Journal of Experimental Botany Supplementary Data

Article title: Comprehensive transcript profiling of two grapevine rootstock genotypes
contrasting in drought susceptibility links phenylpropanoid pathway to enhanced tolerance

Authors: Massimiliano Corso, Alessandro Vannozzi, Elie Maza, Nicola Vitulo, Franco Meggio,
Andrea Pitacco, Andrea Telatin, Michela D'Angelo, Erika Feltrin, Alfredo Simone Negri, Bhakti
Prinsi, Giorgio Valle, Angelo Ramina, Mondher Bouzayen, Claudio Bonghi and Margherita
Lucchin.

The following Supplementary Data are available for this article:

Supplementary Fig. S1 Schematic representation of the experimental plan. The WS was
gradually imposed by decreasing the water-availability in pots from 80% to 30% of field
capacity, whereas WW plants, used as control, were maintained to 80% of field capacity. In
order to attenuate the fluctuation in soil water content, pots were weighed and then the quantity
of water adequate to reach/ maintain the desired fraction of soil field capacity was added. The

procedure was repeated twice a day, at 8:00 am and at 6:00 pm.
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Supplementary Fig. S2 W-BOX cis-elements in six VvSTS promoters.

Figure S2. WBOX cis-elements in six VwSTSs promoters. (a) Frequencies of W-BOXs motif
detected in VVSTS DE genes and in 10000 promoters (2Kb sequences) randomly selected from
PN40024, 101.14 and M4 genotypes. A t-test was carried out comparing the frequencies of
WBOXs in STSs and in 10000 random promoters separately for each genotype. (b) Number of
each W-BOX cis-element in M4 and 101.14. C. Relative expression of VwSTS12/16/17/18/27/29
genes (blue bars). Histogram represent the log2M4/101.14 only for WS plants at T2 (4 DASI).
Difference between number of total W-BOX in M4 and 101.14 (nrM4 - nr101.14) are given in
brackets. D. Correlation between log2M4/101.14 (WS plants) and number of WBOX M4 -
101.14.

(a) Cis-element frequency
WBOX 10000 random promoters STSs DE genes
PN40024 101.14 M4 101.14 M4

TGAC 53 53 53 10.3 12.7
TTGAC 19 19 20 28 6.3
TTTGAC 0.8 0.8 0.8 3.3 38
TGACC 1.1 1.1 1.1 48 8.7
TGACT 17 17 17 35 75
TTTGACC/T 0.2 0.2 0.2 3.0 53
TTGACC 04 04 04 05 1.2
TTGACT 0.7 0.7 0.7 0.8 13

ns p<0.05

Methods S1 Click here to enter text.

(b) VvSTS12 VvSTS16 VvSTS18 VvSTS27 VvSTS29
WBOX Name M4 (10114 M4 [101.14] M4 [101.14( M4 [101.14] M4 [101.14
TTTGACT/C B - 8 8 6 5 6 2 2 0
TTGAC 3 3 7 7 7 3 11 - 3 0
TGACT 5 5 10 9 10 5 7 2 3 0
TGACC 7 7 14 13 11 6 9 3 0 0
TGAC 10 12 18 15 14 12 16 10 4 0
TTGACC 0 0 2 2 2 0 2 0 0 0
TTGACT 1 1 2 2 3 1 0 0 1 0
TTTGAC 3 3 4 5 5 3 6 2 1 2
Total 33 24 65 61 58 34 57 23 14 2
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WBOX M4 - WBOX 101.14 (nr)
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Supplementary Fig. S3 Heat maps showing ABA-related genes in roots and leaves of M4 and
101.14 genotypes.

Figure S3. Heat maps with ABA-related genes in roots an leaves of 101.14 and M4. Red and blue
represent up- and down-regulated genes upon WS. Expression values are reported as log,

WS/WW.

ROOTS

Gene
Category

Vitis ID

Gene Name

101.14

T1

T2 T3

T4

ABA signal
transduction

WVIT 1050116201800
VIT_10s0003g04020
VIT_1850072g01030
VIT 0750141800610
VIT 1350067201960
VIT_1050003g03270
VIT 0250025204930

CPK21/23
CPK23
CPK4/11
DREB24_1/2
DRE-BIND 24
KATL

SLACL

ABA
hiosynthesis

WVIT 135001901010
VIT_0650009200770
VIT 195009300550
VIT_10s0003g03750
VIT 0550051200670

ABAZ
AMD3
MNCED1/3
MNCED2/S
NCED6&

ABA catabolism

WIT_05s0077g01150
WVIT_0250087g00710
WIT_0650004g05050
WVIT_03s0063g00380
WIT_1150065g00040
WVIT_1150065g00630

BG1
CYP7074.1/3
CYP7074.2
CYP70748.4
CYP706412
CYP706412

ABA receptors

WIT_0250012g01270
WIT_0250025g01340

VIT_0450008200890
VIT 165005002620
VIT_1350067g01940
VIT 0850058200470
VIT 1550046201050

RCARLL
RCARL
RCARL3
RCAR3
RCARLO
RCARLO
RCAR1-2

PP2Cs - Protein
Phosphatases

VIT 045000801420
VIT 1350019202200
VIT 0650004205460
VIT_0950002201850
VIT 095000203530
VIT 115001601780
VIT 115001603180
WVIT 165002202210

\WWPP2C2 (ABI1-like)
VWPP2CS (PP2CA-like)
\VWPP2C9

\WPP2C3

\wPP2CS

\WWPP2CL

\VWPP2C4

\WPP2C7

SnRK2 - protein

VIT_0050710g00020
VIT_0350063201080
VIT 0250236200130
VIT_0750191g00070

SNRK2/05T1
SMNRK2-6
SMNRK2-6
SMNRK2-6

kinases VIT_07s0031203210 |SNRK2-1
WIT_1250035g00310 |SNRK 2-10
VIT_07s0197200080 |SNRK2-2
WVIT_18s50001g06310 |SNRK2-8

ABFs - A4BA |WIT_03s0063g00310 |ABF-like
responsive  |VIT_18s0001g10450 |ABF-like

genes

WVIT_0850007g03420

ABIS




LEAVES

Gene
Category

Vitis ID

Gene Name

101.14

M4

T2 T3

T4

Tl

T2

T3

T4

ABA signal
transduction

WIT_10s0116201800
WIT_10s0003g04020
WIT_18s0072g01030
WIT_07s0141200610
WIT_13s0067g01960
WIT_10s0003g03270
WIT_02s0025g04930

CPK21/23
CPK23
CPK4/11
DREB24_1/2
DRE-BIND 24,
K&TL

SLACL

ABA
hiosynthesis

VIT_1350019g01010
VIT_0650009g00770
VIT_1950093g00550
VIT_10s0003g03750
VIT 0550051200670

ABAZ
A4803
NCED1/3
NCED2/S
NCED6&

ABA catabolism

VIT_0550077201150
VIT_0250087200710
VIT_0650004g05050
VIT_0350063g00380
VIT_1150065200040
WVIT_1150065200630

BG1
CYP7074.1/3
CYP7074.2
CYP7074.4
CYP706412
CYP706A12

ABA receptors

WIT_02s0012g01270
WIT_0250025201340
WIT_04s0008g00830
WIT_16s0050g02620
WIT_13s0067g01940
WIT_08s0058g00470
WIT_15s0046g01050

RCARI1L
RCARL
RCAR13
RCAR3
RCAR1LD
RCAR1D
RCAR1-2

PP2Cs - Protein
Phosphatases

WVIT_04s0008g01420
VIT_1350019g02200
VIT_0650004g05460
VIT_0950002g01850
VIT_0950002g03530
WIT_1150016g01780
WVIT_ 115001603180
VIT_1650022g02210

VWPP2C2 (£BI1-like)
VYPP2CS (PP2CA-like)
VYPP2CY

VwPP2C3

VwPP2CS

VPP2C1

VvPP2C4

VYPP2C7

SnRK2 - protein
kinases

WIT_00s0710g00020
WIT_03s0063g01080
WIT_0250236200130
WIT_07s0191g00070
WIT_07s0031g03210
WIT_12s0035g00310
VIT_07s0197g00080
WIT_18s0001g06310

SNRK2/0ST1
SMNRK2-6
SMNRK2-6
SMNRK2-6
SMNRK2-1
SMNRK 2-10
SMNRK2-2
SNRK2-8

ABFs - ABA
responsive
genes

WIT_03s0063g00310
WIT_18s0001g10450
WIT_08s0007g03420

ABF-like
ABF-like
ABIS




Supplementary Results S1 M4 and 101.14 genome resequencing.

1. Genomes Resequencing results

The two rootstock genotypes (101.14 and M4) were sequenced by means of a whole genome
shotgun approach preparing a “mate paired” library (insert size 1.5 kb) per sample, using as
sequencing platform a SOLiD 5500x1 by Life Technologies.

1.1 Sequencing depth
For each cultivar approximately 30 Gbp of data have been produced from the “mate paired”
libraries (2x60).

101.14 M4
Reads 254 173 211 130210 198
Throughput (Gbp) 30 Gbp 16 Gbp
Raw coverage 68 X 30X

1.2 Coverage in gene sequences
To assess the mappability of RNA-Seq reads we calculated the number of uniquely mapped
reads in each gene using the htseq-count package.

101.14 M4
Genes in annotation 29970 29970
Genes with 0 unique counts 2 654 2012
Genes with > 80 unique counts 21 620 21 816
Genes with 0 counts 1 1
Genes with > 80 counts 29 368 29210




1.3 Variants respect to PN40024
Accepting variants covered at least 20 times, we calculated the average frequency of variants
using a sliding window of 2 kb.

101.14 M4
N. of Variants 2233051 1671472
Variants every 2000 bp 9.72+7.11 7.89+7.17
Average distance 217.70 £ 504.37 290.78 £ 731.30

Supplementary Methods S1 mRNA samples preparation and sequencing

Total RNA was extracted from frozen leaves and roots of both genotypes using the
“SpectrumTM Plant total RNA Kit” (Sigma) according to manufacturer’s instructions. mRNA was
purified from the total RNA using the Dynabeads mRNA Direct kit (Invitrogen pn 610.12). A
variable quantity of mRNA ranging from 0.4 to 1.6 % respect to the amount total of RNA was
obtained. Samples for Ligation Sequencing were prepared according to the “SOLID Whole
transcriptome library preparation” protocol (pn 4452437 Rev.B). The samples were purified
before RNase lll digestion with Purelink RNA micro kit columns (Invitrogen, pn 12183-016),
digested from 3' to 10' depending on the starting amount of mRNA, retro-transcribed, size-
selected using Agencourt AMPure XP beads (Beckman Coulter pn A63881) and barcoded during
the final amplification. Obtained libraries (an average of 2.5 samples per lane) were sequenced
using Applied Biosystems, SOLIDTM 5500XL, which produced paired end reads of 75 and 35
nucleotides for the forward and reverse sequences, respectively. Reads were aligned to the v1
prediction of grapevine PN40024 reference genome (http://genomes.cribi.unipd.it/grape) using
PASS aligner (Campagna et al., 2009). The percentage identity was set to 90% and one gap was
allowed whereas the quality filtering parameters were set automatically by PASS. A minimum
reads length cut-off of 50 and 30 nt was set for the forward sequences and reverse reads,
respectively. The spliced reads were identified using the procedure described in PASS manual

(http://pass.cribi.unipd.it). The forward and the reverse reads were aligned independently on



the reference genome. The PASS-pair tool of the PASS package was used to perform the pairing
between the forward and the reverse reads and to selected only those sequences that were
uniquely aligned. Finally htseqg- counts program
(http://wwwhuber.embl.de/users/anders/HTSeq/doc/count.html) was used to quantify gene

abundance.

Supplementary Methods S2 Quantification of Abscisic Acid

Leaf samples (0.5g) were resuspended in 20 ml of a 80% methanol solution containing 100 pg of
butylated hydroxytoluene (Sigma Aldrich, St Louis, MO, USA) and 300 ng of d6ABA (OIChemIm,
Olomouc, Czech Republic) and incubated overnight at -20°C. After a centrifugation at 5000 rpm
for 30 min, 200ul of a 25% ammonia solution were added and the volume of the suspension
was reduced to 4 ml by means of a rotavapor under vacuum at 40°C. Once recovered the
samples, the pH was reduced through 100 ul of a 2M acetic acid solution and 5 ml of ethyl
acetate were added. In order to collect the organic phase, the mixture was centrifuged for 30
min at 2500 rpm and ethyl acetate was removed under vacuum. The dried extract was
resuspended by means of 5 ml of a 0.1M acetic acid solution and incubated for 2h at room
temperature.

The sample was then loaded on a Sep-Pak® C18 cartridge ( Waters, Milford, MA), previously
activated with 5 ml of a solution 50% methanol / 50% 0.1M acetic acid. The column was washed
with a 17% methanol solution and then the ABA fraction was eluted with 5 ml of a solution 40%
methanol / 60% 0.1 M acetic acid. The eluate was pH-adjusted to 8 through a 25% ammonia
solution and dried overnight using a SpeedVac at room temperature. The sample was then
derivatized with 150 pl of N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA - Sigma
Aldrich, St Louis, MO, USA) for 4h at room temperature under continuous shaking.

Abscisic acid quantification was performed using a GC-MS 7890/5975-MSD (Agilent
Technologies, San Jose, CA, USA) injecting 2 pL of the derivatized sample in splitless mode. The
column (DB-5, 30 m x 0.25 mm, 0.25 um, Agilent Technologies), under a constant helium flux of

1

1ml min™~, was heated 1 min at 70 °C, 6 min ramp to 76 °C, 45 min ramp to 350°C, 1 min at 350

°C, 10 min at 330°C. lonization was achieved by electron impact at -70 eV and MS Source and



Quad were maintained at 230°C and 150°C, respectively. Spectral acquisition was performed in
Selected lon Monitoring mode (SIM), following the ion relating to d6ABA ( m/z = 194; RT =
34.73 min) and ABA (m/z = 190; RT = 34.80 min), setting a dwell time of 20msec. In order to
integrate the spectra, chromatograms were analyzed through the software MET-IDEA v. 2.08

(Broeckling et al. 2006).

References
Broeckling CD, Reddy IR, Duran AL, Zhao X, Sumner LW. 2006. MET-IDEA: Data Extraction Tool

for Mass Spectrometry-Based Metabolomics. Analytical Chemistry 78:13 4334-41

Supplementary Methods S3. Differential Cluster Analysis (DCA).

Description of the DCA method

Ontology analysis conducted on most representative GO categories allowed us to identify six
sub-clusters of DEGs (i.e. plant hormones, antioxidant responses, sugars, cell wall, secondary
metabolism and transcription factors). Within these sub-clusters, the log, (WS/WW) ratio of
101.14 and M4 DEGs of all time points (T1-T4) was retrieved from pairwise statistical analysis
and used as data input for the following Differential Clustering Analysis (DCA) conducted on
both leaves and roots. The DCA analysis was performed by using an R script, which is a slightly
modified version of the original method carried out by Ihmels et al. (2005), Lelandais et al.
(2008) and Cohen et al. (2010). The DCA analysis is carried out in three steps that we develop
here. (i) The correlation values of all DEGs belonging to the GO categories related to a reference
rootstock (rr) and a target rootstock (tr) were initially calculated with the ‘cor’ R function. (ii)
Correlation values of the rr were subsequently clustered by applying the ‘kmeans’ R function.
The number of clusters related to the rr were selected in accordance to an average correlation
value, which was heuristically chosen higher than 0.65 for each cluster. The same order chosen
for the rr was used to arrange the tr DEGs of the GO-selected categories. Hence, the transcripts
from each cluster were co-expressed in the rr (correlation > 0.65) but not necessarily in the tr
one. (iii)) DEGs related to each cluster of the tr were subsequently grouped into two sub-clusters
(a and b) by using a hierarchical clustering method (with ‘hclust’ R function). The average of the

correlation values belonging to each sub-cluster (Ca and Cb) and the average of the correlation



values between the two clusters a and b (Cab) were eventually calculated. Correlation values of
tr and rr matrices are graphically represented in white, yellow and red colors for strongly
correlated, weakly correlated and anti-correlated genes, respectively. DCA results were finally
presented as a unique distance matrix between gene expression measurements in which rr and tr
rootstocks were respectively represented in rows and columns. Clusters of each rootstock were
compared and assigned to “full”, “partial”, “split” or “absent” conservation categories after
comparing Ca, Cb and Cab values with the threshold T, which is chosen equal to 0.5 in this
study. Specifically, if (Ca and Cb) < T the cluster was assigned to the “no conservation”
category, if (Ca or Cb) > T the cluster was assigned to the “partial conservation” category, if (Ca
and Cb) > T and Cab < T the cluster was assigned to the “split conservation” category and if (Ca,

Cb and Cab) > T the cluster was assigned to the “full conservation” category.

Graphical example:

200 genes from “carbohydrate metabolism” macro category were
chosen, in according to the ontology analysis

M4 rootstock
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R script for the DCA method
 Tmporting dara

X=read.table ("TABLEl.txt",header=TRUE, row.names=1, sep="\t",dec=".")
Y=read.table ("TABLE2.txt",header=TRUE, row.names=1, sep="\t",dec=".")

XPCM=cor (t (X))

sdX=apply (X, 1,sd)
which (sdX==0)
sdY=apply (Y, 1,sd)
which (sdY==0)
X2=X[sdX>0&sdY>0, ]
Y2=Y [sdX>0&sdY>0, ]
dim (X2)

dim(Y2)

XPCM=cor (t (X2))
YPCM=cor (t (Y2))
n=dim (XPCM) [1]

# How many cluster for the 'kmeans' clusterization?

K=10
corValues=vector ("list",K)
for (k in 1:K) {
kmref=kmeans (XPCM, k)
for (i in 1:k) {
cori=XPCM[kmrefS$Scluster==1i, kmrefScluster==1i]
corValues|[ [k]]=c (corValues|[[k]],mean (cori[upper.tri(cori)]))

}
x11 ()
boxplot (corValues, xlab="Number of clusters",ylab="Mean correlation values",ylim=c(0,1))
for (r in 1:10) {
for (k in 1:K) {
kmref=kmeans (XPCM, k)
for (i in 1:k) {
cori=XPCM[kmrefS$Scluster==1i, kmrefScluster==1i]
corValues|[ [k]]=c (corValues|[[k]],mean (cori[upper.tri(cori)]))
}
}
boxplot (corValues, xlab="Number of clusters",ylab="Mean correlation values",ylim=c(0,1))
}
abline (h=c(0.6,0.7,0.8),1lwd=2,1ty=2)

kmref=kmeans (XPCM, nClust)
ord=hclust (dist (kmref$centers)) Sorder
kmref$size=kmrefS$size[ord]
kmref$cluster=kmref$Scluster+nClust
for (i in 1:nClust)

kmref$cluster [kmrefScluster==(ord[i]+nClust) ]=1
XPCM1=XPCM[order (kmref$Scluster),order (kmref$Scluster) ]



YPCM1=YPCM[order (kmref$cluster),order (kmref$cluster) ]

ordre=sort (kmref$cluster)

taille=kmref$size

taille

taillec=c (0, cumsum(taille))

taillec

x11 ()

par (pty="s")

image (0:n,0:n,XPCM1, xlab="Reference", ylab="Target", cex.axis=1.25,cex.lab=1.25)

abline (v=0,h=n, lwd=2)

abline (v=n,h=0, lwd=2)

abline (0,1, 1lwd=2)

segments (taillec[2: (nClust+1l)],taillec[l:nClust],taillec[l:nClust],taillec[1l:nClust],lwd=2)
segments (taillec[2: (nClust+1l)],taillec[l:nClust],taillec[2: (nClust+l)],taillec[2: (nClust+l)],lwd=
2)

corValues=numeric ()
for (i in 1l:nClust) {
cori=XPCM[kmrefS$Scluster==1i, kmrefScluster==1i]
corValues=c (corValues,mean (cori[upper.tri(cori)]))
}

corValues

# Adding coorelation values?
text (taillec[l:nClust+1l],taillec[l:nClust], round(corValues,?2),adj=c(1l,0),cex=1.25)

# Clustering target cluster and calculating Ca, Cb and Cab

T=0.6 # To choose ?
Ca=vector ("numeric",nClust)
Cb=vector ("numeric",nClust)
Cab=vector ("numeric",nClust)
CaClust=vector ("numeric",nClust)
tailleci=0
XPCM2=XPCM1
YPCM2=YPCM1
for (i in 1l:nClust) {
kmtar=kmeans (YPCM1 [ordre==1i,],2)
ordrei=l:n
ordrei[ordre==i]=order (kmtar$cluster)+taillec[i]
XPCM2=XPCM2 [ordrei, ordrei]
YPCM2=YPCM2 [ordrei, ordrei]
YPCM2reduite=YPCM2 [ordre==1, ordre==1i]
tailleci=c(tailleci,max(tailleci)+cumsum (kmtar$size))
if (kmtar$size[l]>1) {
Cl=YPCM2reduite[l:kmtar$Ssize[l],l:kmtar$size[1]]
Cl=mean (Cl[upper.tri(Cl)])
} else Cl=1
if (kmtar$size[2]>1) {

C2=YPCM2reduite[ (kmtar$size[1l]+1) :sum(kmtar$size), (kmtarSsize[1l]+1) :sum(kmtarS$Ssize) ]
C2=mean (C2 [upper.tri(C2)])

} else C2=1

Cab[i]=mean (YPCM2reduite[l:kmtar$size[l], (kmtar$Ssize[1l]+1) :sum(kmtar$Ssize)])

if (Cl<C2) {
Cb[i]=C1l
Cal[i]=C2
CaClust[i]=2
} else {
Cb[i]=C2
Cal[i]=C1l

CaClust[i]=1

}

Conservation=vector ("character",nClust)
Anti.Corr=vector ("numeric",nClust)

for (i in 1l:nClust) {



Conservation[i]=ifelse(Ca[i]>T,ifelse(Cb[i]>T,ifelse(Cab[i]>T,"Full","Split"),"Partial"),
"No™")
Anti.Corr[i]=ifelse(Cab[i]< -T,"Yes","No")
}
Ref.Corr=corValues
res=data. frame (Ref.Corr,CaClust,Ca,Cb,Cab,Conservation,Anti.Corr)
res

PCM=XPCM2*lower.tri (XPCM2)+YPCM2*upper.tri (YPCM2)
diag (PCM)=1
x11 ()
par (pty="s")
image (0:n,0:n,PCM, x1lab="Reference",ylab="Target",cex.axis=1.25,cex.lab=1.25)
abline (v=0,h=n, 1lwd=2)
abline (v=n,h=0, 1wd=2)
abline (0,1, 1wd=2)
segments (taillec[2: (nClust+1l)],taillec[l:nClust],taillec[l:nClust],taillec[l:nClust],lwd=2)
segments (taillec[2: (nClust+1l)],taillec[l:nClust],taillec[2: (nClust+l)],taillec[2: (nClust+l)],lwd=
2)
segments (tailleci[2*1:nClust],tailleci[2*1:nClust],tailleci[2*1:nClust],tailleci[2*1:nClust+1l],1lw
d=2)
segments (tailleci[2*1:nClust],tailleci[2*1:nClust+1l],tailleci[2*1:nClust+1l],tailleci[2*1:nClust+1
1, lwd=2)
segments (tailleci[2*1:nClust-1],tailleci[2*1:nClust-1],tailleci[2*1:nClust-
1],tailleci[2*1:nClust],lwd=2)
segments (tailleci[2*1:nClust-
1],tailleci[2*1:nClust],tailleci[2*1:nClust],tailleci[2*1:nClust],lwd=2)
# For all clusters
for (i in 1l:nClust) {

x11 ()

par (pty="s")

image (taillec[i]:taillec([i+1],taillec[i]:taillec[i+1],PCM[ (taillec[i]+1):taillec[i+1], (ta
illec[i]+1) :taillec[i+1]],xlab="Reference",ylab="Target",cex.axis=1.25,cex.lab=1.25)

abline (v=taillec[i],h=taillec[i+1],1lwd=2)

abline (v=taillec[i+1l],h=taillec[i], lwd=2)

abline (0,1, 1wd=2)

segments (taillec[2: (nClust+1l)],taillec[l:nClust],taillec[l:nClust],taillec[l:nClust],lwd=
2)

segments (taillec[2: (nClust+1l)],taillec[l:nClust],taillec[2: (nClust+l)],taillec[2: (nClust+
1)1, 1lwd=2)

segments (tailleci[2*1:nClust],tailleci[2*1:nClust],tailleci[2*1:nClust],tailleci[2*1:nClu
st+1], lwd=2)

segments (tailleci[2*1:nClust],tailleci[2*1:nClust+1l],tailleci[2*1:nClust+1l],tailleci[2*1:
nClust+1],1lwd=2)

segments (tailleci[2*1:nClust-1],tailleci[2*1:nClust-1],tailleci[2*1:nClust-
1],tailleci[2*1:nClust],lwd=2)

segments (tailleci[2*1:nClust-
1],tailleci[2*1:nClust],tailleci[2*1:nClust],tailleci[2*1:nClust],lwd=2)

title (paste("Cluster",i))

DCA.Clusters=data.frame (geneID=dimnames (PCM) [ [1]],RefCluster=rep(l:nClust,taille[l:nClust]), TarCl
uster=rep(rep(l:2,nClust),tailleci[l: (2*nClust)+1l]-tailleci[l: (2*nClust)]))

write.table (DCA.Clusters,"DCA.Clusters Primary metabolism M4 reference WS

root.txt",sep="\t", row.names=FALSE)

write.table(res,"correlation values Primary metabolism M4 reference WS root.txt")



