

Supplementary Figure 1| Supporting images for triblock comicelle building blocks. TEM images (after solvent evaporation) of triblock comicelles **a**, N-H_D-N (330 nm); **b**, N-H_D-N (540 nm); **c**, N-H_A-N (320 nm); **d**, N-H_A-N (540 nm); **e**, N-H_A-N (1.3 μ m); **f**, N-H_A-N (1.5 μ m, middle H_A segment length = 109 nm); **g**, N-H_A-N (1.4 μ m); **h**, N-H_A-N (1.6 μ m); **i**, H_A-N-H_A(380 nm); **j**, H_D-N-H_D (910 nm); **k**, H_D-N-H_D (480 nm); and **l**, H_A-X-H_A (420 nm) in *i*-PrOH. Scale bars are 500 nm. Segment H_D = M(PFS₂₀-*b*-PMVSOH₁₂₀), N = M(PFS₂₀-*b*-PtBA₂₈₀), H_A = M(PFS₃₂-*b*-P2VP₄₄₈) except that in **h**, H_A = M(PFS₂₅-*b*-P2VP₂₅₀), X = M(PFS₃₆-*b*-PMVS₃₂₄).

Supplementary Figure 2| **Supporting images for the formation of supermicelles from H-bonding interactions.** Low resolution TEM image (after solvent evaporation) of supermicelles formed by mixing H_D (PMVSOH₁₀₅) homopolymer with N-H_A-N

triblock comicelles in *i*-PrOH at a ratio of hydroxyl : pyridyl groups of **a**, 1 : 2; **b**, 1 : 1; c, 10 : 1 and d, 100 : 1. e, Schematic illustration of the supermicelles formed by N-H_A-N triblock comicelles with H_D homopolymer with various ratios of hydroxyl : pyridyl groups. TEM images (after solvent evaporation) of H_D homopolymer (PMVSOH₁₀₅) and N-H_A-N in *i*-PrOH with ratio of hydroxyl : pyridyl groups of 5:1, \mathbf{f} , N = M(PFS_{20}-b-PtBA_{170}); \mathbf{g} , N = M(PFS_{20}-b-PtBA_{280}); \mathbf{h} , N = M(PFS_{32}-b-PtBA_{460}); i, $N = M(PFS_{30}-b-PtBA_{600})$. j, Schematic illustration of the supermicelles formed by N-H_A-N triblock comicelles with different PFS-b-PtBA diblock copolymers. Photos of the solution of a mixture of \mathbf{k} , H_D homopolymer and H_A seeds, and \mathbf{l} , H_D seeds and H_A seeds, both with a mole ratio of hydroxyl : pyridyl groups of 1 : 1, 30 seconds after mixing in *i*-PrOH; **m**, TEM image of the aggregates formed in solution shown in l (inset is a zoom-in image of the aggregate). n, Low-resolution TEM image (after solvent evaporation) of supermicelles formed by mixing N-H_A-N triblock comicelles in *i*-PrOH with H_D short micelles with the ratio of hydroxyl : pyridyl groups = 1 : 2. o and p, FTIR spectra of the PMVSOH homopolymer, P2VP homopolymer and a mixture of PMVSOH and P2VP homopolymers (molar ratio of hydroxyl : pyridyl groups of 1 : 1). Scale bars are 1 μ m and 500 nm in the inset. Segment H_A = $M(PFS_{32}-b-P2VP_{448})$, $N = M(PFS_{20}-b-PtBA_{280})$ unless mentioned elsewhere.

Supplementary Figure 3| Supporting images for the assembly of triblock comicelles via H-bonding. TEM images after solvent evaporation of **a**, dimer and **b**, branched "condensation" supermicelles from triblock comicelles H_D-N-H_D (910 nm) and H_A-N-H_A (380 nm). **c**, "polymeric" supermicelles, and **d**, predominantly "I"-shaped supermicelles from H_D-N-H_D (480 nm) and N-H_A-N (320 nm) triblock comicelles with hydroxyl : pyridyl groups ratios of 3 : 1 and 3.3 : 1, respectively. **e**, the mixture of N-H_D-N (330 nm), and triblock comicelles N-H_A-N (total length 1.6 μ m, where the corona-forming P2VP block of the central H_A segment is shorter, see below) triblock comicelles; **f**, the assembled structure of N-H_D-N triblock comicelles (total length 330 nm), and N-H_A-N triblock comicelles (total length 1.5 μ m, middle block H_A length 109 nm). All these structures were obtained in *i*-PrOH. Scale bars are 500 nm and that for inset is 200 nm. Segment H_D = M(PFS₂₀-*b*-PMVSOH₁₂₀), N = M(PFS₂₀-*b*-PtBA₂₈₀), H_A = M(PFS₃₂-*b*-P2VP₄₄₈) except that in **e**, H_A = M(PFS₂₅-*b*-P2VP₂₅₀).

Supplementary Figure 4| Supporting images for the formation of "windmill" supermicelles by hierarchical assembly. Low-resolution TEM images (after solvent evaporation) of the **a**, "cross" supermicelles from the H_A-X-H_A (420 nm) triblock comicelles in MeOH; and the "cross" supermicelles **b**, with crosslinked the X segment (^{XL}X); **c**, after the addition of N segments; **d**, with crosslinked ^{XL}H_A segments. **e**, Low-resolution TEM images of the "windmill" supermicelles. Structures marked by the red circles are bundles of individual N-H_D-N triblock comicelles resulting from the H_D seeds that did not become attached to the composite "cross" supermicelles, as shown in Fig. 3f and 3h. All these structures were obtained in *i*-PrOH except the sample shown in image a. Scale bars are 2 µm. Segment H_D = $M(PFS_{20}-b-PMVSOH_{120})$, N = $M(PFS_{20}-b-PtBA_{280})$, H_A = $M(PFS_{25}-b-P2VP_{250})$.

Supplementary Figure 5| Supporting images for the formation of "cross" supermicelles. TEM images of the crosslinked "cross" supermicelles **a**, after the sequential growth of N segments and H_A segments; **b**, after the addition of H_D short micelles (composite "cross" supermicelles). **c**, low-resolution TEM image of the composite "cross" supermicelles. TEM images and their corresponding schematic illustrations of the "cross" supermicelles **d**, with ^{XL}X and ^{XL}H_A segments and after the addition of N-red segments (PFS₂₀-*b*-PtBA₂₈₀, end-labeled with the red-dye BODIPY 630/650); **e**, after the addition of another H_A segment; **f**, after the further addition of H_D short micelles (composite "cross" supermicelles). All these TEM images were obtained after the evaporation of solvent (*i*-PrOH). **g**, LSCM image of the composite "cross" supermicelles in *i*-PrOH. Scale bars are 500 nm in **a-c**, 1 µm in **d-f** and 5 µm in **g**. Segment X = M(PFS₃₆-*b*-PMVS₃₂₄), H_D = M(PFS₂₀-*b*-PMVSOH₁₂₀), N = M(PFS₂₀-*b*-PtBA₂₈₀), H_A = M(PFS₃₂-*b*-P2VP₄₄₈), ^{XL}H_A = ^{XL}M(PFS₂₅-*b*-P2VP₂₅₀).

Supplementary Figure 6 Supporting images for fluorescent "windmill"-shaped supermicelles. a, schematic illustration of assembly process of "windmill"-shaped supermicelles labeled with red dye, by adding PFS₂₀-*b*-PtBA₂₈₀-red (end-labeled with the red-dye BODIPY 630/650) to composite "cross" supermicelles shown in Supplementary Fig. 5f. b, schematic illustration of assembly process for "windmill"-shaped supermicelles labeled with a mixture of red and green dyes, via a process but adding a mixture of PFS₂₀-b-PtBA₂₈₀-red similar and PFS₂₀-*b*-PtBA₂₈₀-green (end-labeled with the green-dye BODIPY FL) with a mole

ratio of 1 : 1. **c**, LSCM image of the "windmill"- shaped supermicelles labeled with red dye. **d-f**, LSCM images of the "windmill"- shaped supermicelles labeled with a mixture of red and green dyes in **d**, red channel, **e**, green channel and **f**, merge channel. **g**, schematic illustration and LSCM images of the mixture of "windmill"- shaped supermicelles labeled with red or green dyes, and **h-j**, LSCM images of this supermicelle mixture (10 days after mixing) : **h**, red channel, **i**, green channel and **j**, merge channel. Inset images in d-f are the high-resolution LSCM images of the "windmill"- shaped supermicelles labeled with a mixture of red and green dyes. All these structures were obtained and characterized in *i*-PrOH. Scale bars are 5 μ m in LSCM images and 1 μ m in the insets.

Segment label and corresponding unimer ^b	central segment	$L_{\rm w}$	L _n	$L_{\rm w}/L_{\rm n}^{\rm c}$	σ ^c
	length (L_n , nm)	(nm)	(nm)		(nm)
X, PFS ₃₆ - <i>b</i> -PMVS ₃₂₄ (20 nm)	-	23	20	1.16	8
H _A , PFS ₃₂ - <i>b</i> -P2VP ₄₄₈ (45 nm)	-	51	45	1.12	16
H _A , PFS ₃₂ - <i>b</i> -P2VP ₄₄₈ (109 nm)	-	122	109	1.12	38
H _A , PFS ₃₂ - <i>b</i> -P2VP ₄₄₈ (160 nm)	-	179	160	1.12	55
H _A , PFS ₂₅ - <i>b</i> -P2VP ₂₅₀ (55 nm)	-	63	55	1.16	22
H _D , PFS ₂₀ - <i>b</i> -PMVSOH ₁₂₀ (37 nm)	-	43	37	1.14	14
N, PFS ₂₀ - <i>b</i> -PtBA ₂₈₀ (240 nm)	-	280	240	1.16	96
N, PFS ₂₀ - <i>b</i> -PtBA ₂₈₀ (370 nm)	-	425	370	1.15	143
N, PFS ₂₀ - <i>b</i> -PtBA ₂₈₀ (680 nm)	-	750	680	1.11	225
N-H _D -N, M(PFS ₂₀ - <i>b</i> -PtBA ₂₈₀)- <i>b</i> -M(PFS ₂₀ - <i>b</i> -	37	335	330	1.02	45
PMVSOH ₁₂₀)-b-M(PFS ₂₀ -b-PtBA ₂₈₀) (330 nm)					
N-H _D -N, M(PFS ₂₀ - <i>b</i> -PtBA ₂₈₀)- <i>b</i> -M(PFS ₂₀ - <i>b</i> -	37	545	540	1.01	55
PMVSOH ₁₂₀)-b-M(PFS ₂₀ -b-PtBA ₂₈₀) (540 nm)					
N-H _A -N, $M(PFS_{20}-b-PtBA_{280})-b-M(PFS_{32}-b-b)$	45	330	320	1.03	58
P2VP ₄₄₈)-b-M(PFS ₂₀ -b-PtBA ₂₈₀) (320 nm)					
N-H _A -N, $M(PFS_{20}-b-PtBA_{280})-b-M(PFS_{32}-b-b)$	45	560	540	1.03	94
P2VP ₄₄₈)-b- M(PFS ₂₀ -b-PtBA ₂₈₀) (540 nm)					
N-H _A -N, $M(PFS_{20}-b-PtBA_{280})-b-M(PFS_{32}-b-b)$	45	1285	1270	1.01	127
P2VP ₄₄₈)- <i>b</i> - M(PFS ₂₀ - <i>b</i> -PtBA ₂₈₀) (1.3 μm)					
N-H _A -N, $M(PFS_{20}-b-PtBA_{280})-b-M(PFS_{32}-b-b)$	109	1550	1450	1.04	290
P2VP ₄₄₈)-b-M(PFS ₂₀ -b-PtBA ₂₈₀) (1.5 μm)					
N-H _A -N, $M(PFS_{20}-b-PtBA_{280})-b-M(PFS_{32}-b-b)$	160	1430	1390	1.03	241
P2VP ₄₄₈)-b-M(PFS ₂₀ -b-PtBA ₂₈₀) (1.4 μm)					
N-H _A -N, $M(PFS_{20}-b-PtBA_{280})-b-M(PFS_{25}-b-b)$	55	1610	1590	1.01	159
P2VP ₂₅₀)- <i>b</i> -M(PFS ₂₀ - <i>b</i> -PtBA ₂₈₀) (1.6 μm)					
H_{A} -N- H_{A} , M(PFS ₃₂ - <i>b</i> -P2VP ₄₄₈)- <i>b</i> -	240	410	380	1.06	93
M(PFS ₂₀ - <i>b</i> -PtBA ₂₈₀)- <i>b</i> -M(PFS ₃₂ - <i>b</i> -P2VP ₄₄₈) (380 nm)					
H_D -N- H_D , $M(PFS_{20}$ - b -PMVSOH ₁₂₀)- b - $M(PFS_{20}$ - b -	680	950	910	1.05	203
PtBA ₂₈₀)-b-M(PFS ₂₀ -b-PMVSOH ₁₂₀) (910 nm)					
H_D -N- H_D , M(PFS ₂₀ - <i>b</i> -PMVSOH ₁₂₀)- <i>b</i> -M(PFS ₂₀ - <i>b</i> -	370	505	480	1.09	144
PtBA ₂₈₀) -b-M(PFS ₂₀ -b-PMVSOH ₁₂₀) (480 nm)					
$H_{A}-X-H_{A}$, $M(PFS_{25}-b-P2VP_{250})-b-M(PFS_{36}-b-b)$	20	450	420	1.07	111
PMVS ₃₂₄)-b-M(PFS ₂₅ -b- P2VP ₂₅₀) (420 nm)					

Supplementary Table 1 Characteristics of the seed cylinders and the triblock comicelles grown from the seed cylinders.^a

a: the lengths of the cylinders were measured from their TEM images and the values were obtained by averaging over 100 readings; b: values in parentheses represent the total length (L_n) of the cylindrical micelles or block comicelles; c: L_n , L_w and σ are the number average micelle length, weight average micelle length, and the standard deviation of the micelle length distribution, respectively, as calculated from the histograms of the length distributions.