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Supplementary Figure 1. Film thickness measurement. (a) AFM images of the perovskite 

film with a straight edge which was created by scratching with a tweezer. (b) Profile along the 

line highlighted in (a). This profile was used to estimate the thickness of the perovskite film.  
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Supplementary Figure 2. Device schematic. Schematic diagram for a CH3NH3PbI3-based 

phototransistor with the bottom-gate bottom-contact structure. 
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Supplementary Figure 3. Performance of the bottom-gate, bottom-contact perovskite 

phototransistors. (a) Transfer curves for the bottom-gate, bottom-contact phototransistor device. 

(b) and (c) represent, respectively, the transfer characteristics of p-type behavior and n-type 

behavior. (d), (e) and (f) are output curves of the phototransistor in dark and under light 

illumination.  
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Supplementary Figure 4. Photoresponsivity of the devices with various film thicknesses. 

The device with a thickness of about 100 nm was found to present the optimal performance. 
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Supplementary Figure 5. Atomic force microscopy (AFM) characterization of the 

CH3NH3PbI3-xClx film surface. The root-mean square roughness is approximately 8.95 nm, 

demonstrating a smoother surface compared to the CH3NH3PbI3 film (shown in Fig. 1d in the 

main text).  
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Supplementary Figure 6. Transfer curves of a hybrid perovskite CH3NH3PbI3-xClx-based 

phototransistor in the dark. (a) and (b) represent the transfer characteristics of a hybrid 

perovskite CH3NH3PbI3-xClx-based phototransistor in the p-type and n-type regimes, respectively.  
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Supplementary Figure 7. Photoresponsivity (R) data. Photoresponsivity (R) measured on the 

perovskite CH3NH3PbI3-xClx-based phototransistor. 
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Supplementary Table 

Supplementary Table 1. Performance of reported photodetectors based on hybrid 

perovskites. 

Ref. Year Materials Configuration Responsivity  

(A W
-1

) 

Detectivity 

(Jones) 

Response 

time 

1 2014 CH3NH3PbI3 film solar cell Photocurrent 

amplification 

> 100 

  

2 2014 CH3NH3PbI3/TiO2 film photodetector 0.49 × 10
-6

  0.02 s 

3 2014 CH3NH3PbI3 film photodetector 3.49  < 0.2 s 

4 2014 CH3NH3PbI3-xCIx film photodetector  ∼10
14

 160 ns 

5 2014 CH3NH3PbI3 nanowires phototransistor 5 × 10
-3

  < 500 μs 

6 2015 CH3NH3PbI3 film photodetector 14.5   0.2 μs 

7 2015 Graphene- CH3NH3PbI3 

composites 

phototransistor 180 ∼10
9
 87 ms 

8 2015 CH3NH3PbI3 film photodetector 242  5.7 ± 1.0 μs 

9 2015 CH3NH3PbI3 film photodiode  3 × 10
12

 < 5 μs 

10 2015 CH3NH3PbI3 film photodetector  7.4 × 10
12

 120 ns 

11 2015 CH3NH3PbI3 film optocoupler 1.0  20 µs 

12 2015 CH3NH3PbI3 nanowires photodetector 1.3 2.5 × 10
12

 0.3 ms 
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