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Supplementary Figure 1: reaction times.  

Average reaction times during the learning test as a function of the choice contexts. *P<0.05 one sample t-test; ns: 

not significant. Error bars represent s.e.m. 
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Supplementary Figure 2: intermediate value cues post learning choice rates  

 (A) and (B) Post-learning choice rate for comparisons involving the incorrect option in reward conditions (G25: 

options associated with 25% percent of winning 0.5€) and the correct option in the punishment conditions (L25: 

options associated with 25% percent of losing 0.5€), respectively. EV difference: difference in the absolute expected 

value (Probability(outcome) * Magnitude(outcome)) for a given cues comparison. Negative “EV difference” values 

indicate lower EV in the intermediate value cue (G25 or L25) compared to the cue to which it is compared. Positive 

“EV difference” values indicate the opposite. Colored bars represent the actual data and black (RELATIVE) and 

white (ABSOLUTE) dots represent the model-simulated data. *P<0.05 one sample t-test corrected for multiple 

(twelve) comparisons. Error bars represent s.e.m. 
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Supplementary Figure 3: comparison between the RELATIVE 4 and the actor-critic models 

(A), (B) and (C): the graphs represent the model estimate of the context (state) values as a function of trial and the 

task context (the color scheme is the same used in the main text). Bold lines represent the mean; the shaded areas 

represent the s.e.m. (D), (E) and (F): the bars represent the final option or policy value estimates. . G75 and G25: 

options associated with 75% and 25% percent of winning 0.5€, respectively; L75 and L25: options associated with 

75% and 25% percent of losing 0.5€, respectively. The estimates are generated from individual history of choices and 

outcomes and subject-specific free parameters. (G): the bars represent the difference in BIC between a model and 

the ABSOLUTE model (Q-learning). Positive values indicate better fit, negative values worst fit, compared to the 

ABSOLUTE model. (H): the bars represent the posterior probability of the model given the data and the parameters 

values  (calculated based on the LPP; see supplementary Table 1). The dotted line represents chance level (0.25). 

Errors bars represent s.e.m.   
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Supplementary Figure 4: comparison between the RELATIVE 4, 5 and 6 models  

(A), (B) and (C): the graphs represent the model estimate of the context (state) values as a function of trial and the 

task context (the color scheme is the same used in the main text). Bold lines represent the mean; the shaded areas 

represent the s.e.m. (D), (E) and (F): the bars represent the final option value estimates. G75 and G25: options 

associated with 75% and 25% percent of winning 0.5€, respectively; L75 and L25: options associated with 75% and 

25% percent of losing 0.5€, respectively. The estimates are generated from individual history of choices and 

outcomes and subject-specific free parameters. (G): the bars represent the difference in BIC between a model and 

the ABSOLUTE model (Q-learning). Positive values indicate better fit, negative values worst fit, compared to the 

ABSOLUTE model. (H): the bars represent the posterior probability of the model given the data and the parameters 

values  (calculated based on the LPP; see supplementary Table 1). The dotted line represents chance level (0.25). 

Errors bars represent s.e.m.   
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Supplementary Figure 5: chosen option value representation in the RELATIVE model 

Brain areas correlating positively and negatively with the chosen option value (QC; left and right column). Significant 

voxels are displayed on the glass brains (top) and superimposed to slices of the between-subjects averaged 

anatomical T1 (bottom). Coronal slices correspond to the blue lines on sagittal glass brains. Areas colored in gray-to-

black gradient on glass brains and in yellow on slices showed a significant effect at P<0.05, voxel level FWE 

corrected). Areas colored in red on the slices showed a significant effect at P<0.001, uncorrected. Y coordinates are 

given in the MNI space. The results are from the GLM using the RELATIVE model parametric modulators 

(GLM1b).  

 
  



Contextual modulation of value signals in reward and punishment learning 

Palminteri and colleagues 6 

 
 Supplementary Figure 6: outcome encoding and anatomic mask  

The figure presents the brain activations, concerning the outcome contrasts between the best and the worst 

outcomes (RC; reward contexts contrast: +0.5€>0.0€; punishment contexts contrast: 0.0€>-0.5€), obtained from the 

categorical GLM3. Significant voxels are displayed on axial glass brains and superimposed to coronal slices of the 

between-subjects averaged anatomical T1. Coronal slices correspond to the blue lines on axial glass brains. Y 

coordinates are given in the MNI space. The results are from the categorical GLM2. Areas colored in gray-to-black 

gradient on glass brains and in red on slices showed a significant effect (P<0.001, uncorrected in A & B, and P<0.01, 

uncorrected in C & D). Areas colored in yellow on slices showed a significant effect (P<0.05, FWE mask-level 

corrected). (A) Significant activations by the best>worst outcome (+0.5€>0.0€) contrast in the reward/partial 

condition. (B) Significant activations by the best>worst outcome (0.0€>-0.5€) contrast in the punishment/partial 

condition. (C) Significant activations by the best>worst outcome (+0.5€>0.0€) contrast in the reward/complete 

condition. (D) Significant activations by the best>worst outcome (0.0€>-0.5€) contrast in the punishment/complete 

condition. (E) The blue voxels correspond to the anatomic mask used for the study of outcome related activations. 

The mask includes all voxels classified as striatum, pallidum and insula in the Automatic Anatomic Labeling (AAL) 

atlas. The mask is superimposed to axial slices of the between-subjects averaged anatomical T1. 
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Supplementary Tables 

 

Supplementary Table 1: intermediate value cues post learning choice rates  

The table summarizes for both intermediate value cues (G25 and L25) and feedback information (partial and 

complete) their experimental and model-derived dependent post-learning choice rate. DATA: experimental data; 

RELATIVE 4:  relative value learning model with delta rule update and context-specific heuristic (best fitting model 

in all model comparison analyses); ABSOLUTE: absolute value learning model (Q-learning). Data are expressed as 

mean ± s.e.m. *P<0.05 t-test, comparing the model-derived values to the actual data after correcting for multiple 

comparisons. 

Comparison DATA ABSOLUTE RELATIVE 4 

G25 vs G75 (partial) 0.25±0.07 0.11±0.02 0.14±0.02 

G25 vs L25 (partial) 0.54±0.08 0.84±0.02* 0.61±0.03 

G25 vs L75 (partial) 0.69±0.07 0.95±0.01* 0.91±0.02 

G25 vs G75 (complete) 0.07±0.03 0.09±0.02 0.08±0.02 

G25 vs L25 (complete) 0.36±0.08 0.88±0.02* 0.33±0.06 

G25 vs L75 (complete) 0.71±0.07 0.97±0.01* 0.73±0.04 

L25 vs G75 (partial) 0.20±0.06 0.04±0.01 0.09±0.02 

L25 vs G25 (partial) 0.45±0.08 0.16±0.02* 0.38±0.03 

L25 vs L75 (partial) 0.80±0.05 0.83±0.02 0.86±0.02 

L25 vs G75 (complete) 0.23±0.06 0.03±0.02* 0.29±0.05 

L25 vs G25 (complete) 0.64±0.08 0.11±0.02 0.67±0.06 

L25 vs L75 (complete) 0.95±0.04 0.90±0.02 0.92±0.02 

 

 

Supplementary Table 2: model comparison of different algorithmic specifications of the RELATIVE model 

The table summarizes for each model its fitting performances. DF: degrees of freedom; LLmax: maximal Log 

Likelihood; AIC: Akaike Information Criterion (computed with LLmax); BIC: Bayesian Information Criterion 

(computed with LLmax); LPP: Log of Posterior Probability; XP: exceedance probability (computed from LPP). PP: 

posterior probability of the model given the data.  RELATIVE 4 is the model described in the main text.  

 

Model   Update Heuristic DF -2*LLmax 2*AIC BIC -2*LPP PP XP 

ABSOLUTE - - 3 307±20 319±20 325±20 314±20 0.08±0.04 0.0 

RELATIVE 1 Frequentist Aspecific 3 306±22 318±22 324±22 315±21 0.00±0.01 0.0 

RELATIVE 2 Frequentist Specific 3 303±22 315±22 322±22 313±22 0.06±0.01 0.0 

RELATIVE 3 Delta rule Aspecific 4 298±22 315±22 323±21 307±21 0.02±0.03 0.0 

RELATIVE 4 Delta rule Specific 4 295±22 311±22 319±22 304±21 0.84±0.05 1.0 

 

Supplementary Table 3: model comparison involving the actor-critic models 

The table summarizes for each model its fitting performances. DF: degrees of freedom (number of free parameters). 

LLmax: maximal Log Likelihood; AIC: Akaike Information Criterion (computed with LLmax); BIC: Bayesian 
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Information Criterion (computed with LLmax); LPP: Log of Posterior Probability; XP: exceedance probability 

(computed from LPP). PP: posterior probability of the model given the data (computed from LPP).  

 

Model   DF 2*LLmax 2*AIC BIC 2*LPP PP XP 

ABSOLUTE 3 307±20 319±20 324±20 314±20 0.07±0.02 0.00 

RELATIVE 4 4 295±22 311±22 319±22 304±21 0.51±0.07 0.90 

ACTOR-CRITIC1 4 307±22 323±22 331±22 310±22 0.22±0.04 0.09 

ACTOR-CRITIC2 4 306±22 322±22 329±22 310±22 0.19±0.05 0.01 

 

Supplementary Table 4: model comparison as a function of different ways to calculate the context value 

prediction error in the RELATIVE model (i.e. “random-policy”, “on-policy”, “best-policy”). 

The table summarizes for each model its fitting performances. Partial RV: calculation of the context-level outcome 

term used to update the context value V(s) in the partial feedback conditions. Complete RV: calculation of context-

level outcome term used to update the context value V(s) in the complete feedback conditions. LLmax: maximal Log 

Likelihood; AIC: Akaike Information Criterion (computed with LLmax); BIC: Bayesian Information Criterion 

(computed with LLmax); LPP: Log of Posterior Probability; XP: exceedance probability (computed from LPP). PP: 

posterior probability of the model given the data (computed from LPP).  

 

Model   Partial RV Complete RV 2*LLmax 2*AIC BIC 2*LPP PP XP 

ABSOLUTE - - 307±20 319±20 324±20 314±20 0.05±0.02 0.00 

RELATIVE 4 (RC+Q(s,u))/2 (RC+RU)/2 295±22 311±22 319±22 304±21 0.82±0.05 1.00 

RELATIVE 5 RC RC 297±22 313±22 321±22 308±21 0.11±0.04 0.00 

RELATIVE 6 max(RC,Q(s,u)) max(RC,RU) 306±20 322±20 330±20 315±20 0.01±0.01 0.00 
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Supplementary Note 1: behavior 

I) Reaction times  

Reaction time analysis provides evidence of relative value encoding. We also analyzed the reaction times, with the same statistical 

model used for correct choice rate, and we observed a significant effect of outcome valence (F=78.0, P<0.001), a 

marginally statistical effect of feedback information (F=3.2, P=0.09) and interaction between the two (F=3.8, 

P=0.06) (Supplementary Figure 1). Post-hoc test revealed that subjects were slower in the punishment avoidance 

contexts compared to the reward ones (partial and complete contexts: T>4.0, P<0.001), whereas the effect of 

feedback information reached statistical significance only in the punishment context (T=2.5, P<0.05), but not in the 

reward one (T=0.3, P>0.5). Conditioning (Pavlovian-to-instrumental transfer or PIT) as well as decision field 

theories established a link between chosen option value and reaction times. More precisely they predict that the 

subjects would take more time if choices are likely to result in negative outcomes1–3. We indeed observed this effect 

(main effect of valence), since subjects were slower when choices potentially led to negative outcomes.  However, 

the trend toward a significant valence x information interaction (driven by faster responses in the 

punishment/complete context compared to the punishment/partial context) suggests that the reaction times’ pattern 

could not be fully explained by considering option value on an absolute scale. . Importantly, the absence of 

difference in reaction times in the two reward contexts further indicates that observed pattern could not be explained 

assuming reaction times a simple function of to the correct response rate that is much higher in the 

reward/complete contexts compared to the reward/partial. Thus, learning and post-learning results suggest that the 

observed interaction may derive from relative value encoding: punishment-induced reaction times slowing in the 

punishment/complete context is smaller compared to the punishment/partial context, as if the option value was less 

negative as a result of the value contextualization process.  

 

II) Post-learning test detailed analysis  

Value inversion in the post-learning test is robust across all possible binary comparisons and confirms relative value encoding. In the 

main text we reported post learning choice rate in an aggregate manner, i.e. reporting the probability of choosing an 

option, taking into account all possible comparisons. The advantage of using this aggregate measure resides in that it 

is directly proportional to the underlying option value, to which it can be therefore easily compared (see Figure 2B 

and Figure 3C and 3D). Here we report the results of all possible comparisons involving the intermediate value 

options (i.e. G25, the incorrect option in the reward contexts and L25, the correct option in the punishment contexts) 

(Supplementary Figure 2). The reason to focus on these options is that the ABSOLUTE and RELATIVE models 

crucially diverge with respect to their post-learning choice rate prediction about G25 and L25.  We analyzed the post 

learning choice with a three-way ANOVA analysis including option (two levels: G25 or L25), feedback information 

(two levels: partial versus complete) and absolute expected value (EV; Probability(outcome) * Magnitude(outcome)) 

difference between the two options  (three levels: low, mid and high) as factors. Crucially, the ABSOLUTE model 

predicts a main effect of cue (F=716.3, P<0.001), reflecting higher choice rate for the G25, compared to the L25 

option. The ABSOLUTE model also predicts no significant option x information interaction (F=0.4, P>0.5), 

indicating that increased choice rate for the G25 compared to the L25 was similar in both feedback information 

conditions, and significant option x EV difference interaction (F=217.2, P<0.001), reflecting a non-linear increase of 

post-learning choice rate as a function of EV difference.  Importantly, the RELATIVE model predicts a completely 

different pattern, with no main effect of option (i.e. similar choice rate for the G25 and the L75 options; F=1.9, 

P>0.1), a significant option x information interaction (i.e. an option-specific effect of feedback information on post-
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learning choice rate, with higher choice rate for the L25 in the complete feedback information; F=51.7, P<0.001), 

and no significant option x EV difference interaction (i.e. a linear increase of post-learning choice rate as a function 

of EV difference; F=0.2, P>0.8). Actual post-learning choices systematically fulfilled the predictions of the 

RELATIVE model, by displaying no significant effect of option (F=3.0, P>0.09), a significant option x information 

interaction (F=5.1, P<0.05) and no significant option x EV difference (F=0.0, P>0.9). Accordingly, direct systematic 

comparisons between the actual and the model predicted data, confirmed that only the ABSOLUTE model suffers 

from significantly diverging from subjects’ post-learning behavior (see supplementary Figure 2 and supplementary 

Table 1). 

 

III) Post-experiment debriefing 

Post-scanning structured interview fails to reveal acquired explicit knowledge of task factors. A post-scanning structured interview 

was administrated to a subgroup of subjects (17/28; 60.7%). The interview was aimed to assess subjects’ explicit 

knowledge of the learning task’s features and contingencies. More precisely the structured interview assessed: i) 

whether or not the subjects were aware about the cues being presented in fixed pairs (choice contexts); ii) how many 

choice contexts they believed were simultaneously present in a learning session; iii) if they believed or not that 

rewards and punishments were being separated across choice contexts; iv) if they believed or not that partial and 

complete feedbacks were being separated across choice contexts. Subjects, on average, correctly retrieved that during 

learning the cues were presented in fixed choice contexts during learning (correct responses: 88.2%; P<0.001). When 

asked about how many pairs of cues were presented in a session, subjects, on average, answered 4.6±0.2%, slightly 

overestimating the correct number (i.e. 4; T=2.2, P<0.05). The task’s factors (outcome valence and feedback 

information) were not significantly reported as discrete, mutually exclusive, features of the choice contexts. Indeed, 

subjects did not correctly report rewards and punishments as choice context-specific (correct responses: 35.3%; 

P>0.05). Similarly, subjects did not correctly report partial and complete feedbacks as choice context-specific 

(correct responses: 47.1%; P>0.2). Thus, as far as explicit knowledge of the task structure can be inferred by the 

post-scanning structured interview, whereas the existence of discrete choice contexts (states) and their number 

seemed explicitly grasped by the subjects, the separation between reward and punishment, as well as between partial 

and complete feedback, conditions, remained implicit. These two features are taken into account by our 

computational models that i) assume the perception of discrete states (s) but ii) treat option and context values as 

continuous (“model-free”) variables instead of categorical (“rule or model-based”) ones. 
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Supplementary Note 2: computational modeling 

Model comparison- based justification of the algorithmic specification of the RELATIVE model reported in the main text. Four 

different variants of the RELATIVE model were considered, in order to select amongst different possible 

algorithmic implementations, such as different ways to update the state value (frequentist versus delta rule) and the 

heuristic employed to obviate the absence of counterfactual outcome (RU) in the partial feedback contexts, when 

calculating the context-level outcome RV. The first computational question is the learning rule used for context value 

update. In fact, whereas there is now strong and cumulative evidence that option values are learnt via delta rules4 it 

could be that context value updates follow different learning rules. We included RELATIVE models 1 and 2 

implementing frequentist inference:   

Vt+1(s)  = ((t-1)/t)*Vt(s) + (1/t)*RV,t , 

where t is the number of trials and  RV is the context-level outcome at trial t: a global measure that encompasses 

both the chosen and unchosen options. Frequentist inference is appropriate for environments with no volatility and 

instantiates a progressive reduction of the learning rate, since new experiences have less weight as the number of 

trials increases. RELATIVE models 1 and 2 with frequentist update of context value could be advantaged by the fact 

that they do not require additional free parameters, compared to the ABSOLUTE model. However, for the same 

reason, they cannot account for interindividual variability. We also included RELATIVE models 3 and 4 

implementing the delta rule, which, for analogy with the frequentist update, can be written as:  

Vt+1(s)  = (1- α3)*Vt(s)  + α3*RV,t , 

Where α3 is the context value learning rate. Delta rule is appropriate for environments with unknown volatility. 

RELATIVE models 3 and 4 with delta rule update of context value could be disadvantaged by the fact that they 

require an additional free parameter (α3), compared to the ABSOLUTE model. However, for the same reason, they 

can account for interindividual variability. The second computational question concerned the definition of RV. In 

fact, whereas average outcome trial can be straightforwardly calculated in the complete feedback contexts as the 

average of the factual and the counterfactual outcomes as follows: 

RV,t = (RC,t + RU,t) / 2, 

the question arises in the partial feedback contexts, where RU  is not explicitly provided. One possibility, 

(implemented in RELATIVE models 1 and 3) is to replace RU with RM (the central – median - task reward: 0.0€), in 

the partial feedback contexts,:  

RV,t = (RC,t + RM,t) / 2, 

which we define as a “context-aspecific heuristic”, in which, simplifying, RV = RC,t  / 2, . However, given that RV is 

meant to be a context-level measure, in order to incorporate unchosen option information in RV also in the partial 

feedback contexts, a possibility, implemented in RELATIVE models 2 and 4, is to consider Qt(s,u) a proxy of RU,t 

and calculate RV,t as follows:  

RV,t = (RC,t + Qt(s,u)) / 2,  

which we define as a “context-specific heuristic”. 

 

To sum up, this model space included 5 models. The ABSOLUTE model (Q-learning) and four RELATIVE models 

which differed in 1) context value update rule (“frequentist” versus “delta rule”) and 2) the way RV  was calculated in 

the partial feedback contexts (“context-aspecific” or “context-specific” heuristic). We submitted these new models to 

the same parameters optimization procedure and model comparison analyses presented in the main text and 

involving the Bayesian information criterion (BIC), Akaike information criterio (AIC) and the Laplace approximation 
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of the model evidence-based calculation of the model posterior probability and exceedance probability5,6. 

Complexity-penalizing model comparison criteria concordantly indicated that the RELATIVE model 4 better 

accounted for the data (see Supplementary Table 3). Note that priors-independent model comparison criteria 

(LLmax, AIC and BIC) were smaller (indicating better fit) in all RELATIVE models compared to the ABSOLUTE 

model, indicating that the finding that relative value learning better accounts for the data was robust across 

algorithmic variations of the context value update rule. Thus, subsequent analyses in the main text and in 

supplementary materials have been focused on the comparison RELATIVE model 4 only, to whom we referred 

simply as “RELATIVE”, to stress the main feature of the model instead of its less relevant algorithmic specifications.  

 

Position of the RELATIVE models within the family of reinforcement learning algorithms: similarity and differences with previous 

formulations. The RELATIVE family of models in general, and the RELATIVE 4 model in particular (the best fitting 

model), computationally embody the ideas behind the two-factor theory that, in simple terms, states that the 

instrumental action-induced punishment avoidance (cessation of fear in the original formulation) should acquire a 

positive reinforcement value, in order to sustain instrumental responding, in absence of further negative 

reinforcement (i.e. successful avoidance)7. The RELATIVE models capture this basic intuition of the two-factor 

theory assuming that, in the punishment conditions, neutral outcomes are computed relative to the negative context 

values (or state values as they are more frequently called in the reinforcement learning literature). The idea of 

computationally capturing elements of the two-factor theory by assuming some form of relative value learning has 

been also proposed in previous computational studies8,9. These studies were based on actor-critic or advantage 

learning models10,11, and the models proved useful to account for classical avoidance learning results, such as the 

conditioned avoidance response (CAR) induced via discriminated avoidance procedure. The computational model 

tested here is inspired by these formulations, with whom it shares the notion of a separate track of action values (i.e. 

option values Q(s,a)) or policy value (i.e. ‘policy’ P(s,a)) and state values (V(s)), as well as the calculation of policy 

values relative to the state value. As a matter of fact the algorithmic implementation of our model only marginally 

differs from those of these previous models. Thus, in order to justify the introduction of the new model, we run 

supplementary model comparison analyses. In a first model comparison analysis we compared the RELATIVE 4 

model with the actor-critic model, since the latter been explicitly proposed as an effective solution for punishment 

avoidance learning. Another algorithmic specificity of the RELATIVE 4 model is that V(s) is calculated in an 

random-policy manner (i.e. it depends on RC and RU in the complete feedback contexts and on RC and Q(s,u) in the 

partial feedback contexts), as opposite to previous model in which it is calculated on-policy. Thus in the second 

model comparison analyses presented below, we addressed these issues by (I) comparing the RELATIVE 4 models 

with two variants of the actor-critic model, and (II) with two variants of the RELATIVE 4 model calculating V(s) 

based on the current or best policy instead of doing this in an random-policy manner.  

 

I) Comparison with two variants of the actor-critic model   

We compared the RELATIVE 4 model with two variants of the actor-critic model. At each trial t the model 

calculated a chosen policy prediction error defined as:  

δC,t = RC,t – Vt(s), 

where V(s) is the value of the current choice context s and RC is the outcome of the chosen policy (factual outcome). 

This prediction error is then used to update the chosen policy value (P(s,c)) using a delta-rule:  

Pt+1(s,c)  = Pt(s,c)  + α1δC,t , 
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where α1 is the learning rate for the chosen option. We extended the actor-critic model in order to integrate 

counterfactual learning, as we have done for the other models. Thus, in the complete feedback contexts, the model 

also calculates an unchosen policy prediction error:   

δU,t = RU,t – Vt(s), 

where RU is the outcome of the unchosen policy (counterfactual outcome). This prediction error is then used to 

update the unchosen policy value (P(s,u)) using a delta-rule:  

Pt+1(s,u) = Pt(s,u) + α2δU,t , 

where α2 is the learning rate for the unchosen option. The two variants of the actor critic model differ in the way the 

context value V(s) is then updated. In the first, more “classical”, variant (ACTOR-CRITIC 1) the chosen policy 

prediction error is also used to update the context value in all choice contexts: 

Vt+1(s)  = Vt(s) + α3δC,t , 

where α3 is the learning rate for the context value. In a second variant (ACTOR-CRITIC 2) the context value update 

also takes into account the unchosen policy prediction error:  

Vt+1(s)  = Vt(s) + α3δC,t + α3δU,t . 

We submitted these new models to the same parameters optimization procedure and model comparison analyses 

presented in the main text and involving the Bayesian information criterion (BIC), Akaike information criterio (AIC) 

and the Laplace approximation of the model evidence-based calculation of the model posterior probability and 

exceedance probability5,6. The model space included the ABSOLUTE model as a reference point and the 

RELATIVE 4 (the best fitting model of the main model comparison). Including the choice temperature, the 

ACTOR-CRITIC models 1 and 2 have four free parameters, as the RELATIVE 4 model has. The results (see 

Supplementary Table 3 and Supplementary Figure 3) indicated that the RELATIVE 4 model provides a better 

account of the data, compared to both the actor-critic models.  

 

II) Comparison with different ways to calculate the context value calculation  

We also devised two additional variants of the RELATIVE models. These variants assume the context value being 

calculated based on the current (RELATIVE 5) or the best (RELATIVE 6) policy. More specifically, these models 

essentially differ from the RELATIVE 4 in the way they calculate the RV,t:  the context-level outcome at trial t, which 

is used to update the context, value V(s). In the RELATIVE 4 model RV was calculated based on the RC and Q(s,u), 

in the partial feedback contexts, and based on RC and RU, in the complete feedback contexts (i.e. “random-policy” 

since independent from the subjects’ choice). This choice was motivated by conceiving V(s) as a reference point as 

much neutral as possible in respect to the current obtained outcomes, supposing that the subjects do take all 

feedback into account (thus being random-policy) to estimate the context value (see “Conclusions on supplementary 

computational analyses”). However this choice is not frequent in the current panorama of reinforcement learning 

algorithms. In the RELATIVE 5 model for all choice contexts the context level outcome is defined as: 

RV,t = RC,t . 

The context value V(s) is therefore calculated considering the ongoing policy (“on-policy”). This is the most frequent 

way to calculate the context value in the reinforcement learning literature. Note that the RELATIVE 5 is analogous 

to the advantage learning algorithm extended to also, once included the counterfactual learning module10. Another 

tempting possibility, particularly relevant in presence of complete feedback information, is to calculate the context 
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value based on the best policy. The RELATIVE 6 model implements this possibility, in fact in the partial 

information choice contexts the context level outcome is defined at: 

RV,t  = max(RC,Q(s,u)), 

whereas in the complete information choice contexts it is defined as: 

RV,t  = max(RC,RU).  

We submitted these new models to the same parameters optimization procedure and model comparison analyses 

presented in the main text. The model space included the ABSOLUTE model, as a reference point, and the 

RELATIVE 4, 5 and 6 models. The RELATIVE 5 and 6 models have four free parameters, as the RELATIVE 4 

model has. The results (see Supplementary Table 4 and Supplementary Figure 4) indicated that the RELATIVE 4 

model provides a better account of the data, compared to RELATIVE models 5 and 6, thus supporting the random-

policy calculation of the context value in this task. Another interesting metric to evaluate in each model the gain of 

implementing relative value learning is to look at the values of the context learning rate α3. In fact, when α3= 0 

the RELATIVE models reduce to the ABSOLUTE model. In the RELATIVE model 4 only 4 subjects (14%) were 

fitted with α 3=0. This percentage slightly increased in the RELATIVE model 5 (N=7; 25%) and dramatically 

increased in the RELATIVE model 6 (N=17; 61%), further confirming the relatively poor fitting performances of 

their context value update scheme (this analysis was performed on the parameters retrieved with likelihood 

maximization).  

 

III) Conclusions on supplementary computational analyses 

Whereas previous computational studies suggested that the actor-critic architecture could provide a good explanation 

for conditioned avoidance response8,9, we found that in our task the RELATIVE 4 outperformed the actor-critic 

models. One important difference compared to the actor critic model is that the RELATIVE 4 model can be 

reduced to Q-learning assuming the contextual learning rate (α3=0), whereas the actor critic cannot. This lack of 

flexibility may at least partly explain the overall poor group-level performances. We also note the important 

differences between the discriminate avoidance procedure and our paradigm. In the former the contingencies are 

deterministic, avoidance learning is studied in isolation and the “avoidance learning paradox” consists in the long 

lasting insensitivity to extinction of the conditioned responses, despite the absence of further reinforcement. In our 

paradigm, the contingencies are probabilistic (thus with overlapping outcomes from the correct and incorrect 

choices), avoidance learning is not studied in isolation, but in opposition to reward seeking behavior and the 

“avoidance learning paradox” consists in similar performance in the reward punishment domain, despite the fact that 

the performance-induced sampling bias would predict enhanced performances in the reward domain.  These 

important differences should be also taken into account, when interpreting the relatively poor performances of the 

actor-critic models in our task. On the other side the good potential of the actor-critic model to explain the post-test 

results (Supplementary Figure 3E and 3F), further illustrates the conceptual proximity between this influential 

algorithm and the RELATIVE model 4.  

We also found that “random-policy” calculation of the context value in the RELATIVE model 4 provided a better 

explanation of instrumental choices compared to other forms of context value calculations (on-policy or best-policy) 

Interestingly, the RELATIVE models 5 and 6 also failed to capture the value inversion of the intermediate value 

cues in the complete feedback conditions (see Supplementary Figure 4E-F). As a matter of fact, in most of the 

classical instrumental conditioning (and machine learning) paradigms the agents are presented to only one type of 

choice context (either reward or punishment, as in the discriminated avoidance task, and there is almost no example 
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of complete feedback information1)11,12. Thus, in presence of only one type of choice context, the model predictions 

obtained using on-policy or random-policy context value (V(s)), can hardly diverge. In such mono-dimensional tasks, 

on- and random-policy context values would display a similar trend across trials and the eventual differences in their 

magnitude can easily be neutralized by rescaling parameters, such as coefficients or learning rates (see Supplementary 

Figure 4A-C).  We believe that we were precisely able to rule out on-policy (and best-policy) context value, thanks to 

the presence of multiple, different choice contexts in our design. In particular, both the simultaneous contrasts 

between reward and punishment and between partial and complete feedback information contributed to highlight 

this feature of the best fitting model.  In fact, only the random-policy context values i) were symmetrical in respect to 

the valence, thus permitting similar performances in the reward and punishment domains, and ii) were enhanced in 

magnitude in the complete feedback contexts, thus permitting the value inversion of the intermediate value cues in 

the complete feedback conditions (see Supplementary Figure 3A-F). Furthermore, the importance of being on-policy 

has been mainly stressed in problems with a risk of substantial/lethal punishments such as the cliff simulation where 

random-policy algorithms such as Q-learning cannot avoid sometimes falling in the cliff due to occasional 

exploratory decisions11,12. In our case, it is reasonable to consider that human subjects do not fear being harmed 

when interacting with the screen. In fact, we believe that this algorithmic difference between the standard view of the 

context value V(s) (on-policy) and ours (random-policy) betrays a more profound difference concerning the 

psychological intuitions behind these quantities. Whereas in most reinforcement learning models V(s) is conceived as 

a “Pavlovian” anticipation of the reward (or punishment) to come, aimed to elicit automatic motor effects2,3, in our 

model it represents a more abstract signal, subserving value contextualization for efficient encoding purposes13–15. In 

the light of these interpretation it is easy to understand why in the framework of a “motor preparation”, the context 

value needs to be calculated in an on-policy manner (preparation to an outcome), whereas in the framework of a 

“efficient coding”, the context value has to be calculated in a random-policy manner. In principle both quantities 

(on- and off- policy context values) could exist in the brain and express their effects in different behavioral measures. 

Further work, probably implicating a deeper analysis of reaction times (a good candidate for Pavlovian effects) could 

shed light on this topic. Finally, we are not without acknowledging that an random-policy calculation of context 

value could rapidly become computationally challenging in learning situations implicating more than two options. 

Further studies are needed to uncover the learning heuristics implemented in such cases.  

                                                           
1This is less true in behavioral economics literature, where counterfactual (or “fictive”) learning takes a more important place.  
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Supplementary Note 3: written task instructions 

The subject read the learning test instructions before the training session, outside the scanner. The experimenter read 

the post-learning instructions to the subject, while he/she was in the scanner, after the last (fourth) functional 

acquisition, before starting the T1 anatomic acquisition.  

 

Learning test instructions 

The experiment is divided in four sessions, of about 12 minutes each. There will be two training sessions (a 

longer one outside and a shorter one inside the scanner) before the starting of the fMRI experiment. 

 

You are asked to choose in each round one of two abstract symbols. The symbols will appear on the screen 

to the left or the right of a fixation cross. To choose one of the two symbols you should press the right or left 

button. After few seconds a cursor will appear under the chosen symbol confirming your choice. If you do 

not press any button, the cursor will appear at the center of the screen, and your result will be 

disadvantageous. 

 

As an outcome of your choice you may: 
 
-gain 50 cents (+0.5€) 

-get nothing (0€) 

-loose 50 cents (-0.5€) 

 

The outcome of your choice will appear on the top of the chosen symbol, and will be always indicated by 

the position of the cursor. The two symbols are not equivalent (identical). One of the two symbols is on 

average more advantageous or less disadvantageous, in the sense that it makes you winning more often or 

loosing less often than the other. The goal of the experiment is to gain as much as you can.  

 

In some trials the information about the outcome of the unchosen option will be also provided. Note that 

your earnings will correspond only to the chosen option.  At the end of each session the experimenter will 

communicate your earnings for that session. Your final earnings will correspond to the sum of the earnings 

of the four sessions. 

 

Post-learning test instructions 

The test will last 5 minutes with no training. 

 

The goal of the next test is to indicate the symbol with the higher value from the last (fourth) session. At any 

trial, you are asked to choose between two symbols pressing the corresponding button. Your choice will be 

immediately recorded and will be confirmed with the presence of a cursor that will appear under the chosen 

stimulus. 

 

It will not always be the case that the shown symbols would have been presented together in the previous 

session. Please try to give an answer even if you are not completely sure.  
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