
Supplementary Material for

Compression of high throughput

sequencing data with a probabilistic de

Bruijn graph

Gaëtan Benoit 1, Claire Lemaitre 1, Dominique Lavenier 1, Erwan Drezen 1,

Thibault Dayris 2, Raluca Uricaru 2,3, Guillaume Rizk 1,∗

1 INRIA/IRISA/GenScale, Campus de Beaulieu, 35042 Rennes cedex.
2 University of Bordeaux, CNRS/LaBRI, F-33405 Talence, France.
3 University of Bordeaux, CBiB, F-33000 Bordeaux, France.
∗ Corresponding author. Email Guillaume.Rizk@inria.fr

Contents

1 Description of the sequence datasets 2

2 Impact of parameters k and Tsol 2

3 Parallelization speed-up 4

4 Comparisons with other compression software 5

4.1 Data formats and command line arguments 5

5 Theoretical estimation of the optimal bloom filter size 5

1

1 Description of the sequence datasets

All read datasets used in the main paper are publicly available in the Sequence Read Archive

(SRA) and were downloaded either from the NCBI or EBI web servers. Description of each

dataset along with its SRA accession number is given in Table ST1.

SRA Accession Org. Type Platform R. size Read count Base count Cov. Fastq size

SRR959239 E. coli WGS Illumina 98 5.4M 526.5 Mbp 116x 1.4 GB

SRR065390 C. elegans WGS Illumina 100 67.6M 6.2 Gbp 70x 22.6 GB

SRR345593/SRR345594 human WGS Illumina 101 3040M 304.0 Gbp 102x 733 GB

SRR359098/SRR359108 human exome Illumina 100 779M 78.0 Gbp ∼ 1300x 203 GB

SRR445718 human RNA-seq Illumina 100 32.9M 3.3 Gbp – 11 GB

SRR857303 E. coli WGS Ion Torrent 195 2.6M 0.5 Gbp 109x 1.2 GB

SRR1519083 microorg. metagenome Illumina 100 59.7M 6 Gbp – 16GB

SRR1870605 E. coli WGS Illumina MiSeq 242 2.2M 543.2 Mbp 119x 1.1GB

Table ST1: Read dataset description. WGS stands for Whole Genome Sequencing.

2 Impact of parameters k and Tsol

The kmer size and the minimal abundance threshold, ie. parameters k and Tsol respectively,

impact Leon compression ratio, as they control the number of nodes and the topology of

the de Bruijn Graph. Leon performance was then computed for varying values of these

parameters for the C. elegans WGS dataset.

The Tsol parameter is inferred automatically from the histogram of kmer abundances

(telling the number of kmers of each abundance). The following heuristic is used. The

histogram is first smoothed, then we search for the position of the first increase, and the

maximum value attained after that. We then look for the index of the minimum value between

this first raise and this maximum. This index is the automatically inferred threshold, and

roughly corresponds to the valley between erroneous kmers and “genomic” kmers. We also

ensure that no more than 25 % of the distinct kmers are below the threshold, and that the

threshold is >= 3.

Figure S1 shows that the compression ratio is robust to variations of the Tsol parameter

around its optimal value. Importantly, the automatically inferred value, 8, gives a compression

ratio very close to the optimal one. However, with more extreme values the compressed file

size can drastically increase. For instance, if no filtering at all of low coverage kmers is

performed, the compression ratio is divided by two (from 12.0 to 5.8), demonstrating the

2

importance of removing sequencing errors in the reference de Bruijn Graph. In this case, all

reads can be mapped perfectly to the graph, but the size of the graph and of the bifurcation

lists are important too. Conversely, if the threshold is too high, removing too many genomic

kmers, the compression ratio drops since the reference is incomplete and many more reads

cannot map to it. Regarding quality scores compression ratios, a higher Tsol value means fewer

scores will be considered as good enough to be replaced by a high value ’@’, therefore quality

compression ratios keeps decreasing with a higher Tsol. However, we observe a plateau near the

optimal value for sequence compression, which probably corresponds to values distinguishing

erroneous of solid kmers.

0 10 20 30 40 50

6

8

10

12

Solidity threshold

D
N

A
C

om
p

re
ss

io
n

ra
ti

o

10

20

30

40

Q
u

al
it

y
C

om
p

re
ss

io
n

ra
ti

o

Figure S1: Variations of the compression ratio obtained by Leon on the C. elegans WGS

dataset for varying values of the minimal abundance threshold (parameter Tsol). Leon was

run with k = 31.

Similarly, Figure S2 shows that there is also an optimal value for the k parameter. For

small k (typically k < 20 for the C. elegans dataset), many kmers are not unique in the

genome, generating numerous branchings in the de Bruijn Graph. Even if the latter is much

smaller in size with small k, this does not compensate for the numerous bifurcations to store

for each read. Higher k value will also mean a larger dictionary of anchors and more un-

anchored reads. Consequently, this parameter depends on the complexity of the genome. For

3

large genomes with numerous repeats, larger k should be preferred, but a trade-off must be

found to compensate compression ratio with running time, since the counting step time can

increase with k.

10 20 30 40 50 60

4

6

8

10

12

kmer size

D
N

A
C

om
p

re
ss

io
n

ra
ti

o

26

28

30

32

34

Q
u

al
it

y
C

om
p

re
ss

io
n

ra
ti

o

Figure S2: Variations of the compression ratio obtained by Leon on the C. elegans WGS

dataset for varying values of kmer size (parameter k). The Tsol parameter was inferred

automatically.

3 Parallelization speed-up

Figure S3 shows Leon execution time using 1 to 24 threads. The platform used is a 2.50

GHz Intel E5-2640 CPU with 12 cores (24 logical cores with hyper-threading). It should

be noted that Leon seems to benefit highly from Intel hyper-threading. We suspect this

is the case because Leon’s major operations are queries inside a bloom filter, which induce

many memory cache misses. Memory cache misses induce latency, usually well hidden by

hyper-threading.

4

0 5 10 15 20 25
0

20

40

60

Cores

S
p

ee
d

(M
b

/s
)

Compression

Decompression

Figure S3: Speed of compression and decompression with respect to the number of used CPU

threads, for the 70x WGS C. elegans dataset.

4 Comparisons with other compression software

4.1 Data formats and command line arguments

Software used to compare to Leon are described in Table ST2.

Since Leon default mode is lossy for quality scores, other tools were also run in a lossy

mode when possible.

5 Theoretical estimation of the optimal bloom filter size

Leon uses a probabilistic de Bruijn Graph, i.e. all kmer nodes of the graph are inserted in

a bloom filter. The false positive rate of the bloom filter will induce false branching in the

graph, meaning extra bifurcation events that will need to be stored in the compressed file.

Therefore, an optimal trade-off needs to be found: a large bloom filter will take more space

in the file but will save space for read storage (and conversely).

The false positive rate F of a bloom filter can be approximated by F = f r with f =

0.5log 2 ≈ 0.618 and r = bloom size
nb elements inserted the number of bits per element inserted in the

bloom filter [10].

With G the size of the target sequenced genome (i.e. approximately the number of nodes

in the de Bruijn Graph) and D the average kmer abundance (somehow related to the depth of

5

Sotware Ref. Version Mode Command line

Leon – 1.0.0 default leon -file file.fastq -c -nb-cores 8

Fastqz [1] 1.5 slow fastqz c3 file.fastq file.fastq.fastqz

Fqzcomp [1] 4.6 slow fqz comp -n2 -Q3 -s8+ -b file.fastq file.fastq.fqzcomp

Quip [2] 1.1.8 ass. quip -i fastq -a file.fastq

Orcom [3] 1.0 orcom bin e -ifile.fastq -obin tmp -t8

orcom pack e -ibin tmp -oout orcom -t8

Dsrc [4] 2.00 slow dsrc c -t8 -m2 -l file.fastq file.fastq.dsrc

gzip [5] 1.3.12 gzip file.fastq

Scalce [6] 2.7 scalce -c bz -o result -p 20 -T 8 -r file 1.fastq

Mince [7] 0.6.1 mince -p 8 -e -l IU -1 file 1.fastq -2 file 2.fastq -o result

RQS [8] 0.1.0 generate dict 5 dict.db file.fsam

sparsify dict.db file.fsam

threshold ’@’ file.fsam.filtered

libCsam [9] 08000b5 CompressQual ./hg96.sam -q 1 -l 4

Table ST2: Software description and used command lines.

sequencing), the total size of the bloom filter and the false positive bifurcation events stored

in the file can be approximated by:

r · G
︸︷︷︸

Bloom filter

+ 3 · 2 · GDf r

︸ ︷︷ ︸

false bifurcations

bits

In average, most of the graph nodes are in simple paths, hence 3 possible edges out of each

node are likely to produce false bifurcations, and each bifurcation is stored with approximately

2 bits (through the arithmetic coder).

This total size is minimized with :

r = log(
−1

6 · D log f
)/ log f

This yields r = 10.3 bits for D = 50, very close to the experimentally measured optimal

size for the SRR065390 C.elegans dataset (70x total coverage ≈ 50x kmer coverage for k = 31

and read length 100). See figure S4 for experimental measure of the size of bloom filter and

6

bifurcations on this C.elegans dataset.

5 10 15 20

0

200

400

600

800

1,000

Bifurcations

Bloom filter

Bits per solid kmer

C
o
m

p
re

ss
ed

si
ze

(M
B

)

Figure S4: Measured compressed sizes of the bifurcation list and the Bloom filter components

with respect to the number of bits per solid kmer parameterized in the Bloom filter. This

was obtained for the C. elegans 70x WGS dataset.

References

[1] Bonfield, J. K. and Mahoney, M. V. (2013) Compression of FASTQ and SAM format

sequencing data.. PLoS One, 8(3), e59190.

[2] Jones, D. C., Ruzzo, W. L., Peng, X., and Katze, M. G. (Dec, 2012) Compression of

next-generation sequencing reads aided by highly efficient de novo assembly.. Nucleic

Acids Res, 40(22), e171.

[3] Grabowski, S., Deorowicz, S., and Roguski, L. (2014) Disk-based compression of data

from genome sequencing. Bioinformatics, p. btu844.

[4] Deorowicz, S. and Grabowski, S. (2011) Compression of DNA sequence reads in FASTQ

format. Bioinformatics, 27(6), 860–862.

7

[5] P., D. and J.L., G. (1996) Zlib compressed data format specification version 3.3.. RFC

1950,.

[6] Hach, F., Numanagic, I., Alkan, C., and Sahinalp, S. C. (Dec, 2012) SCALCE: boost-

ing sequence compression algorithms using locally consistent encoding.. Bioinformatics,

28(23), 3051–3057.

[7] Patro, R. and Kingsford, C. (2015) Data-dependent bucketing improves reference-free

compression of sequencing reads. Bioinformatics, p. btv248.

[8] Yu, Y. W., Yorukoglu, D., and Berger, B. (2014) Traversing the k-mer Landscape of NGS

Read Datasets for Quality Score Sparsification. In Research in Computational Molecular

Biology Springer pp. 385–399.

[9] Cánovas, R., Moffat, A., and Turpin, A. (2014) Lossy compression of quality scores in

genomic data. Bioinformatics, 30(15), 2130–2136.

[10] Kirsch, A. and Mitzenmacher, M. (2006) Less hashing, same performance: Building a

better Bloom filter. AlgorithmsESA 2006, pp. 456–467.

8

