the most persistent 1-cycle. We indicate the second-most
persistent 1-cycle using a yellow square, and we mark the remaining points in the persistence diagram using
white circles. If there is only one dominant 1-cycle, then the separation between the red diamond and the
other points is large. To measure this separation, we calculate ∆ = l1 − l2, where l1 and l2 are the lifetimes
of the dominant and the second most dominant 1-cycle, respectively. The background coloration reflects the
value of ∆. To construct a filtration using various values of r, we consider 100 evenly-spaced values of r
that range from 0 up to the maximum distance distance rmax , maxi,j∈V ||z(i) − z(j)||2 between any two
points. For our plots, we normalize all r values by rmax, so ∆ ∈ [0, 1]. It follows that ∆ ≈ 1 indicates the
presence of the ring topology, whereas small values of ∆ indicates its absence.
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Supplementary Note 8 Complex Contagions on a Ring Manifold

In this section, we give results for numerical experiments in which we study the geometry, dimensionality,
and topology of point clouds that result from the application of symmetric WTM maps Vsto{z(i)} to noisy
geometric networks generated by network families (a)–(d), which we defined in Supplementary Note 3. We
thereby reveal the extent to which a WTM contagion exhibits WFP that follows the underlying ring manifold
(i.e., the extent to which spreading occurs across a network subgraph that contains exclusively geometric
edges) versus ANC. In particular, WFP is more prevalent than ANC when one can identify the properties of
the underlying manifold in the point cloud that results from a WTM map.

To give some perspective for our numerical experiments, we compare our results for point clouds pro-
duced by WTM maps to results from two well-known methods of mapping network nodes as a point cloud:
a Laplacian eigenmap [27] and Isomap [23]. In particular, we consider a 2D Laplacian eigenmap in which
we map each node i to [v

(2)
i , v

(3)
i ]T ∈ R2, where v(j) is the eigenvector that corresponds to the jth eigen-

value λj of the unnormalized Laplacian matrix L (i.e., Lv(j) = λjv
(j)) and we have ordered the eigen-

values so that 0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN . The unnormalized Laplacian matrix has the form
L = diag(d1, d2, . . . , dN )−A, where di = d

(G)
i +d

(NG)
i is the total degree of node i and A is the adjacency

matrix. As we discussed in Sec. I C of the main text, Isomap entails mapping network nodes based on the
shortest paths between nodes. It corresponds to a WTM map with T = 0 if we initialize the contagions with
node seeding rather than cluster seeding. As we will see, when assessing the extent to which point clouds
that result from WTM maps resemble the underlying ring manifold, we typically find a range of threshold
values for which the geometry, dimensionality, and topology of the manifold is more apparent in WTM
maps than for Laplacian eigenmap and Isomap methods. For other threshold values, the manifold is less
apparent for WTM maps than for the other methods.

Note that Laplacian eigenmaps and Isomap were introduced originally for the purpose of nonlinear
dimension reduction of point-cloud data rather than for network analysis. They were developed to map
a high-dimensional point cloud to a network and then to map that network to a low-dimensional point
cloud. Therefore, applying a Laplacian eigenmap or Isomap directly to a network—especially one that is
unweighted—is different from what they were designed to do. In particular, for networks that arise from
high-dimensional data—e.g., ones with nodes that are connected to each other by applying a k-nearest-
neighbor algorithm—one often weights network edges based on distances in the original, high-dimensional
point cloud. Incorporating such additional information can, of course, improve the results of dimension
reduction (e.g., when attempting to “learn” manifold attributes such as topology, geometry, and dimension-
ality). Finally, when considering dimension reduction such as manifold learning in networks (i.e., rather
than point clouds), one should determine the approach to dimension reduction (e.g., whether the algorithm
is based on diffusion, shortest paths, or contagion dynamics) based on the application at hand. (For example,
one might be more interested in conservative processes in some situations and in non-conservative processes
in others.)

Numerical Results for Geometry

In this section, we compare the geometry of symmetric WTM maps for networks in the families (a)–(d),
which we defined in Supplementary Note 3, via calculating a Pearson correlation coefficient ρ to compare
WTM distances to distances in an underlying manifold. We also investigate the effects on WTM maps
of varying the mean geometric and non-geometric degrees and the network size N (when we hold other
parameters constant). We show our results in Supplementary Figs. 14–16. Panels (a)–(d), respectively, give
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our results for network families (a)–(d). Unless we indicate otherwise, we show results for one network
from each family in these and subsequent figures.

In Supplementary Fig. 14, we plot ρ for point clouds that result from symmetric WTM maps for the
(T, α) parameter plane. The solid and dashed curves yield approximate bifurcation curves, which we obtain
from Eqs. (3) and (4) with δ(G)

i = δ
(NG)
i = 0. Note that panel (a) depicts similar information as Supplemen-

tary Fig. 6(a) of the main text, although the results that we now show are for a larger network with larger
degrees. For all panels, the curve given by T (WFP)

0 agrees very well with a relatively abrupt transition that
one can observe by examining the geometry of the WTM maps via the coefficient ρ. In contrast, the curve
for T (ANC)

0 appears to not be as closely related to ρ. To illustrate this, fix α = 0.25 and consider increasing
values of T in any panel. As T surpasses T (WFP)

0 , there is a large drop in the value of ρ. By contrast, ρ
changes only slightly when we cross T ≈ T (ANC)

0 . Comparing the four panels to each another, we find that
the agreement between T (WFP)

0 and the observed shifts in ρ decreases as the node degrees become more
heterogeneous. In particular, the transition that is imposed by T (WFP)

0 appears to shift to smaller values of
T , so the heterogeneities that we introduce in network families (b)–(d) mostly affect the regime in which
T ≈ T (WFP)

0 . However, the qualitative behavior of WTM contagions in the (T, α) parameter plane is similar
for all four families of networks.

In Supplementary Fig. 15, we study the effect on ρ for symmetric WTM maps when we increase the
mean node degrees 〈d(G)

i 〉 and 〈d(NG)
i 〉. Fixing α = 1/3, we plot ρ as a function of the threshold T .

This amounts to examining vertical cross sections of the four panels in Supplementary Fig. 14. We study
the effect of varying mean node degree by showing results for (〈d(G)

i 〉, 〈d
(NG)
i 〉) = (6, 2) (red triangles),

(〈d(G)
i 〉, 〈d

(NG)〉
i ) = (12, 4) (blue squares), and (〈d(G)

i 〉, 〈d
(NG)
i 〉) = (24, 8) (magenta × symbols). We also

show results for a 2D Laplacian eigenmap [27] (horizontal dashed lines) and Isomap [23] (horizontal dotted
lines) applied to our (unweighted) networks. Comparing the ρ values for the WTM maps with various mean
degrees, we note that increasing the mean degrees smoothens the dependence of ρ versus T . Specifically,
for smaller values of T (e.g., for T < 0.3), the discontinuous jumps in ρ become smaller as the mean
degrees increase. Interestingly, increasing heterogeneity in the node degrees also smoothens the curves of ρ
versus T . For example, the curves are smoother for network families (b)–(d) than they are for family (a).
Additionally, note in all panels that we observe an abrupt drop in ρ for T ≈ T

(WFP)
0 = 1/(2 + 2α) = 3/8.

However, in more heterogeneous situations, this abrupt drop can shift to smaller values of T . This is most
apparent when comparing the four panels for (〈d(G)

i 〉, 〈d
(NG)
i 〉) = (6, 2) (red triangles): the drop occurs

at T = 3/8 = 0.375 in panel (a), whereas it occurs at approximately at T ≈ 0.29 in panels (b)–(d). To
contrast this large shift, when comparing the panels for (〈d(G)

i 〉, 〈d
(NG)
i 〉) = (24, 8) (magenta × symbols),

we observe that the change is smaller [i.e.,the abrupt drop in ρ is at T = 0.375 in panel (a), whereas it occurs
at T ≈ 0.35 in panel (d)]. Finally, note in all panels that ρ increases as we increase the mean degrees, and
we observe similar increases in ρ for the Laplacian-eigenmap and Isomap algorithms. Thus, in this series of
experiments, increasing mean node degree improves the ability of the maps to translate the geometry of the
underlying manifold to the resulting WTM point cloud.

In Supplementary Fig. 16, we study the geometry of symmetric WTM maps by plotting ρ versus T
for networks of various sizes N . We fix 〈d(G)

i 〉 = 24 and 〈d(NG)
i 〉 = 8 (that is, α = 1/3) and plot ρ

versus the threshold T for T ∈ [0, 0.6]. In each panel, we show results for several choices of network
size N ∈ [200, 2000] to illustrate how ρ depends on N . As N increases, we observe that ρ systematically
decreases for WTM maps that correspond to contagions in which WFP is not the dominant phenomenon.
However, for WTM maps in which WFP dominates (e.g., when T ∈ [0.2, 0.25]), we find that ρ remains
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above 0.85. This provides strong evidence that, for this parameter regime, WTM maps translate the geom-
etry of the underlying ring manifold to the resulting point cloud for a wide range of network sizes (with the
other parameters held constant). One does not obtain such independence with network size when using a
Laplacian eigenmap or Isomap. In those cases, we find that ρ systematically decreases as N increases (with
the other parameters held constant).

Numerical Results for Dimensionality

In this section, we examine the dimensionality of point clouds that result from symmetric WTM maps
that we apply to networks on a ring manifold. As we discussed in Sec. III E and Supplementary Note 7,
we study their “embedding dimension” P , which we define for a point cloud to be the smallest dimension
p such that the residual variance Rp for the projection onto Rp is small. In practice, we use PCA for such
projections, and we specify “small” as being (strictly) less than 0.05. (In other words, we lose less than
5% of the variance after the projection.) Importantly, if the point cloud is a noisy sample of points on a
manifold, then P is an approximation for the embedding dimension of the manifold.

We show our results for embedding dimension of point clouds resulting from WTM maps in Supplemen-
tary Figs. 17–18. Panels (a)–(d), respectively, give our results for network families (a)–(d). In Supplemen-
tary Fig. 17, we plot P in the (T, α) parameter plane for networks with N = 200 nodes, mean geometric
degree 〈d(G)

i 〉 = 20, and various mean non-geometric degrees 〈d(NG)
i 〉. We also plot the approximate bifur-

cation curves given by Eqs. (3) and (4) with δ(G)
i = δ

(NG)
i = 0. Note that panel (a) is similar to the plot in

Supplementary Fig. 6(b) of the main text. We observe in all panels that WTM maps for the contagion regime
that we expect to exhibit WFP but no ANC yield point clouds {z(i)} with a small embedding dimension of
P ≈ 2. This result is expected, because a ring manifold is exactly the unit circle in R2. That is, it is a
one-dimensional manifold that requires at least two dimensions to be embedded in a Euclidean space. Note
that this low dimensionality persists into the regime that we expect to exhibit both WFP and ANC, although
the embedding dimension P increases as one moves away from the regime exhibiting WFP and no ANC.

In Supplementary Fig. 18, we continue our investigation of the dimensionality of point clouds that
result from the application of symmetric WTM maps to networks on a ring manifold by showing their
embedding dimension P as a function of threshold T . One can construe the curves of P versus T as a
vertical cross section of the contour plots in Supplementary Fig. 17; we show results for several choices of
mean node degrees: (〈d(G)

i 〉, 〈d
(NG)
i 〉) = (6, 2) (red triangles), (〈d(G)

i 〉, 〈d
(NG)
i 〉) = (12, 4) (blue squares),

and (〈d(G)
i 〉, 〈d

(NG)
i 〉) = (18, 6) (magenta × symbols). We also show values (horizontal dotted lines) of P

versus T for the point clouds that we obtain by applying Isomap [23] to the networks. We obtain horizontal
lines because Isomap does not include any dependence on T . We do not investigate the dimensionality of
the 2D Laplacian eigenmaps, as we fix their dimension to 2 in our study.

Note that the curves in panels of Supplementary Fig. 18 are rather similar to each other. In particular,
for all panels, we find the smallest embedding dimension P for the regime in which we expect a WTM
contagion to exhibit WFP without ANC [i.e., for T ∈ (1/4, 3/8)]. Additionally, we consistently identify
the correct embedding dimension (i.e., P = 2) for this regime as long as mean degrees are sufficiently
large (e.g., see the magenta × symbols). For smaller mean degrees, we still observe that P is small for
a similar range of the threshold T . However, the curves of P versus T tend to suggest that smaller mean
degrees lead to larger embedding dimensions in our numerical experiments. For Isomap (in which we map
nodes based on shortest paths), we observe in our experiments that the embedding dimension P is always
at least 10. Additionally, the embedding dimension P for Isomap appears to decrease systematically as the

47



mean degrees increase. Thus, using shortest paths to map nodes for network families (a)–(d) leads to point
clouds with a dimensionality that is higher than P = 2; however, it might be possible to recover the correct
embedding dimension of a ring manifold when the mean degrees are sufficiently large (keeping all other
parameters fixed). Finally, note that P ≤ 20 in all panels. Recall that this is the maximum value of P that
we can observe because it is the largest projection that we consider.

Numerical Results for Topology

In this section, we study the topology of point clouds that result from symmetric WTM maps applied
to noisy geometric networks on a ring manifold. As we discussed in Sec. III F and Supplementary Note
7, we examine the difference ∆ = l1 − l2 between the largest lifetimes for 1D features (i.e., 1-cycles).
We determine the persistence of these 1-cycles across spacial scales using a Vietoris-Rips filtration of the
point cloud [15–17]. We normalize the difference in lifetimes so that ∆ ∈ [0, 1]. We show our results in
Supplementary Figs. 19–20. Panels (a)–(d), respectively, give our results for network families (a)–(d).

In Supplementary Fig. 19, we plot ∆ in the (T, α) parameter plane. We show results for networks with
N = 200 nodes, mean geometric degree of 〈d(G)

i 〉 = 20 and various mean non-geometric degrees 〈d(NG)
i 〉 ∈

[0, 20]. In each panel, the solid and dashed curves indicate, respectively, our approximate bifurcation curves
from Eqs. (3) and (4) with δ(G)

i = δ
(NG)
i = 0. Note that panel (a) is similar to Supplementary Fig. 6(c)

from the main text. Variations in ∆ appear to correspond closely with the theoretical curves. For example,
fixing α < 0.5 and increasing T , we observe an increase in ∆ as T surpasses T (ANC)

0 and a decrease in ∆

as T surpasses T (WFP)
0 . For all four network families, ∆ is largest for WTM maps that correspond to the

contagion regime that we predict to be characterized by WFP without ANC. By comparing the panels, we
see that the identifiability of the underlying ring topology (as indicated by ∆ ≈ 1) decreases as we increase
the heterogeneity in the nodes’ degrees. For example, panel (a) includes parameter values (T, α) for which
∆ > 0.9, but ∆ < 0.6 in panel (d) for the same portion of the parameter plane (T, α).

In Supplementary Fig. 20, we continue our investigation of the topology of the point clouds that result
from symmetric WTM maps by fixing α = 1/3 and plotting ∆ as a function of T . One can construe these
curves of ∆ versus T as examining vertical cross sections from the panels in Supplementary Fig. 19 with
several choices of mean degrees: (〈d(G)

i 〉, 〈d
(NG)
i 〉) = (6, 2) (red triangles), (〈d(G)

i 〉, 〈d
(NG)
i 〉) = (12, 4)

(blue squares), and (〈d(G)
i 〉, 〈d

(NG)
i 〉) = (24, 8) (magenta × symbols). As before, the networks have N =

200 nodes. Observe in Supplementary Fig. 20 that ∆ tends to decrease as the heterogeneity of the network
increases. For example, the values of ∆ in panels (b) and (c) tend to be smaller than those in panel (a),
and the ∆ values in panel (d) tend to be even smaller than those in panels (b) and (c). This decrease makes
it harder to successfully identify the ring topology in the point clouds. This is most evident for the curves
that correspond to (〈d(G)

i 〉, 〈d
(NG)
i 〉) = (6, 2) (red triangles). Although we observe large values of ∆ in

panels (a) and (b) for the point clouds for the contagion regime that we predict to exhibit WFP without
ANC [i.e., T ∈ (1/4, 3/8)], we find that the values of ∆ for this regime are much smaller in panels (c)
and (d). In this experiment, ∆ does not depend on mean node degrees in a simple manner. In network
family (a), for example, when comparing the ∆ versus T curve for (〈d(G)

i 〉, 〈d
(NG)
i 〉) = (12, 4) to that

for (〈d(G)
i 〉, 〈d

(NG)
i 〉) = (6, 2), we observe larger ∆ values when increasing the mean degrees. However,

restricting out attention to the range T ∈ (1/4, 3/8), the curve of ∆ versus T for (〈d(G)
i 〉, 〈d

(NG)
i 〉) = (24, 8)

yields ∆ values that are smaller than those for (〈d(G)
i 〉, 〈d

(NG)
i 〉) = (12, 4). This nontrivial behavior might

be due to the relatively small differences in magnitude between the mean node degrees and the network size
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(N = 200) that we use for this experiment. In this experiment, we also compute ∆ for Isomap, and we find
that ∆ ≈ 0 in all cases. We thus omit these results from Supplementary Fig. 20.

Non-Uniform Sampling of a Ring Manifold

In our numerical experiments thus far, we have investigated symmetric WTM maps for four families of
noisy geometric networks on a ring manifold. (See Supplementary Note 3 for their descriptions.) Network
families (c) and (d) allow heterogeneity in the node locations along a ring manifold through the placement
of nodes via unevenly-spaced angles {θi} along the unit circle. Recall that each node i has an associated
angle θi = 2πi

N + δθi, where we draw δθi ∼ N (0, (s2π
N )2) from a Gaussian distribution with a standard

deviation of s2π
N . Note that 2π

N is the spacing between the N nodes if they are spaced uniformly on the ring.
Consequently, by varying the parameter s, one can tune the level of heterogeneity in node location and thus
the heterogeneity of the geometric degrees {d(G)

i }. Recall that s → ∞ corresponds to sampling locations
on the unit circle uniformly at random. In our previous experiments, we let s = 1/2 for network families (c)
and (d). In this section, we investigate the effect of varying s. Because s > 0 introduces heterogeneity in the
geometric degrees, we consider both the case in which the nodes’ non-geometric degrees are identical and
the case in which they are heterogeneous. That is, the networks that we now consider are generalizations of
network families (c) and (d), but we now also vary the level of heterogeneity in the geographic spacing of
nodes on the ring.

In Supplementary Fig. 21, we show results for the (left column) geometry, (center column) dimension-
ality, and (right column) topology of symmetric WTM maps, where we fix α = 1/3 and N = 200 and we
vary the threshold T . We consider networks with N = 200 nodes, mean geometric degree of 〈d(G)

i 〉 = 24,
mean non-geometric degree of 〈d(NG)

i 〉 = 8, and s ∈ {0, 1/2, 1, 3/2, 2, 5/2,∞}. The top row corresponds
to generating noisy geometric edges so that every node has exactly d(NG)

i = 〈d(NG)
i 〉 non-geometric edges,

and the bottom row corresponds to generating noisy geometric edges uniformly at random so that the non-
geometric degree d(NG)

i of a node i is a binomially-distributed random variable. See the descriptions of the
network families in Supplementary Note 3. Using horizontal dashed lines, we show results for the mapping
of nodes for Isomap (i.e., based on shortest paths). We omit these results from panels (c) and (f), because
we obtain ∆ ≈ 0 in these cases. The dashed lines in panels (a) and (d) give values of ρ for a 2D Laplacian
eigenmap. (It is 2D by construction, so we do not investigate its embedding dimension P .)

Increasing network heterogeneity by increasing s has a significant effect on the structure of the point
clouds that result from symmetric WTM maps. For example, we see in panels (a) and (d) that increasing s
shifts the abrupt drop-off in the Pearson correlation coefficient ρ, which originally occurs near its expected
value of T (WFP)

0 = 3/8, to progressively smaller values of T . In fact, we see in all panels that increasing s
causes the curves of ρ versus T to shift to the left. Additionally, in panels (a) and (d), we see for sufficiently
large s that there is a regime in which ρ is small for all threshold values T . In panels (b) and (e), we still
obtain regimes in which the WTM maps are low-dimensional (i.e., P ≈ 2). However, as s increases, the
range of T values for which P indicates low dimensionality becomes smaller and shifts to the left. In panels
(c) and (f), one can also observe that the ability to identify the ring topology becomes more difficult with
increasing s. In panel (c), we obtain large 1-cycle lifetimes ∆ when T ∈ (1/4, 3/8) for s = 0; this provides
strong evidence that the point cloud lies on a ring manifold. For small s (e.g., 0 ≤ s ≤ 3/2), we also obtain
large values of ∆, but the range of thresholds T that produce large ∆ are smaller and have shifted to the left.
However, when s is large (e.g., s = ∞), ∆ remains small for all threshold values T in panels (c). There is
even less evidence of the ring topology in panel (f), as ∆ remains small for all values of s and T .
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Summary of Experiments with a Ring Manifold

We have conducted an extensive investigation of the geometry, dimensionality, and topology of sym-
metric WTM maps for several families of noisy geometric networks on a ring manifold. We now briefly
summarize our results.

We demonstrated that the structure (e.g., geometry, dimensionality, and topology) of WTM maps de-
pends strongly on the contagion threshold T and the network parameters (e.g., the number of nodes N ,
the geometric degrees {d(G)

i }, and the non-geometric degrees {d(G)
i }). Consequently, the extent to which

a WTM contagion exhibits wavefront propagation (WFP) versus the appearance of new clusters (ANC) of
contagions also depends on these parameters. Bifurcation analysis did a good job of predicting which pa-
rameter regimes have similar point-cloud structures. This is particularly evident in the (T, α) parameter
plane in Supplementary Figs. 14, 17, and 19, where we observed that the geometry, dimensionality, and
topology of WTM maps align well with our theoretical predictions for the occurrence of bifurcations in
the dynamics of a WTM contagion. We found such agreement even for networks with heterogeneity in
geometric degrees, non-geometric degrees, and/or node locations along a ring manifold. As we discussed
in Supplementary Note 3, we interpret our bifurcation analysis for the noisy ring lattice as an approximate
bifurcation analysis for the networks with heterogeneous structures. As expected, we also observed that
the accuracy of our approximation increases as the mean node degrees increase. However, its accuracy is
sensitive to a variety of factors—including the threshold T , the network size N , and the particular type of
structural heterogeneity in the network. In many of our numerical experiments, we compared the structure
of point clouds that result from WTM maps to those that result from a 2D Laplacian eigenmap [27] and
Isomap [23], which map the network nodes based on diffusion dynamics and shortest paths, respectively.
Our approach provides a nice complement to these methods.

50



Supplementary Discussion

In this Supplementary Discussion, we further consider the implications of our study for three research
areas that have diverse motivations and goals but which share a common interest in understanding spreading
processes on networks.

High-Dimensional Data Analysis of Contagions and Other Dynamics

Research on network epidemiology [28–31] underscores the importance of the perspective that we have
taken in the present paper. For example, Brockmann and Helbing [28] recently defined node-to-node dis-
tances based on a stochastic model for contagions that takes into account human mobility patterns in the
worldwide airline network, and they reported that such a notion of distance did a good job of predicting
global contagions. In their study, Brockmann and Helbing reported that node-to-node distances are insensi-
tive to the contagion parameters in their model. By contrast, we find that the geometry, dimensionality, and
topology of contagions depends sensitively on the contagion parameters (e.g., the threshold T ) of the WTM.
This appears to arise from the thresholding process, so we expect it to be relevant for complex contagions
in general because of the importance of social reinforcement [32–35].

Our perspective can be applied to study other spreading processes [21], where it has the potential to offer
insights into phenomena such as information seeding [36] and targeted immunization [37, 38]. Moreover, a
large variety of other processes—including some of the most heavily investigated dynamical processes (e.g.,
k-core percolation and other types of percolation) [21, 39], more intricate complex-contagion models [40],
and even some local methods for community detection [41]—also satisfy filtration conditions that are based
on node states and the dynamics of such states. One can thus construct contagion maps for these processes
and study them using the approach that we have illustrated. Computational homology offers a promising
(and novel) approach for studying all of those situations.

Dimension Reduction of Networks

In the present paper, we used the fact that WTM contagions satisfy a filtration condition. This makes
it possible to study networks from the perspective of computational topology [42–45]. One can thus con-
struct a metric space based on when nodes adopt a contagion for different choices of initial conditions.
(See Supplementary Note 4.) WTM contagions thereby allow the simultaneous study of network topology,
geometry, and dimensionality. Such manifold learning has numerous applications, including inference of
missing and spurious edges [6–10], efficient routing of information [46, 47], and identification of attributes
that are responsible for edge formation [48]. To provide a step in this direction, in Supplementary Note
2, we compared the denoising of networks via WTM maps—a “global” approach for identifying spurious
edges—to a popular “local” approach based on the statistics of subgraphs [4].

An important future direction is to improve the computational efficiency of constructing contagions
maps. As we discussed in Supplementary Note 5, the typical computational complexity for our construction
of a WTM map with all possible initial conditions with clustering seeding is currently O(NM), where M
is the number of edges in a network. Approximation schemes based on ideas such as network sampling [41]
and random projections [49] offer promising approaches for improving computation speed.
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Dimension Reduction of Point-Cloud Data

Although we focused on manifold structure in networks, our approach extends naturally to point-cloud
data (e.g., images, videos, and time series)—the traditional setting for manifold learning—if one first infers
a proximity network using, for example, a k-nearest neighbor distance thresholding [27, 50–52]. In this
endeavor, a central pursuit has been the development of techniques that are robust to noise [51–53]. It is
well-known that diffusion distances are more robust than shortest-path distances to noisy edges, so maps that
are based on diffusion [27,50] can be preferable to the Isomap algorithm [23] for noisy data [53]. However,
noisy edges can still be problematic for diffusion distances, so some techniques attempt to denoise a network
prior to mapping it [7]. The robustness to noisy edges for WTM maps with contagions dominated by WFP
makes them appealing, and it would be interesting to explore applications with noisy data.

An important distinction of WTM maps from prior work is that our research is based on nonlinear and
nonconservative dynamics (in particular, on complex contagions) rather than on linear and conservative
dynamics such as diffusion (e.g., random walks) [6, 7, 27, 50–52]. These different classes of dynamics can
behave very differently, and it is known that they give very different answers for questions like which nodes
are most important [54] and what network structures constitute bottlenecks to such dynamics [55] (which is
closely related to which network structures yield dense communities of nodes [41]). Comparing WTM maps
to Laplacian eigenmaps [27] and Isomaps [23] (see Supplementary Note 8) illustrates that these different
dynamics lead to differences in the results of dimension reduction. It is thus important to explore dynamics
other than diffusion for the analysis of point-cloud data.
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