

Supplementary Figure 1. Film thickness measurement. (**a**) AFM images of the perovskite film with a straight edge which was created by scratching with a tweezer. (**b**) Profile along the line highlighted in (**a**). This profile was used to estimate the thickness of the perovskite film.

Supplementary Figure 2. Device schematic. Schematic diagram for a CH₃NH₃PbI₃-based

phototransistor with the bottom-gate bottom-contact structure.

Supplementary Figure 3. Performance of the bottom-gate, bottom-contact perovskite phototransistors. (a) Transfer curves for the bottom-gate, bottom-contact phototransistor device. (b) and (c) represent, respectively, the transfer characteristics of p-type behavior and n-type behavior. (d), (e) and (f) are output curves of the phototransistor in dark and under light illumination.

Supplementary Figure 4. Photoresponsivity of the devices with various film thicknesses. The device with a thickness of about 100 nm was found to present the optimal performance.

Supplementary Figure 5. Atomic force microscopy (AFM) characterization of the $CH_3NH_3PbI_{3-x}Cl_x$ film surface. The root-mean square roughness is approximately 8.95 nm, demonstrating a smoother surface compared to the $CH_3NH_3PbI_3$ film (shown in Fig. 1d in the main text).

Supplementary Figure 6. Transfer curves of a hybrid perovskite CH₃NH₃PbI_{3-x}Cl_x-based phototransistor in the dark. (a) and (b) represent the transfer characteristics of a hybrid perovskite CH₃NH₃PbI_{3-x}Cl_x-based phototransistor in the p-type and n-type regimes, respectively.

Supplementary Figure 7. Photoresponsivity (R) data. Photoresponsivity (R) measured on the perovskite CH₃NH₃PbI_{3-x}Cl_x-based phototransistor.

Supplementary Table

Supplementary Table 1. Performance of reported photodetectors based on hybrid perovskites.

Ref.	Year	Materials	Configuration	Responsivity	Detectivity	Response
				(A W ⁻¹)	(Jones)	time
1	2014	CH ₃ NH ₃ PbI ₃ film	solar cell	Photocurrent amplification > 100		
2	2014	CH ₃ NH ₃ PbI ₃ /TiO ₂ film	photodetector	0.49×10^{-6}		0.02 s
3	2014	CH ₃ NH ₃ PbI ₃ film	photodetector	3.49		< 0.2 s
4	2014	CH ₃ NH ₃ PbI _{3-x} CI _x film	photodetector		$\sim 10^{14}$	160 ns
5	2014	CH ₃ NH ₃ PbI ₃ nanowires	phototransistor	5×10^{-3}		< 500 µs
6	2015	CH ₃ NH ₃ PbI ₃ film	photodetector	14.5		0.2 µs
7	2015	Graphene- CH ₃ NH ₃ PbI ₃ composites	phototransistor	180	~10 ⁹	87 ms
8	2015	CH ₃ NH ₃ PbI ₃ film	photodetector	242		$5.7\pm1.0~\mu s$
9	2015	CH ₃ NH ₃ PbI ₃ film	photodiode		3×10^{12}	< 5 µs
10	2015	CH ₃ NH ₃ PbI ₃ film	photodetector		7.4×10^{12}	120 ns
11	2015	CH ₃ NH ₃ PbI ₃ film	optocoupler	1.0		20 µs
12	2015	CH ₃ NH ₃ PbI ₃ nanowires	photodetector	1.3	2.5×10^{12}	0.3 ms

Supplementary References

- 1. Moehl, T. *et al.* Strong photocurrent amplification in perovskite solar cells with a porous TiO2 blocking layer under reverse bias. *J. Phys. Chem. Lett.* **5**, 3931-3936 (2014).
- Xia, H.-R. *et al.* Organohalide lead perovskite based photodetectors with much enhanced performance. *Chem. Commun.* 50, 13695–13697 (2014).
- Hu, X. *et al.* High-Performance Flexible Broadband Photodetector Based on Organolead Halide Perovskite. *Adv. Funct. Mater.* 24, 7373–7380 (2014).
- Dou, L. *et al.* Solution-processed hybrid perovskite photodetectors with high detectivity. *Nat. Commun.* 5, 5404 (2014).
- 5. Horváth, E. *et al.* Nanowires of methylammonium lead iodide (CH₃NH₃PbI₃) prepared by low temperature solution-mediated crystallization. *Nano Lett.* **14**, 6761–6766 (2014).
- Guo, Y. *et al.* Air-stable and solution-processable perovskite photodetectors for solar-blind UV and Visible light. *J. Phys. Chem. Lett.* 6, 535–539 (2015).
- Lee, Y. *et al.* High-performance perovskite–graphene hybrid photodetector. *Adv. Mater.* 27, 41–46 (2015).
- Dong, R. *et al.* High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. *Adv. Mater.* 27, 1912–1918 (2015).
- Lin, Q. *et al.* Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. *Adv. Mater.* 27, 2060–2064 (2015).
- 10. Fang, Y. *et al.* Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. *Adv. Mater.* **27**, 2804–2810 (2015).
- 11. Li, D. *et al.* High performance organic-inorganic perovskite-optocoupler based on low-voltage and fast response perovskite compound photodetector. *Sci. Rep.* **5**, 7902 (2015).
- Deng, H. *et al.* Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices. *Nanoscale* 7, 4163–4170 (2015).