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Mixed Model with Correction for Case-Control
Ascertainment Increases Association Power

Tristan J. Hayeck,.2* Noah A. Zaitlen,> Po-Ru Loh,2# Bjarni Vilhjalmsson,%+ Samuela Pollack,2+*
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We introduce a liability-threshold mixed linear model (LTMLM) association statistic for case-control studies and show that it has a well-
controlled false-positive rate and more power than existing mixed-model methods for diseases with low prevalence. Existing mixed-
model methods suffer a loss in power under case-control ascertainment, but no solution has been proposed. Here, we solve this problem
by using a ? score statistic computed from posterior mean liabilities (PMLs) under the liability-threshold model. Each individual’s PML
is conditional not only on that individual’s case-control status but also on every individual’s case-control status and the genetic relation-
ship matrix (GRM) obtained from the data. The PMLs are estimated with a multivariate Gibbs sampler; the liability-scale phenotypic
covariance matrix is based on the GRM, and a heritability parameter is estimated via Haseman-Elston regression on case-control pheno-
types and then transformed to the liability scale. In simulations of unrelated individuals, the LTMLM statistic was correctly calibrated
and achieved higher power than existing mixed-model methods for diseases with low prevalence, and the magnitude of the improve-
ment depended on sample size and severity of case-control ascertainment. In a Wellcome Trust Case Control Consortium 2 multiple
sclerosis dataset with >10,000 samples, LTMLM was correctly calibrated and attained a 4.3% improvement (p = 0.005) in +2 statistics
over existing mixed-model methods at 75 known associated SNPs, consistent with simulations. Larger increases in power are expected
at larger sample sizes. In conclusion, case-control studies of diseases with low prevalence can achieve power higher than that in existing
mixed-model methods.

Introduction prevalence, as demonstrated in settings of either simulated
or real genotypes. In a Wellcome Trust Case Control
Consortium 2 (WTCCC2) multiple sclerosis (MS) dataset
with >10,000 samples, LTMLM was correctly calibrated
and attained a 4.3% improvement (p = 0.005) in +2 statis-
tics over existing mixed-model methods at 75 known asso-

ciated SNPs, consistent with simulations.

Mixed-model association statistics are a widely used
approach to correct for population structure and
cryptic relatedness in genome-wide association studies
(GWASs).'"!! However, recent work shows that existing
mixed-model association statistics have less power than
standard logistic regression in studies of ascertained case
and control subjects.'" It is widely known that appropriate
modeling of case-control ascertainment can produce sub-
stantial increases in power for case-control studies with
fixed-effect covariates,'>'* but such increases in power
have not yet been achieved with models that include
random effects.

Material and Methods

Overview of Method

We improve upon standard mixed-model methods'' by using a
retrospective association-score statistic (LTMLM) computed from
PMLs under the liability-threshold model. The improvement

We developed an association-score statistic based on
a liability-threshold mixed linear model (LTMLM). The
LTMLM statistic relies on the posterior mean liability
(PML) of each individual; the PML is calculated with a
multivariate Gibbs sampler.'® The PML of each individual
is conditional on the genetic relationship matrix (GRM),
the case-control status of every individual, and the disease
prevalence. Existing methods use a univariate prospective
model to compute association statistics, but here we use
a multivariate retrospective model.

The LTMLM statistic provides an increase in power in
simulations of case-control studies of diseases with low

over previous approaches comes from appropriate modeling of
case-control ascertainment. We consider all individuals simulta-
neously and incorporate prevalence information.

Our method consists of three steps. First, the GRM is calculated,
and a corresponding heritability parameter is estimated, modeling
the phenotype covariance of all individuals (see “Estimation of
Heritability Parameter”). The heritability parameter is estimated
with Haseman-Elston (H-E) regression on the observed scale and
then transformed to the liability scale. Second, PMLs are estimated
with a truncated multivariate normal Gibbs sampler (see “PMLs”).
The PML of each individual is conditional on that individual’s
case-control status, on every other individual’s case-control status,
and on disease prevalence and liability-scale phenotypic
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Figure 1. Genetic Relatedness to a Dis-
ease-Affected Case Subject Can Increase
an Individual’s PML

In (A) and (B), we plot distributions of lia-
bilities for a set of 10,000 individuals under
(A) random ascertainment or (B) case-con-
trol ascertainment for a disease with a
prevalence of 0.1% (see Figure 2 in Lee
et al.’®). In (C) and (D), we plot the same
distributions but condition on an individ-
ual’s having a genetic relatedness of 0.5
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with a disease-affected case subject while
assuming a heritability of 1 on the liability

scale.
liability

The phenotypic data (transformed to have
mean O and variance 1) can be represented
as a vector (¢) with values for each individ-
ual (i). Genotype values of candidate SNPs
are transformed to a vector (x) with mean
0, variance 1, and effect size 8. The quanti-
tative trait value depends on the fixed ef-
fect of the candidate SNP (8x), the genetic

liability

covariance. Third, a 32 (1 degree of freedom) association-score sta-
tistic is computed on the basis of the association between the
candidate SNP and the PML (see “LTMLM Association Statistic”).

The toy example in Figure 1 illustrates how genetic relatedness
to a disease-affected case subject can increase an individual’s
PML. In Figures 1A and 1B, we plot the distribution of liabilities
in 10,000 unrelated individuals who were randomly ascertained
and ascertained according to case-control status (for a disease
with a prevalence of 0.1%), respectively. In Figures 1C and 1D,
we plot the same distributions but condition on an individual’s
having a genetic relatedness of 0.5 with a disease-affected case sub-
ject while assuming a liability-scale heritability of 1.0. In each case,
the posterior distribution of liabilities (and hence the PML) is
shifted upward. (The magnitude and direction of this effect would
be different for an individual with a genetic relatedness of 0.5 with
a control subject). Our main focus below is on much lower levels
of genetic relatedness (identity by state) among many unrelated
samples, but the same principles apply.

Estimation of Heritability Parameter
Mixed-model association statistics rely on the estimation of a her-
itability parameter. We note that this heritability parameter, which
Kang et al.* refer to as “pseudo-heritability,” is generally lower
than the total narrow-sense heritability (h?) in datasets not domi-
nated by family relatedness but can be larger than the heritability
explained by genotyped SNPs (h,%)"” in datasets with population
structure or family relatedness. However, for ease of notation, we
use the symbol h? to represent this heritability parameter. A list
of all notation used below is provided in Table S1.

The goal is to test for association between a candidate SNP and a
phenotype. We first consider a quantitative trait:

o=0x+u-+e. (Equation 1)

random effect excluding the candidate
SNP (m), and the environmental compo-
nent (e). We extend to case-control traits
via the liability-threshold model, in which
each individual has an underlying, unob-
served, normally distributed trait called
the liability. An individual is affected by a disease if the liability ex-
ceeds a specified threshold (t), corresponding to disease preva-
lence'® (Figure S1).

Standard mixed-model association methods generally estimate
h* from a GRM and phenotypes by using restricted maximum
likelihood (REML).*!! Genotypic data (excluding the candidate
SNP'') are used for building a GRM:

liability

X'x
M b

6= (Equation 2)
where X is a matrix of non-candidate SNPs normalized to mean
0 and variance 1 and M is the number of SNPs. We estimate h”
by using H-E regression followed by a transformation to the liabil-
ity scale. We obtain the H-E regression estimate by regressing the
product of the case-control phenotypes on the off-diagonal terms
of the GRM:'®*?

Dk Tk O

w2
iy = )
2k @i

(Equation 3)

where 7r; denotes the case-control status of individual i and %) ik is
the genetic relatedness of individuals i and k. This gives an esti-
mate on the observed scale, and then the estimate is transformed
to the liability scale:*’

[K(1-K)?

" 2P P))

fen = N (Equation 4)
where z is the height of the standard normal density ((1/2m)e t"/2)
at the liability threshold t, K is disease prevalence, and P is the pro-
portion of case subjects in the sample.”

Then, the variance between the individuals is modeled as the

phenotypic covariance,
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V=10 + (-], (Equation 5)
where O is the N x N GRM, V is the phenotypic covariance, h? is
the heritability parameter, and I is the identity matrix.

Using the phenotypic covariance matrix V, the liability is
modeled as a multivariate normal distribution:

Lo) = 20 | (V)| exp( (0 (V) '(0)). (Bquation 6

We note that we observe the case-control phenotypes of the indi-
viduals and not the continuous liabilities.

PMLs

We first consider the univariate PML (PML,,,;), constructed inde-
pendently for each individual; we generalize to the multivariate
setting below. As described in Equations 11 and 12 in Lee
et al.,?" these correspond to the expected value of the liability
and are conditional on the case-control status:

PMLuni,case = E[(p ‘ = 1] = Z/

PMLuynicontrol = El@ | m = 0] = —z/(1 — K). (Equation 7)

These values are calculated analytically in the univariate setting,
and depending on case or control status, they can be thought of
as the mean of a truncated normal distribution above or below,
respectively, the liability threshold t.*°

We next consider the multivariate PML (PML,q1ti), €Stimated
jointly across individuals. The PMLyyuei for each individual is
conditional on that individual’s case-control status, on every other
individual’s case-control status, and on their phenotypic covari-
ance. The PML i is estimated with a Gibbs sampler, as in pre-
vious work'® (which focused on family relatedness and did not
consider association statistics). The Gibbs sampler is an iterative al-
gorithm that generates random variables from conditional distri-
butions in order to avoid the difficult task of explicitly calculating
the marginal density for each random variable.

For each individual in turn, the conditional distribution of the
liability is calculated on the basis of all of the other individuals,
and a new value is generated. The algorithm is as follows:

Initialization: for each individual j,

@i = PMLuni,case if m=1or @i = PMLuni control if wm =0
(Equation 8)

For each Markov Chain Monte Carlo MCMC ) iteration n

For each individual i

Sample ¢; from the constrained conditional univariate normal
distribution

L(¢;) ~exp(-¢"V~'¢/2) and constraint ¢; > tif m; = 1, @; < tif
mi=0

(where ¢ ; are fixed)

We use 100 burn-in iterations followed by 1,000 additional MCMC
iterations. We estimate the PML,;,1¢; by averaging over MCMC iter-
ations. We reduce the number of MCMC iterations needed via Rao-
Blackwellization, which averages (across n iterations) the posterior
means of the distributions from which each ¢; is sampled.

LTMLM Association Statistic
The LTMLM association statistic is calculated with the PML,, u1ti-
For simplicity, we first consider the case where the liability is

known. We jointly model the liability and the genotypes by using
a retrospective model, enabling appropriate treatment of sample
ascertainment. We concatenate the two vectors (¢, x) and derive
the joint likelihood for these combined terms. The covariance of
¢ and x between individuals i and k is

Cov(g;, xx) = Elg;, %] — E[g;|E[xk] = E[@;, %] = E[Bx;, X] = 3O,
(Equation 9)

where O is the true underlying GRM from which genotypes are
sampled. (We note that ©, which is unobserved, is different
from the GRM @ estimated from the data). The variance of (g,
x) as a function of effect size 3 is

Cc@B) = < ﬁgr ﬂ@@ ) (Equation 10)
Thus,
-1 -1
cp) ' = <7ﬁ(‘;,1)7 _ng ) +0(8%), (Equation 11)

where both of these matrices are 2N x 2N. (We note that
the product of the matrices in Equations 10 and 11 is
I+0(6% 0
0 1+ 0(6?)
tains only O(8%) terms.)
The joint likelihood of the liability and genotypes is distributed
as a multivariate normal N(0,C(8)), and thus

) , whose difference from the identity con-

Lol ) = (207 |€(8)|exp( 5 (02" C0) (0.3)).
(Equation 12)

Taking the derivative of the log-likelihood results in the score
equation. The determinant of the matrix V does not have any
terms linear in 8, so the terms with V alone drop out when we
take the derivative:

S0 B) = FEInL(x.0|§) = 1 (00 €801
_d v v R
= %((p’X)T(_ﬁ(V*l)T 0! )(([I,X) =V ox

(Equation 13)

The marginal score statistic tests the null hypothesis, which
is that the fixed effect of the candidate SNP is O (Ho: 8 = 0),
against the alternative hypothesis (Hx: 8 # 0). The denominator
of the score statistic is the variance of the score evaluated under
the null:

Var(S(x, ¢ 8)) = (V''9) @(V o). (Equation 14)

This leads to the score statistic

— 2
M} (Equation 15)
(Vi) oWV e
where 0, the true underlying genetic relatedness of the individ-
uals, can be approximated by the identity matrix in datasets of
unrelated individuals.

In Equations 9, 10, 11, 12, 13, 14, and 15, the liability was
assumed to be known for simplicity. We now consider a case-con-
trol trait, with unobserved liability, and derive the score function
by using the observed case-control status, =, of each individual.

722 The American Journal of Human Genetics 96, 720-730, May 7, 2015



Table 1. List of Association Statistics

ATT MLM LTMLM
Quantitative or case-control trait both both case-control
Estimates of heritability parameter none REML H-E regression
Prospective or retrospective prospective prospective retrospective
o T e e T
Corrects for confounding? no yes yes
Models case-control ascertainment no no yes

We list properties of the Armitage trend test (ATT), standard mixed-model association statistic (MLM), and proposed statistic (LTMLM). w* is the normalized case-
control status (mean 0 and variance 1), x is the normalized genotype, PML,p; is the univariate PML conditional on the case-control status of a single individual,
PML,,uiei is the multivariate PML conditional of the case-control status of all individuals, Iis the identity matrix, and V is the phenotypic covariance (on the

observed scale for MLM and on the liability scale for LTMLM).

When we return to the score function and conditioning on case-
control status,

p (x| 8.7)50
Sx, 0|8, = d—BlnL(x,q; 18, m)s_o = ]W?M)o.
) » 1) g=

(Equation 16)

When we introduce the unobserved quantitative liability, ¢, the
score function can be rewritten in terms of the probability density
of the liability:

dL(%0|8);_ dAL(x,0|8)5_
Moo pigySinus gy
Lx,0[8)s-0 Lx,0[8)s-

S(x,p|8.m) = C / P()S(x, 0| 8,m)dg = S(x. Elg | ]| 6).
(Equation 17)

where P(¢) is the probability density of the liability and E[¢| =] is
the PML. It follows that an appropriate LTMLM score statistic is

(" V"' PMLuyuni)”
(V'"PMLyui) ©(V"'PMLyyuiei)

(Equation 18)

Again, O can be approximated by the identity matrix in datasets of
unrelated individuals; we note that this choice affects only a con-
stant calibration factor (because the denominator is the same for
each candidate SNP) and that other calibration options are avail-
able (see below). As with other association statistics, the LTMLM
score statistic generalizes to non-normally distributed geno-
types.”"** The overall computational cost of computing the
LTMLM statistic is O(MN?) when M > N > number of iterations
(Table S2). We have fixed the number of iterations at 100 burn-
in iterations followed by 1,000 additional iterations.

We calculate the GRM via leave one chromosome out (LOCO)
analysis, i.e., for each candidate SNP on a given chromosome,
we calculate GRM by using all of the other chromosomes. This pre-
vents deflation due to double counting of the candidate SNP as
both a fixed effect and a random effect in the mixed model.*® !

Simulated Genotypes and Simulated Phenotypes

We performed simulations both by using simulated genotypes and
simulated phenotypes and by using real genotypes and simulated
phenotypes (see below). Quantitative liabilities for each individual
were generated from SNP effects and an environmental compo-

nent. All simulations included M candidate SNPs and an indepen-
dent set of M SNPs used for calculating the GRM (so that candidate
SNPs were not included in the GRM). For each scenario, a set of
100 simulations were run. We set ten candidate SNPs and ten
GRM SNPs to be causal in simulations with N = 1,000 samples
and set 50 candidate SNPs and 50 GRM SNPs to be causal in sim-
ulations with N = 5,000 samples to ensure that causal SNPs had
similar average y? statistics independent of M and N. We then
dichotomized the resulting quantitative liabilities on the basis of
the liability threshold to categorize each individual as a case or
control subject. Case-control ascertainment was performed and
simulated 50% case and 50% control subjects. We compared Ar-
mitage trend test (ATT), logistic regression (LogR), mixed linear
model (MLM), and LTMLM statistics (see Table 1). MLM statistics
were computed with the genome-wide complex trait analysis
(GCTA)-LOCO statistic described in Yang et al.,'' and the heritabil-
ity parameters were estimated with the GCTA software.”* We eval-
uated performance by using average 2 statistics at causal, null,
and all markers, Agc at all markers (median %2 divided by
0.455),%° and the proportion of causal and null markers that
were significant at the p value thresholds of 0.05, 0.001, 1 x
1075 and 5 x 1075,

In the primary analyses, we simulated individuals without pop-
ulation structure or linkage disequilibrium (LD) with N = 1,000 or
5,000 samples; M = 1,000, 5,000, or 50,000 SNPs; and prevalence
K = 50%, 10%, 1%, or 0.1%. Genotypes were sampled from inde-
pendent binomials with allele frequencies sampled from a uni-
form distribution over the values [0.1, 0.9]. In secondary analyses,
we simulated population structure by simulating two populations
with Fsy = 0.01 and allele frequencies drawn from beta distribu-
tions with parameters p(1 — Fsr)/Fsr and (1 — p)(1 — Fst)/Fst, based
on ancestral allele frequency p sampled from a uniform distribu-
tion over the values [0.1, 0.9].

To test the impact of the generative distribution, we simulated
the underlying distribution by using a logit model instead of a li-
ability-threshold model. The ten causal candidate SNPs were simu-
lated with alternating fixed-effect sizes of 8 = 0.4 or 8 = —0.4.
Then, case-control phenotypes were generated from a binomial
distribution where the probability of being a case subject was
(case) = 1/(1 + exp(—[c + Bx])), shifted by the affine term (c) and
based on the desired disease prevalence.

WTCCC2 Genotypes and Simulated Phenotypes
We also conducted simulations by using real genotypes from
WTCCC2 to incorporate LD and realistic population structure.
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Table 2.

Results for Simulated Genotypes and Simulated Phenotypes

Prevalence Set

Statistic

ATT (SE)

LogR (SE)

MLM (SE)

LTMLM (SE)

N = 5,000 and M = 5,000

50%

25%

10%

1%

0.1%

causal
null
all

all
causal
null
all

all
causal
null
all

all
causal
null
all

all
causal
null
all

all

average
average
average
Aae

average
average
average
Ace

average
average
average
Acc

average
average
average
Ace

average
average
average

Acc

16.492 (0.325)
0.988 (0.002)
1.143 (0.004)
1.010 (0.003)

18.637 (0.388)
1.000 (0.002)
1.177 (0.005)
1.012 (0.004)

25.235 (0.501)
0.993 (0.002)
1.235 (0.006)
1.005 (0.003)

45.376 (0.878)
1.000 (0.002)
1.444 (0.011)
1.020 (0.003)

68.648 (1.301)
1.000 (0.002)
1.677 (0.016)

1.026 (0.003)

16.399 (0.321)
0.988 (0.002)
1.142 (0.004)
1.010 (0.003)

18.509 (0.383)
1.000 (0.002)
1.175 (0.005)
1.012 (0.004)

25.014 (0.492)
0.992 (0.002)
1.233 (0.006)
1.005 (0.003)

44.682 (0.852)
0.999 (0.002)
1.436 (0.011)
1.020 (0.003)

67.099 (1.248)
1.000 (0.002)
1.661 (0.016)

1.026 (0.003)

16.880 (0.332)
0.990 (0.002)
1.148 (0.004)
1.014 (0.003)

19.014 (0.396)
1.000 (0.002)
1.180 (0.005)
1.013 (0.004)

25.386 (0.506)
0.991 (0.002)
1.235 (0.006)
1.007 (0.003)

42.594 (0.825)
0.990 (0.002)
1.406 (0.010)
1.011 (0.003)

56.303 (1.082)
0.918 (0.002)
1.472 (0.013)

0.942 (0.005)

16.867 (0.332)
0.989 (0.002)
1.148 (0.004)
1.014 (0.003)

19.056 (0.398)
1.001 (0.002)
1.181 (0.005)
1.013 (0.004)

25.778 (0.514)
0.992 (0.002)

1.24 (0.007)
1.008 (0.003)

46.691 (0.913)°
1.000 (0.002)
1.457 (0.011)
1.019 (0.003)

70.810 (1.364)*
1.000 (0.002)
1.698 (0.017)

1.025 (0.003)

N = 5,000 and M = 50,000

50%

25%

10%

1%

causal
null
all

all
causal
null
all

all
causal
null
all

all
causal
null
all

all

average
average
average
¥t

average
average
average
Ace

average
average
average
¥ete

average
average
average

¥t

16.624 (0.331)
1.000 (0.001)
1.015 (0.001)
1.003 (0.001)

18.965 (0.37)
1.003 (0.001)
1.021 (0.001)
1.006 (0.001)

23.710 (0.444)
1.001 (0.001)
1.023 (0.001)
1.007 (0.001)

46.683 (0.883)
0.999 (0.001)
1.045 (0.001)
1.004 (0.001)

16.529 (0.327)
0.999 (0.001)
1.015 (0.001)
1.002 (0.001)

18.843 (0.366)
1.003 (0.001)
1.020 (0.001)
1.006 (0.001)

23.528 (0.437)
1.000 (0.001)
1.023 (0.001)
1.007 (0.001)

45.969 (0.859)
0.999 (0.001)
1.044 (0.001)
1.004 (0.001)

16.673 (0.332)
1.000 (0.001)
1.016 (0.001)
0.999 (0.001)

19.030 (0.372)
1.003 (0.001)
1.021 (0.001)
1.003 (0.001)

23.868 (0.449)
1.001 (0.001)
1.024 (0.001)
1.005 (0.001)
46.44 (0.881)
0.999 (0.001)
1.045 (0.001)
1.001 (0.001)

16.69 (0.333)
1.000 (0.001)
1.015 (0.001)
0.999 (0.001)

19.040 (0.372)
1.003 (0.001)
1.021 (0.001)
1.003 (0.001)

23.910 (0.450)
1.001 (0.001)
1.024 (0.001)
1.004 (0.001)

47.368 (0.905)
0.999 (0.001)
1.045 (0.001)
1.000 (0.001)

(Continued on next page)
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Table 2. Continued

Prevalence Set Statistic ATT (SE) LogR (SE) MLM (SE) LTMLM (SE)

0.1% causal average 67.059 (1.278) 65.561 (1.225) 65.232 (1.251) 68.618 (1.333)"
null average 0.999 (0.001) 0.999 (0.001) 0.999 (0.001) 0.999 (0.001)
all average 1.065 (0.002) 1.063 (0.002) 1.063 (0.002) 1.067 (0.002)
all Ace 1.004 (0.001) 1.004 (0.001) 1.000 (0.001) 1.000 (0.001)

We report average 2 statistics across 100 simulations for each individual scenario. N is the number of individuals, and M is the number of SNPs. The set indicates all
SNPs, the 1% causal SNPs, or the 99% null SNPs. The disease prevalence ranges from 50% (no case-control ascertainment) to 0.1%.
®The settings where LTMLM demonstrated at least a 5% improvement over MLM in «? statistics at causal markers.

The WTCCC2 data contained 360,557 SNPs and 15,633 samples,
as described previously.'" Because the goal of the power study is
to demonstrate a comparison of the statistics under case-control
ascertainment, we used N = 1,000 samples (500 case and 500 con-
trol subjects) and simulated phenotypes with a prevalence of 50%,
25%, and 10%. The prevalence was restricted to a lower bound of
10% because of the limitation of having only 15,633 WTCCC2
samples for simulating case-control ascertainment. We computed
ATT, LogR, MLM, and LTMLM statistics as described above.

WTCCC2 Genotypes and MS Phenotypes

Finally, we analyzed WTCCC2 individuals with ascertained case-
control phenotypes for MS,'' a disease with a prevalence of
around 0.1%. As in previous work, we assume that the disease
prevalence is known on the basis of external epidemiological liter-
ature.”*?%?7 For the WTCCC2 MS data, we used a threshold of 3.0,
corresponding to a disease prevalence of 0.1%.%° We computed
ATT, LogR, MLM, and LTMLM statistics as described above.
Although the underlying MS study was appropriately matched
for ancestry,”® the data made available to researchers included
only pan-European case and UK control subjects. Thus, the
WTCCC2 dataset shows a severe mismatch in ancestry of case
and control subjects; this severe mismatch between case and con-
trol subjects is not representative of a typical GWAS. We thus
restricted our primary analysis to 10,034 samples with only a mod-
erate mismatch in ancestry, but we also performed analyses of
unmatched and stringently matched datasets (Figure S2). The un-
matched dataset contained 10,204 case and 5,429 control subjects.
We performed matching by first calculating 20 principal compo-
nents (PCs) in the full cohort and weighing the contribution of
each PC on the basis of how much phenotype variance it ex-
plained in a multiple regression. A Euclidean distance over these
20 weighted dimensions was then computed for all pairs of indi-
viduals, and each case subject was greedily assigned the nearest
unmatched control subject until no matched case-control pairs
could be identified. Finally, any matched case-control pairs who
were not within 6 SDs of the mean pairwise distance were removed
as outliers, yielding the 5,017 case and 5,017 matched control sub-
jects used in our primary analysis. We performed stringent match-
ing by additionally removing any matched case-control pairs who
were not within 2 SDs of the mean pairwise distance, yielding the
4,094 case and 4,094 matched control subjects used in our strin-
gently matched analysis.

We compared association statistics at 75 published SNPs
associated with MS."! We used a jackknife approach to assess the
statistical significance of differences in association statistics by
excluding each of the 75 published SNPs in turn.

Results

Simulations: Simulated Genotypes and Simulated
Phenotypes
We first conducted simulations by using simulated geno-
types and simulated ascertained case-control phenotypes
(see Material and Methods). Our main simulations
involved unrelated individuals with no population struc-
ture, but the impact of population structure is explored
below. We evaluated the power of ATT, LogR, MLM, and
LTMLM. We report average > statistics at causal, null,
and all markers and Agc at all markers in Table 2, and we
report the proportion of causal and null markers that
were significant at various p value thresholds in Table S3.
For diseases with low prevalence, the LTMLM statistic out-
performed the ATT, LogR, and MLM statistics. Improve-
ments in average > statistics at causal markers (which
are naturally interpreted as the increase in effective sample
size) were larger than improvements in power to detect an
association at a given p value threshold, most likely as a
result of the variable (normally distributed) effect sizes in
this simulation (see below). For LTMLM and MLM at dis-
ease prevalences of 0.1%, 26%, and 5%, improvements in
average 2 statistics at causal markers were observed in sim-
ulations with 5,000 SNPs and 50,000 SNPs, respectively.
Smaller improvements were observed at higher disease
prevalences. Test statistics were well calibrated at null
markers. Simulations at other values of M and N indicated
that the magnitude of the improvement depends on the
value of N/M (Tables S3 and S4). Simulations with popula-
tion structure demonstrated similar results but also showed
inflation in the ATT statistic as expected (Tables S5 and S6).
The MLM statistics were calculated with an h* parameter
estimated via REML,* but the LTMLM statistics were calcu-
lated with an h?® parameter first estimated via H-E regres-
sion on case-control phenotypes and then transformed
to the liability scale'®?? (see Material and Methods). As
case-control ascertainment became more severe, the H-E
regression estimate of #* remained unbiased, whereas the
variance-component estimate was severely downwardly
biased even after transformation to the liability scale (Table
3 and Table S7), consistent with previous work (see Golan
et al.”” and Table S9 in Yang et al.""). Population structure
resulted in bias for both REML and H-E-regression
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Table 3. Heritability-Parameter Estimates from Simulated
Genotypes and Phenotypes

Liability Scale Observed Scale

Prevalence H-E (SE) REML (SE) H-E (SE) REML (SE)

N = 5,000 and M = 5,000

50% 0.255 (0.006) 0.253 (0.006) 0.162 (0.004) 0.161 (0.004)

25% 0.24 (0.005) 0.236 (0.004) 0.172 (0.003)  0.17 (0.003)
10% 0.24 (0.004) 0.23 (0.004) 0.228 (0.004) 0.219 (0.004)
1% 0.25 (0.004) 0.21 (0.002) 0.453 (0.007) 0.381 (0.004)
0.1% 0.253 (0.003) 0.158 (0.000) 0.719 (0.009) 0.449 (0.001)

N = 5,000 and M = 50,000

50% 0.272 (0.009) 0.274 (0.009) 0.173 (0.006) 0.174 (0.006)
25% 0.246 (0.010) 0.252 (0.010) 0.177 (0.007) 0.181 (0.007)
10% 0.225 (0.004) 0.231 (0.004) 0.214 (0.004) 0.219 (0.004)
1% 0.246 (0.004) 0.241 (0.004) 0.445 (0.008) 0.437 (0.008)
0.1% 0.259 (0.004) 0.241 (0.004) 0.734 (0.012) 0.684 (0.01)

We report results, on both the liability and observed scales, averaged over 100
simulations. The true h?, explained by the SNPs used for building the GRM, is
25% on the liability scale for all simulations. These results correspond to the
same sets of simulations in Table 2.

estimates of h?, although the bias for the REML estimates
was higher (Table S8). These biases did not inflate LTMLM
or MLM statistics under the null hypothesis (Tables S5 and
S6). We note that previous work has shown that running
MLM with the correct h* parameter does not ameliorate
the loss in power for MLM."!

We also evaluated performance in settings where the li-
ability threshold (equivalently, the disease prevalence) was
misspecified (Tables S9 and S10). The LTMLM statistic re-
mained properly calibrated under the null and continued
to outperform the MLM statistic given that the impact of
misspecifying the liability threshold was small. Misspeci-
fying the liability threshold led to bias in liability-
scale heritability estimates as a result of the inaccurate
conversion from the observed scale to the liability scale
(Table S11).

Finally, we evaluated performance when phenotypes
were generated with a logit model instead of a liability-
threshold model; for simplicity, we used a fixed effect
size for causal candidate SNPs (see Material and Methods).
At low disease prevalence, we observed improvements for
LTMLM both in average y” statistics at causal markers
(Table S12) and in power to detect an association at a given
p value threshold (Table S13); improvements in power
depend heavily on the distribution of causal effect sizes
and are larger in simulations with fixed causal effect sizes
than in simulations with variable causal effect sizes.

Simulations: WTCCC2 Genotypes and Simulated
Phenotypes

We next conducted simulations by using real WTCCC2 ge-
notypes and simulated phenotypes from ascertained case

and control individuals (see Material and Methods).'!*®

For a given value of M (M SNPs for calculating the GRM
plus M candidate SNPs for a total of 2M SNPs), we used
the first M/2 SNPs from each of the first four chromosomes.
The GRM was calculated with SNPs on chromosomes 3 and
4, and SNPs on chromosomes 1 and 2 were treated as the
candidate SNPs. The simulated phenotypes were generated
from chromosomes 1 and 3, where 1% of the SNPs were
randomly selected as being causal. Results are reported
for causal SNPs on chromosome 1 and for null SNPs on
chromosome 2, the latter of which were not used for build-
ing the GRM.

Results for simulations including 1,000 and 10,000 SNPs
(M) and sample sizes fixed at 500 case and 500 control sub-
jects are displayed in Table 4 and Tables S14 and S15. Once
again, the LTMLM statistic outperformed ATT and MLM as
case-control ascertainment became more severe. (A limita-
tion of these simulations is that performing case-control
ascertainment on a fixed set of individuals limits case-con-
trol sample size; thus, these simulations were restricted to a
disease prevalence of 10% or higher. It is reasonable to
infer that for rarer diseases with more extreme case-control
ascertainment the LTMLM statistic would achieve even
higher power gains, as was demonstrated in simulations
with simulated genotypes.)

The h* parameter estimates for simulations with real ge-
notypes are displayed in Table 5. The H-E regression esti-
mates are unbiased, but the REML estimates are again
downwardly biased at lower prevalence and large N/M.

WTCCC2 MS Dataset

We analyzed the WTCCC2 genotypes together with MS
case-control phenotypes: 5,172 MS case subjects and
5,172 control subjects were genotyped on Illumina
chips'!?%(see Material and Methods). We compared ATT,
ATT with five PCs (ATT + PCs),”* LogR, LogR with five
PCs (LogR + PCs), MLM, and LTMLM. We evaluated cali-
bration by using the average 3> and Agc over all SNPs; we
note that the average > and Ag¢ are expected to be greater
than 1 as a result of polygenic effects."'*" We believe that
LTMLM is effective in correcting for confounding and that
a higher value of Agc for LTMLM than for MLM is most
likely due to true polygenic signal and reflects the higher
power of LTMLM.

We evaluated power by using the average > over the 75
published SNPs (Table 6) and the proportion of published
SNPs that were significant at various p value thresholds
(Table S16). The LTMLM method performed best: it had a
4.3% improvement in average > statistics scaled by Agc
over MLM (jackknife p = 0.005; see Material and Methods)
and an even larger improvement over ATT and ATT + PCs,
consistent with simulations (Table 2 and Table S3). LTMLM
also detected 56/75 known associations as nominally sig-
nificant (p < 0.05) after Agc correction, whereas MLM
detected only 53/75, although this difference is not statisti-
cally significant. Similar results were obtained when associ-
ation statistics were calibrated via LD-score regression”’
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Table 4. Results on Real Genotypes and Simulated Phenotypes

Prevalence Set Statistic  ATT (SE) ATT + PCs (SE)  LogR (SE) LogR + PCs (SE)  MLM (SE) LTMLM (SE)

M = 1,000

50% causal average  16.234 (0.723)  15.775 (0.705) 15.566 (0.674)  15.14 (0.658) 17.48 (0.780)  17.412 (0.775)
null average 1.444 0.011)  1.425 (0.010) 1.433 (0.010)  1.415 (0.010) 1.472 (0.011)  1.471 (0.011)
all average 1.592 (0.014)  1.569 (0.013) 1.574 (0.013)  1.552 (0.013) 1.632 (0.015)  1.630 (0.015)
all Ao 1.214 0.017)  1.224 (0.017) 1.214 (0.017)  1.223 (0.017) 1.234 (0.017)  1.226 (0.016)

25% causal average  19.277 (0.771)  18.581 (0.754) 18.47 (0.721)  17.822 (0.706) 20.493 (0.820)  20.642 (0.831)
null average 1.551 (0.012)  1.507 (0.011) 1.538 (0.012)  1.495 (0.011) 1.571 (0.012)  1.577 (0.013)
all average 1.728 (0.015)  1.678 (0.014) 1.707 (0.015)  1.658 (0.014) 1.761 (0.016)  1.768 (0.016)
all e 1.256 (0.016)  1.245 (0.017) 1.255 (0.016)  1.245 (0.017) 1.241 (0.015)  1.243 (0.015)

10% causal ~average  22.838 (0.961)  21.406 (0.878)  21.618 (0.881)  20.336 (0.808) 23.865 (1.022)  24.661 (1.064)
null average 1.664 (0.014)  1.583 (0.012) 1.647 (0.014)  1.568 (0.012) 1.668 (0.014)  1.695 (0.015)
all average 1.876 (0.018)  1.781 (0.016) 1.846 (0.017)  1.756 (0.015) 1.890 (0.019)  1.925 (0.019)
all py. 1.271 (0.016)  1.285 (0.015) 1.270 (0.016)  1.284 (0.015) 1.251 (0.017)  1.270 (0.016)

M = 10,000

50% causal average  16.898 (0.702)  16.815 (0.698) 16.229 (0.659)  16.156 (0.655) 17.279 (0.725)  17.26 (0.725)
null average 1.078 (0.002)  1.083 (0.002) 1.074 (0.002)  1.078 (0.002) 1.078 (0.002)  1.076 (0.002)
all average 1.094 (0.002)  1.099 (0.002) 1.089 (0.002)  1.094 (0.002) 1.095 (0.002)  1.092 (0.002)
all Ao 1.039 (0.005)  1.047 (0.005) 1.039 (0.005)  1.046 (0.005) 1.039 (0.005)  1.035 (0.005)

25% causal ~average  17.573 (0.726)  17.293 (0.696) 16.856 (0.679)  16.61 (0.654) 17.976 (0.749)  18.077 (0.758)
null average 1.076 (0.002)  1.078 (0.002) 1.071 (0.002)  1.073 (0.002) 1.074 (0.002)  1.073 (0.002)
all average 1.092 (0.002)  1.094 (0.002) 1.087 (0.002)  1.089 (0.002) 1.091 (0.002)  1.090 (0.002)
all Ao 1.040 (0.004)  1.045 (0.004) 1.040 (0.004)  1.044 (0.004) 1.040 (0.004)  1.039 (0.004)

10% causal average  24.379 (1.026) 24.116 (1.014)  23.127 (0.944)  22.894 (0.934) 24.987 (1.071)  25.399 (1.091)
null average 1.112 (0.002)  1.115 (0.002) 1.107 (0.002)  1.110 (0.002) 1.108 (0.002)  1.111 (0.002)
all average 1.136 (0.003)  1.138 (0.003) 1.129 (0.002)  1.132 (0.002) 1.131 (0.003)  1.135 (0.003)
all . 1.051 (0.005)  1.059 (0.004) 1.050 (0.005)  1.058 (0.004) 1.044 (0.004)  1.047 (0.004)

We report average % statistics. M is the number of SNPs, and sample size is fixed at 500 case and 500 control subjects.

(Table S17). A perfectly matched dataset with 4,094 MS case
subjects and 4,094 control subjects yielded a similar
improvement for LTMLM over MLM (Table S18). We also
applied LTMLM to the full unmatched dataset of 10,204
MS subjects and 5,429 control subjects, where a severe
mismatch in ancestry between case and control subjects
was not representative of a typical GWAS. The LOCO esti-
mates of h* demonstrated inflation before we controlled
for population structure (Table S19). In this analysis, the
H-E regression estimate of #* produced an unrealistic value
of 7.3 on the observed scale (corresponding to 2.8 on the
liability scale), which is outside the plausible 0-1 range,
suggesting severe population stratification or other severe
problems with the data. We do not recommend the use
of LTMLM on unmatched samples when such severe
problems are detected. For completeness, we report the re-
sults of running LTMLM, which results in a loss of power
(Table S18).

Discussion

We have shown that controlling for case-control ascertain-
ment by using the LTMLM statistic can lead to significant
power improvements in case-control studies of diseases of
low prevalence. This was demonstrated via simulations us-
ing both simulated and real genotypes and in WTCCC2
MS case-control data. We emphasize that the improvement
applies to case-control studies of diseases with low preva-
lence. We note that logistic and linear regression generally
produce similar results and that logistic mixed-model score
tests that do not explicitly model case-control ascertain-
ment are likely to produce results similar to those of stan-
dard linear mixed-model methods.

The LTMLM statistic should not be used if the inferred
liability-scale h* parameter is outside the plausible 0-1
bound, given that this is indicative of severe population
stratification or other severe problems with the data (this
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Table 5. Heritability-Parameter Estimates on Real Genotypes and
Simulated Phenotypes

Liability Scale Observed Scale

Prevalence H-E (SE) REML (SE) H-E (SE) REML (SE)
M = 10,000

50% 0.259 (0.013) 0.252 (0.010) 0.165 (0.008) 0.161 (0.006)
25% 0.241 (0.010) 0.238 (0.008) 0.173 (0.007) 0.171 (0.006)
10% 0.245 (0.011) 0.242 (0.007) 0.233 (0.010) 0.230 (0.007)
M = 10,000

50% 0.236 (0.014) 0.245 (0.013) 0.150 (0.009) 0.156 (0.008)
25% 0.250 (0.014) 0.264 (0.013) 0.180 (0.010) 0.190 (0.010)
10% 0.259 (0.012) 0.261 (0.009) 0.246 (0.011) 0.248 (0.009)

These results are from the same simulations used to generate Table 4 and
Tables S14 and S15. We report results on both the liability and the observed
scales. The true h? explained by the SNPs used for building the GRM is 25%
on the liability scale for all simulations.

can also be assessed via PC analysis; see Figure S2). In such
settings, either matching based on ancestry should first be
performed or other statistics should be used.

Several limitations of LTMLM are directions for future
study. First, previous work has shown that using the
PMLs in conjunction with fixed effects such as body
mass index, age, or known associated SNPs will further in-
crease power.'>?” The incorporation of fixed-effect covari-
ates into the LTMLM statistic is not considered here and
remains a future direction. Second, the calibration of our
statistic in unrelated samples relies on an approximation
that works well in the WTCCC2 data analyzed but that
might not work well in all datasets. Here, calibration
via LD-score regression offers an appealing alternative.*'
Third, we did not consider case-control studies in family
datasets, which also represents a future direction. The
LTMLM score statistic in its current form is appropriate
for association testing in population case-control samples
with low levels of relatedness. In family datasets, other ap-
proaches to calibration, such as LD-score regression, could
potentially be explored.®' Fourth, the method relies on the
assumption of an underlying normally distributed liability.
Although this assumption is widely accepted by many ge-
neticists,”*** and the method also performs well under a
different generative model (Tables S12 and S13), further

work on whether case-control traits are accurately modeled
by normally distributed liabilities is warranted. Fifth, the
method does not estimate odds ratios; in this respect, the
method is similar to other mixed-model association
methods.**®"" However, liability-scale effect sizes can be
converted to odds ratios."® Sixth, analogous to standard
mixed-model association methods, LTMLM requires
running time O(MN?) when M > N > number of MCMC
iterations. This might be computationally intractable
in very large datasets. We are developing much faster
mixed-model methods,>* but these methods do not
consider case-control ascertainment and should not be
applied to ascertained case-control data for diseases of
low prevalence. The incorporation of the ideas we have
described here into these methods is an open question.
Seventh, potential application of the LTMLM statistic to
rare-variant datasets is not considered here and remains a
future direction. Finally, our methods could potentially
be extended to multiple traits.”>”*°

Supplemental Data

Supplemental Data include two figures and 19 tables and can be
found with this article online at http://dx.doi.org/10.1016/j.
ajhg.2015.03.004.
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Web Resources
The URLs for data presented herein are as follows:

GCTA (Genome-wide Complex Trait Analysis), http://www.
complextraitgenomics.com/software/gcta/

Liability threshold mixed linear model (LTMLM) in LTSOFT,
http://www.hsph.harvard.edu/alkes-price/software/

Table 6. Results on WTCCC2 MS Dataset

Category Metric ATT (SE) ATT + PCs (SE) LogR (SE) LogR + PCs (SE) MLM (SE) LTMLM (SE)
Published mean 11.661 (1.169) 9.98 (0.984) 11.619 (1.161) 9.871 (0.965) 9.919 (0.974) 10.587 (1.017)
Genome-wide mean 1.379 (0.003) 1.152 (0.003) 1.378 (0.003) 1.142 (0.003) 1.144 (0.003) 1.172 (0.003)
Genome-wide Agc 1.343 1.125 1.343 1.115 1.115 1.141
Published mean/Agc 8.695 8.880 8.663 8.860 8.905 9.292

We report, going down the rows, the average ? over 75 published SNPs, the average %2 across the entire genome, including 360,557 SNPs, the genome-wide
Acc, and then the average %2 across 75 published SNPs after normalization by the Agc. All results are based on analysis of 10,034 individuals (see main text).
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Figure S1. Liability Threshold Model. The liability threshold model performs a transformation based on disease prevalence. As ascertainment becomes more
drastic so does the difference between the PML for cases versus controls. In Figure S1, the portion of the population above the threshold is a case (blue). For
T2D, at a prevalence of 8% (blue), the threshold is set to 1.405. In this region, the expected value for the posterior liability is 1.85 and the expected value for the
controls is -0.14. Comparing T2D to MS with disease prevalence around 0.1% and t around 3.00, the PMLingiv for a control is 0.00 and 3.33 for a case. As the
disease prevalence goes down the difference in the PMLingiv for cases versus controls increases, the transformation plays a larger role for rare diseases and results
in a power gain for the LTMLM.
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Figure S2. Mismatch in ancestry between MS cases and controls. We plot the first two principal components for (a) unmatched data with a severe mismatch
(5,429 MS cases and 10,204controls), (b) stringently matched data using the first 20 PC(4,094 MS cases and 4,094 controls). The controls are depicted in red
and cases in black. After PC matching the remaining samples show considerably less population stratification differentiation between cases and controls.



Term Description

Quantitative liability, the unobserved trait

Effect Size of the SNP

Genotype values of candidate SNP, normalized to mean 0 variance 1

Genetic random effect excluding the candidate SNP

Environmental component

Matrix of genotype values of non-candidate SNPs, normalized to mean 0 and variance 1

Observed binary case control phenotype.

Threshold corresponding to the disease prevalence

Prevalence of the disease in the population

Proportion of cases in the sample

Genetic Relationship Matrix (GRM) computed from the data

True underlying Genetic Relationship Matrix (GRM)

Phenotypic covariance matrix

Identity matrix

SN RIS IS IEIRE IR

Heritability parameter

Table S1: Description of notation used and a brief description of the terms.

Computation ATT MLM LTMLM
GRM and V! NA O(MN?) O(MN?)
PML NA NA O(MN?)
Assoc. Statistic O(MN) O(MN) or O(MN?) O(MN)
Overall O(MN) O(MN?) O(MN?)

Table S2. Computational cost. M is the number of SNPs and N is the number of individuals. We assume that M > N > #MCMC iterations. The details of the
computational costs of MLM are provided in Table 1 of ref!!.



N M Prev o set ATT Liability MLM ATT LogR MLM LTMLM
Liability
1000 1000 50% 0.05 causal  0.732(0.015) 0.741(0.015) 0.663(0.016)  0.663(0.016) 0.671(0.016) 0.670(0.016)
0.001 causal  0.548(0.017) 0.562(0.017) 0.444(0.017)  0.443(0.017) 0.447(0.017) 0.444(0.017)
1x10°¢ causal  0.331(0.016) 0.353(0.016) 0.227(0.014)  0.224(0.014) 0.236(0.014) 0.234(0.014)
5x10°® causal ~ 0.275(0.015) 0.287(0.015) 0.179(0.013)  0.175(0.013) 0.177(0.013) 0.178(0.013)
0.05 null 0.050(0.001) 0.049(0.001) 0.051(0.001)  0.051(0.001) 0.051(0.001) 0.051(0.001)
0.001 null 0.001(1x10%) 0.001(1x10%)  0.001(2x10%)  0.001(2x10%)  0.001(2x10%)  0.001(2x10%)
1x10°¢ null O(NA) O(NA) O(NA) O(NA) O(NA) O(NA)
5x10°8 null O(NA) O(NA) 0(NA) 0(NA) O0(NA) O0(NA)
25% 0.05 causal ~ 0.704(0.015) 0.712(0.015) 0.648(0.016)  0.648(0.016) 0.652(0.016) 0.653(0.016)
0.001 causal  0.544(0.017) 0.557(0.017) 0.456(0.017)  0.455(0.017) 0.460(0.017) 0.466(0.017)
1x10°¢ causal ~ 0.379(0.016) 0.383(0.016) 0.271(0.015)  0.268(0.015) 0.267(0.015) 0.272(0.015)
5x10°® causal ~ 0.318(0.016) 0.334(0.016) 0.219(0.014)  0.215(0.014) 0.226(0.014) 0.224(0.014)
0.05 null 0.051(0.001) 0.051(0.001) 0.050(0.001)  0.049(0.001) 0.050(0.001) 0.049(0.001)
0.001 null 0.001(1x10%) 0.001(1x10%)  0.001(1x10%) 0.001(1x10%)  0.001(1x10%)  0.001(1x10%)
1x10°¢ null O(NA) O(NA) O(NA) O(NA) O(NA) O(NA)
5x1078 null O(NA) O(NA) O(NA) O(NA) O(NA) O(NA)
10% 0.05 causal  0.761(0.014) 0.752(0.014) 0.708(0.015)  0.708(0.015) 0.708(0.015) 0.711(0.015)
0.001 causal  0.589(0.016) 0.601(0.016) 0.51(0.017) 0.509(0.017) 0.514(0.017) 0.516(0.017)
1x10°¢ causal  0.410(0.016) 0.417(0.016) 0.325(0.016)  0.323(0.016) 0.325(0.016) 0.330(0.016)
5x10°® causal  0.362(0.016) 0.377(0.016) 0.266(0.015)  0.259(0.015) 0.268(0.015) 0.277(0.015)
0.05 null 0.050(0.001) 0.051(0.001) 0.049(0.001)  0.049(0.001) 0.050(0.001) 0.050(0.001)
0.001 null 0.001(2x10™) 0.001(1x10%)  0.001(1x10%) 0.001(1x10%)  0.001(1x10%)  0.001(1x10%)
1x10° null 0(NA) O(NA) O(NA) O(NA) O(NA) O(NA)
5x108 null O(NA) O(NA) O(NA) O(NA) O(NA) O(NA)
1% 0.05 causal ~ 0.803(0.013) 0.796(0.013) 0.767(0.014)  0.767(0.014) 0.753(0.014) 0.769(0.014)
0.001 causal  0.666(0.016) 0.665(0.016) 0.632(0.016)  0.632(0.016) 0.619(0.016) 0.638(0.016)
1x10°¢ causal  0.548(0.016) 0.543(0.016) 0.496(0.017)  0.491(0.017) 0.477(0.017) 0.501(0.017)
5x108 causal  0.504(0.016) 0.500(0.016) 0.449(0.016)  0.447(0.016) 0.433(0.016) 0.451(0.016)
0.05 null 0.050(0.001) 0.048(0.001) 0.050(0.001)  0.050(0.001) 0.049(0.001) 0.050(0.001)
0.001 null 0.001(1x10™) 0.001(1x10%)  0.001(1x10%) 0.001(1x10%)  0.001(1x10%)  0.001(1x10%)
1x10° null 0(NA) 0(NA) O(NA) O(NA) O(NA) O(NA)
5x1078 null O(NA) O(NA) 0(NA) 0(NA) O(NA) O(NA)




0.1% 0.05 causal  0.820(0.013) 0.811(0.013)  0.815(0.013) 0.815(0.013)  0.801(0.013)  0.818(0.013)
0.001 causal  0.727(0.015) 0.689(0.015)  0.697(0.015)  0.697(0.015)  0.656(0.016)  0.695(0.015)
1x10° causal  0.585(0.016) 0.559(0.016)  0.551(0.016)  0.547(0.016)  0.510(0.017)  0.559(0.016)
5x10° causal  0.548(0.016) 0.511(0.016)  0.512(0.016) 0.510(0.016)  0.475(0.017)  0.525(0.016)
0.05 null  0.050(0.001) 0.046(0.001)  0.050(0.001)  0.049(0.001)  0.048(0.001)  0.050(0.001)
0.001 null  0.001(1x107) 0.001(1x10%)  0.001(1x10%) 0.001(1x10%)  0.001(1x10%)  0.001(1x10%)
1x10°6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)
5x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

5000 1000 50% 0.05 causal  0.700(0.016) 0.700 (0.016)  0.642(0.017)  0.639(0.017)  0.637(0.017)  0.636(0.017)
0.001 causal  0.526(0.017) 0.529(0.017)  0.422(0.017) 0.420(0.017)  0.424(0.017)  0.424(0.017)
1x10° causal  0.337(0.016) 0.341(0.016)  0.234(0.015) 0.231(0.015)  0.240(0.015)  0.241(0.015)
5x10°8 causal  0.290(0.015) 0.288(0.015)  0.19(0.014)  0.185(0.013)  0.191(0.014)  0.190(0.013)
0.05 null  0.050(4x107) 0.050(4x10%)  0.050(4x10%) 0.050(4x10%)  0.050(4x10“)  0.050(4x10)
0.001 null  0.001(6x10%) 0.001(6x10%)  0.001(6x10%) 0.001(6x107)  0.001(6x10%)  0.001(6x10°)
1x10°6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)
5x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

25% 0.05 causal  0.727(0.015) 0.723(0.015)  0.649(0.016)  0.649(0.016)  0.647(0.016)  0.646(0.016)
0.001 causal  0.534(0.017) 0.537(0.017)  0.446(0.017) 0.444(0.017)  0.443(0.017)  0.445(0.017)
1x10° causal  0.369(0.016) 0.376(0.016)  0.271(0.015)  0.269(0.015)  0.270(0.015)  0.270(0.015)
5x10° causal  0.324(0.016) 0.324(0.016)  0.228(0.014) 0.227(0.014)  0.228(0.014)  0.228(0.014)
0.05 null  0.050(4x107) 0.050(4x10%)  0.050(4x10%) 0.050(4x10%)  0.050(4x107)  0.050(4x10)
0.001 null  0.001(6x10%) 0.001(6x10%)  0.001(6x10%) 0.001(6x107)  0.001(6x10%)  0.001(6x107)
1x10°6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)
5x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

10% 0.05 causal  0.741(0.015) 0.747(0.015)  0.691(0.016)  0.690(0.016)  0.694(0.016)  0.694(0.016)
0.001 causal  0.579(0.016) 0.586(0.016)  0.518(0.017) 0.516(0.017)  0.520(0.017)  0.516(0.017)
1x10°6 causal  0.405(0.016) 0.403(0.016)  0.305(0.016)  0.303(0.016)  0.305(0.016)  0.307(0.016)
5x10° causal  0.349(0.016) 0.355(0.016)  0.248(0.015) 0.245(0.015)  0.249(0.015)  0.249(0.015)
0.05 null  0.050(4x107) 0.050(4x10%)  0.051(4x10%) 0.050(4x10%)  0.050(4x10%)  0.051(4x10™)




0.001 null  0.001(6x10%) 0.001(6x10)  0.001(7x107) 0.001(6x10%)  0.001(6x10)  0.001(7x10%)

1x10°6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

5x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

1% 0.05 causal  0.827(0.012) 0.834(0.012)  0.806(0.013) 0.806(0.013)  0.801(0.013)  0.807(0.013)
0.001 causal  0.700(0.015) 0.700(0.015)  0.668(0.016)  0.664(0.016)  0.66(0.016)  0.663(0.016)

1x10° causal  0.555(0.016) 0.551(0.016)  0.499(0.017) 0.496(0.017)  0.494(0.017)  0.503(0.017)

5x10° causal  0.514(0.016) 0.509(0.016)  0.443(0.016) 0.441(0.016)  0.44(0.016)  0.446(0.016)

0.05 null  0.050(4x107) 0.050(4x10%)  0.050(4x10%) 0.050(4x10%)  0.050(4x10%)  0.050(4x10)

0.001 null  0.001(6x10%) 0.001(6x10%)  0.001(6x10%) 0.001(6x107)  0.001(6x10%)  0.001(6x107)

1x10°6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

5x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

0.1% 0.05 causal  0.845(0.012) 0.854(0.012)  0.852(0.012) 0.852(0.012)  0.848(0.012)  0.852(0.012)
0.001 causal  0.771(0.014) 0.770(0.014)  0.775(0.014)  0.775(0.014)  0.770(0.014)  0.770(0.014)

1x10° causal  0.689(0.015) 0.667(0.015)  0.657(0.016) 0.657(0.016)  0.631(0.016)  0.688(0.015)

5x10° causal  0.666(0.016) 0.654(0.016)  0.620(0.016)  0.593(0.016)  0.555(0.016)  0.590(0.016)

0.05 null  0.049(4x10) 0.049(4x10%)  0.051(4x107) 0.051(4x10%)  0.049(4x10%)  0.051(4x10%)

0.001 null  0.001(7x10%) 0.001(6x10)  0.001(6x107) 0.001(6x10%)  0.001(6x10)  0.001(6x10%)

1x10°6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

5x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

5000 5000 50% 0.05 causal  0.696(0.007) 0.703(0.007)  0.630(0.007)  0.629(0.007)  0.633(0.007)  0.632(0.007)
0.001 causal  0.519(0.008) 0.530(0.008)  0.415(0.008) 0.415(0.008)  0.424(0.008)  0.424(0.008)

1x10° causal  0.332(0.007) 0.344(0.007)  0.229(0.006)  0.229(0.006)  0.236(0.007)  0.235(0.007)

5x10° causal  0.285(0.007) 0.295(0.007)  0.186(0.006)  0.184(0.006)  0.191(0.006)  0.190(0.006)

0.05 null  0.0491(4x10%)  0.049(4x107%)  0.049(4x10™%) 0.049(4x107%)  0.049(4x107)  0.049(4x10%)

0.001 null  0.001 (6x107) 0.001(6x10)  0.001(6x10) 0.001(6x10%)  0.001(6x10)  0.001(6x10%)

1x10°6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

5x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

25% 0.05 causal  0.694(0.007) 0.700(0.007)  0.628(0.007)  0.628(0.007)  0.632(0.007)  0.632(0.007)
0.001 causal  0.512(0.008) 0.523(0.008)  0.427(0.008)  0.427(0.008)  0.434(0.008)  0.434(0.008)




1x10° causal  0.344(0.007) 0.355(0.007)  0.260(0.007)  0.260(0.007)  0.265(0.007)  0.265(0.007)
5x10° causal  0.297(0.007) 0.307(0.007)  0.211(0.006) 0.211(0.006)  0.215(0.006)  0.215(0.006)
0.05 null  0.050(4x10) 0.050(4x10%)  0.050(4x10%) 0.050(4x10%)  0.050(4x10%)  0.050(4x10")
0.001 null  0.001 (7x10%) 0.001(6x10)  0.001 (6x10°  0.001(6x10%)  0.001(6x10)  0.001(6x10%)
°)
1x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)
5x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)
10% 0.05 causal  0.751(0.006) 0.758(0.006)  0.704(0.007)  0.703(0.007)  0.706(0.007)  0.709(0.007)
0.001 causal  0.592(0.007) 0.597(0.007)  0.516(0.008) 0.516(0.008)  0.517(0.008)  0.520(0.008)
1x10° causal  0.428(0.007) 0.434(0.007)  0.335(0.007) 0.334(0.007)  0.335(0.007)  0.339(0.007)
5x10° causal  0.373(0.007) 0.384(0.007)  0.278(0.007)  0.277(0.007)  0.280(0.007)  0.285(0.007)
0.05 null  0.049(4x107) 0.049(4x10%)  0.049(4x10%) 0.049(4x10%)  0.049(4x107)  0.050(4x10)
0.001 null  0.001 (6x107) 0.001(6x10)  0.001 (6x10°  0.001(6x10%)  0.001(6x10)  0.001(6x10%)
)
1x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)
5x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)
1% 0.05 causal  0.805(0.006) 0.803(0.006)  0.775(0.006)  0.775(0.006)  0.773(0.006)  0.780(0.006)
0.001 causal  0.668(0.007) 0.664(0.007)  0.626(0.007)  0.626(0.007)  0.618(0.007)  0.631(0.007)
1x10° causal  0.526(0.007) 0.516(0.007)  0.479(0.007) 0.479(0.007)  0.468(0.007)  0.485(0.007)
5x10° causal  0.482(0.007) 0.469(0.007)  0.429(0.007)  0.428(0.007)  0.415(0.007)  0.433(0.007)
0.05 null  0.050(4x10) 0.045(4x10%)  0.050(4x10%) 0.050(4x10%)  0.050(4x10%)  0.050(4x107)
0.001 null  0.001(6x10%) 0.001(5x10%)  0.001(6x10%) 0.001(6x107)  0.001(6x10%)  0.001(6x10°)
1x10°6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)
5x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)
0.1% 0.05 causal  0.833(0.005) 0.812(0.006)  0.818(0.006) 0.818(0.006)  0.799(0.006)  0.821(0.006)
0.001 causal  0.726(0.007) 0.697(0.007)  0.702(0.007)  0.702(0.007)  0.670(0.007)  0.705(0.007)
1x10° causal  0.599(0.007) 0.554(0.007)  0.562(0.007)  0.560(0.007)  0.516(0.007)  0.564(0.007)
5x10° causal  0.554(0.007) 0.510(0.007)  0.516(0.007) 0.516(0.007)  0.470(0.007)  0.519(0.007)
0.05 null  0.050(4x107) 0.0324(4x107%)  0.050(4x10%) 0.050(4x10%)  0.040(4x10%)  0.050(4x107)
0.001 null  0.001 (6x10%) 3x10%(4x10%)  0.001(6x10) 0.001(6x10%)  0.001(5x10%)  0.001(6x10%)




1x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

5x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

5000 50000 50% 0.05 causal  0.702(0.007) 0.703(0.007)  0.631(0.007) 0.631(0.007)  0.631(0.007)  0.631(0.007)
0.001 causal  0.518(0.008) 0.520(0.008)  0.418(0.008) 0.418(0.008)  0.419(0.008)  0.420(0.008)

1x10° causal  0.331(0.007) 0.333(0.007)  0.231(0.006)  0.230(0.006)  0.232(0.006)  0.231(0.006)

5x10°8 causal  0.278(0.007) 0.280(0.007)  0.183(0.006) 0.182(0.006)  0.183(0.006)  0.184(0.006)

0.05 null  0.050(1x107) 0.050(1x10%)  0.050(1x10%) 0.050(1x10%)  0.050(1x10%)  0.050(1x10%)

0.001 null  0.001(2x10%) 0.001(2x10%)  0.001(2x10%) 0.001(2x107)  0.001(2x10%)  0.001(2x10°)

1x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

5x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

25% 0.05 causal  0.706(0.007) 0.710(0.007)  0.652(0.007)  0.652(0.007)  0.652(0.007)  0.652(0.007)
0.001 causal  0.539(0.008) 0.540(0.008)  0.450(0.008)  0.449(0.008)  0.450(0.008)  0.450(0.008)

1x10°6 causal  0.362(0.007) 0.363(0.007)  0.259(0.007)  0.259(0.007)  0.262(0.007)  0.261(0.007)

5x10° causal  0.308(0.007) 0.312(0.007)  0.207(0.006)  0.206(0.006)  0.209(0.006)  0.209(0.006)

0.05 null  0.050(1x107) 0.050(1x10%)  0.050(1x10%) 0.050(1x10%)  0.050(1x10%)  0.050(1x10*)

0.001 null  0.001(2x10%) 0.001(2x10%)  0.001(2x10%) 0.001(2x107)  0.001(2x10%)  0.001(2x10°)

1x10°6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

5x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

10% 0.05 causal  0.751(0.006) 0.755(0.006)  0.726(0.007)  0.726(0.007)  0.725(0.007)  0.720(0.007)
0.001 causal  0.629(0.007) 0.631(0.007)  0.548(0.008)  0.545(0.008)  0.555(0.007)  0.551(0.007)

1x10°6 causal  0.466(0.007) 0.474(0.007)  0.355(0.007)  0.355(0.007)  0.355(0.007)  0.355(0.007)

5x10° causal  0.381(0.007) 0.385(0.007)  0.272(0.007)  0.270(0.007)  0.274(0.007)  0.273(0.007)

0.05 null  0.050(1x10%) 0.050(1x10%)  0.050(1x10%) 0.050(1x107%)  0.050(1x10%)  0.050(1x10)

0.001 null  0.001(2x10%) 0.001(2x10%)  0.001(2x107) 0.001(2x10%)  0.001(2x10)  0.001(2x10)

1x10°6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

5x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

1% 0.05 causal  0.793(0.006) 0.795(0.006)  0.770(0.006)  0.770(0.006)  0.769(0.006)  0.770(0.006)
0.001 causal  0.671(0.007) 0.671(0.007)  0.634(0.007)  0.634(0.007)  0.634(0.007)  0.637(0.007)

1x10°6 causal  0.526(0.007) 0.526(0.007)  0.477(0.007)  0.476(0.007)  0.476(0.007)  0.480(0.007)




5x10° causal  0.484(0.007) 0.485(0.007)  0.431(0.007) 0.431(0.007)  0.429(0.007)  0.432(0.007)
0.05 null  0.050(1x10%) 0.050(1x10%)  0.050(1x10%) 0.050(1x107%)  0.050(1x10%)  0.050(1x10%)
0.001 null  0.001(2x10%) 0.001(2x10%)  0.001(2x10%) 0.001(2x10)  0.001(2x10%)  0.001(2x10°)
1x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)
5x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)
0.1% 0.05 causal  0.835(0.005) 0.833(0.005)  0.821(0.006) 0.820(0.006)  0.817(0.006)  0.821(0.006)
0.001 causal  0.719(0.007) 0.717(0.007)  0.697(0.007)  0.697(0.007)  0.688(0.007)  0.697(0.007)
1x10° causal  0.588(0.007) 0.587(0.007)  0.561(0.007) 0.560(0.007)  0.557(0.007)  0.560(0.007)
5x10° causal  0.547(0.007) 0.545(0.007)  0.517(0.007) 0.517(0.007)  0.508(0.007)  0.518(0.007)
0.05 null  0.050(1x10%) 0.050(1x10%)  0.050(1x10%) 0.050(1x107%)  0.050(1x10%)  0.050(1x107)
0.001 null  0.001(2x10%) 0.001(2x10%)  0.001(2x10%) 0.001(2x107)  0.001(2x10%)  0.001(2x10°)
1x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)
5x10° null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

Table S3. Percentage of SNPs achieving alpha levels for simulated genotypes and simulated phenotypes. We report the true positive and false positives at
different o levels. For completeness, we also report ATT and MLM statistics computed using the underlying liability, where we again observe a loss in power for
MLM at lower prevalence. In bold are the settings where LTMLM demonstrates at least a 5% power improvement over MLM.



N M Prev Set Statistic ATT MLM Liability ATT LogR MLM LTMLM
Liability

1000 1000 50% causal  average  25.716(1.091)  26.947(1.132)  16.847(0.715)  16.367(0.675)  17.254(0.735)  17.229(0.736)
null average  1.005(0.005)  1.003(0.005)  1.008(0.005)  1.006(0.005)  1.008(0.005)  1.007(0.005)

all average  1.252(0.014)  1262(0.015)  1.166(0.010)  1.160(0.009)  1.171(0.010) 1.169(0.01)

all Aac 1.034(0.008)  1.033(0.008)  1.031(0.009)  1.031(0.009)  1.033(0.008)  1.032(0.008)
25% causal  average  28.716(1.229)  30.022(1.275)  19.112(0.824)  18.475(0.773)  19.553(0.849)  19.571(0.849)

null average  1.003(0.005)  1.004(0.005)  1.000(0.004)  0.998(0.004)  1.002(0.004)  1.001(0.004)

all average  1.280(0.016)  1294(0.016)  1.181(0.011)  1.173(0.010)  1.187(0.011)  1.187(0.011)

all Aac 1.019(0.007)  1.021(0.007)  1.014(0.007)  1.013(0.007)  1.026(0.007) 1.02(0.007)
10% causal  average  34.541(1.501)  35.559(1.539)  23.777(1.021)  22.821(0.943)  24.084(1.053)  24.738(1.098)

null average  1.001(0.005)  1.004(0.005)  1.001(0.004)  0.999(0.004)  1.004(0.004)  1.003(0.004)

all average  1.336(0.019)  1.349(0.019)  1.229(0.013)  1217(0.012)  1.235(0.014)  1.241(0.014)

all Aoc 1.021(0.008)  1.028(0.008)  1.025(0.008)  1.025(0.008)  1.030(0.008)  1.029(0.008)
1% causal  average  55.732(2.12)  54.012(2.06)  42.316(1.565)  39.858(1.421)  40.611(1.539)  45.336(1.756)

null average  1.002(0.004)  0.988(0.004)  0.999(0.004)  0.997(0.004)  0.992(0.004)  0.999(0.004)

all average  1.550(0.028)  1.518(0.027)  1.412(0.021)  1.386(0.019)  1.388(0.020)  1.443(0.023)

all Aac 1.027(0.008)  1.012(0.007) 1.02(0.008) 1.019(0.008)  1.009(0.008)  1.018(0.008)
0.1% causal  average  73.159(2.847)  63.052(2.549)  58.946(2.157)  54.625(1.924)  51.507(2.045)  65.991(2.656)

null average  0.997(0.004)  0.974(0.004)  0.996(0.004)  0.994(0.004)  0.978(0.004)  0.996(0.004)

all average  1.718(0.037)  1.595(0.032)  1.575(0.029) 1.53(0.026) 1.483(0.026)  1.646(0.034)

all Aac 1.035(0.009)  1.008(0.007)  1.023(0.007)  1.023(0.007)  1.000(0.007)  1.014(0.008)
5000 1000 50% causal  average  25.224(1.076)  25.503(1.084)  16.488(0.703)  16.029(0.666)  16.652(0.713)  16.625(0.714)
null average  1.002(0.002)  1.002(0.002)  1.000(0.002)  0.998(0.002)  1.000(0.002)  0.999(0.002)

all average  1.050(0.003)  1.051(0.003)  1.031(0.003)  1.028(0.003)  1.032(0.003)  1.031(0.003)

all Aac 1.006(0.003)  1.007(0.003)  1.005(0.003)  1.005(0.003)  1.006(0.003)  1.005(0.004)
25% causal  average  28.012(1.156)  28.279(1.163)  18.545(0.767)  17.985(0.726)  18.707(0.778)  18.757(0.783)

null average  1.004(0.002)  1.004(0.002)  1.002(0.002)  1.000(0.002)  1.002(0.002)  1.002(0.002)




all average  1.058(0.004)  1.059(0.004)  1.037(0.003)  1.034(0.003)  1.038(0.003)  1.037(0.003)

all Aoc 1.0100.003)  1.011(0.003)  1.003(0.003)  1.003(0.003)  1.004(0.003)  1.004(0.003)

10% causal  average  32.953(1.379)  33.282(1.395)  22.883(0.948)  22.028(0.886)  23.065(0.965)  23.497(0.996)

null average  1.005(0.002)  1.005(0.002)  1.004(0.002)  1.002(0.002)  1.004(0.002)  1.003(0.002)

all average  1.069(0.004)  1.070(0.004)  1.047(0.003)  1.044(0.003)  1.048(0.003)  1.048(0.003)

all Aac 1.009(0.003)  1.009(0.004)  0.999(0.003)  0.999(0.003)  1.003(0.003)  1.001(0.003)

1% causal  average  57.101(2.112)  56.546(2.100)  43.459(1.570)  40.939(1.426)  43.546(1.611)  46.302(1.760)

null average  1.002(0.002)  1.002(0.002)  1.001(0.002)  0.999(0.002)  1.001(0.002)  1.001(0.002)

all average  1.115(0.006)  1.113(0.006)  1.086(0.005)  1.079(0.004)  1.086(0.005)  1.091(0.005)

all Aac 1.007(0.004)  1.009(0.003)  1.003(0.003)  1.002(0.003)  1.005(0.003)  1.003(0.004)

0.1% causal  average  74.089(2.623)  68.943(2.51)  61.561(2.057)  57.182(1.828)  58.752(2.08)  67.284(2.450)

null average  0.997(0.002)  0.993(0.002)  0.996(0.002)  0.995(0.002)  0.991(0.002)  0.996(0.002)

all average  1.143(0.007)  1.129(0.007)  1.117(0.006)  1.107(0.005)  1.106(0.006)  1.128(0.007)

all Aoc 1.004(0.001)  0.994(0.002)  0.989(0.001)  0.988(0.001)  1.005(0.002)  0.996(0.002)

5000 5000 50% causal  average  25.372(0.496)  26.69(0.52)  16.492(0.325)  16.399(0.321)  16.88(0.332)  16.867(0.332)

null average  0.993(0.002)  0.994(0.002)  0.988(0.002)  0.988(0.002) 0.99(0.002) 0.989(0.002)

all average  1.237(0.006)  1.251(0.007)  1.143(0.004)  1.142(0.004)  1.148(0.004)  1.148(0.004)

all Aac 1.010(0.004) 1.01(0.003) 1.010(0.003)  1.010(0.003)  1.014(0.003)  1.014(0.003)

25% causal  average  28.119(0.588)  29.56(0.617)  18.637(0.388)  18.509(0.383)  19.014(0.396)  19.056(0.398)

null average  1.001(0.002)  1.001(0.002)  1.000(0.002)  1.000(0.002)  1.000(0.002)  1.001(0.002)

all average  1.272(0.007)  1.287(0.008)  1.177(0.005)  1.175(0.005)  1.180(0.005)  1.181(0.005)

all Aac 1.019(0.004)  1.017(0.004)  1.012(0.004)  1.012(0.004)  1.013(0.004)  1.013(0.004)

10% causal  average  36.38(0.716)  37.626(0.742)  25.235(0.501)  25.014(0.492)  25.386(0.506)  25.778(0.514)

null average  0.996(0.002)  0.994(0.002)  0.993(0.002)  0.992(0.002)  0.991(0.002)  0.992(0.002)

all average  1.350(0.009)  1.361(0.009)  1.235(0.006)  1.233(0.006)  1.235(0.006)  1.240(0.007)

all Aac 1.016(0.003)  1.017(0.004)  1.005(0.003)  1.005(0.003)  1.007(0.003)  1.008(0.003)

1% causal  average  58.172(1.131)  55.473(1.077) 45.376(0.878)  44.682(0.852)  42.594(0.825)  46.691(0.913)
null average  1.000(0.002)  0.954(0.002)  1.000(0.002)  0.999(0.002)  0.990(0.002) 1(0.002)




all average  1.571(0.014)  1.499(0.013)  1.444(0.011)  1.436(0.011)  1.406(0.010)  1.457(0.011)

all Aoc 1.020(0.003)  0.970(0.005)  1.020(0.003)  1.020(0.003)  1.011(0.003)  1.019(0.003)

0.1% causal  average  81.745(1.565)  66.716(1.29)  68.648(1.301)  67.099(1.248)  56.303(1.082)  70.81(1.364)
null average  1.001(0.002)  0.840(0.002)  1.000(0.002)  1.000(0.002)  0.918(0.002)  1.000 (0.002)

all average  1.809(0.019)  1.499(0.016)  1.677(0.016)  1.661(0.016)  1.472(0.013)  1.698(0.017)

all Aac 1.022(0.003)  0.861(0.006)  1.026(0.003)  1.026(0.003)  0.942(0.005)  1.025(0.003)

5000 50000 50% causal  average  25.501(0.504)  25.642(0.507)  16.624(0.331)  16.529(0.327)  16.673(0.332)  16.69(0.333)
null average  0.999(0.001)  0.999(0.001)  1.000(0.001)  0.999(0.001)  1.000 (0.001)  1.000 (0.001)

all average  1.023(0.001)  1.024(0.001)  1.015(0.001)  1.015(0.001)  1.016(0.001)  1.015(0.001)

all Aac 0.999(0.001)  1.000 (0.001)  1.003(0.001)  1.002(0.001)  0.999(0.001)  0.999(0.001)

25% causal  average  28.475(0.555)  28.638(0.557)  18.965(0.37)  18.843(0.366)  19.03(0.372)  19.04(0.372)
null average  1.003(0.001)  1.003(0.001)  1.003(0.001)  1.003(0.001)  1.003(0.001)  1.003(0.001)

all average  1.030(0.001)  1.031(0.001)  1.021(0.001)  1.020(0.001)  1.021(0.001)  1.021(0.001)

all Aoc 1.004(0.001)  1.004(0.001)  1.006(0.001)  1.006(0.001)  1.003(0.001)  1.003(0.001)

10% causal  average  34.358(0.639)  34.704(0.647)  23.71(0.444)  23.528(0.437)  23.868(0.449)  23.910(0.450)
null average  0.999(0.001)  1.000(0.001)  1.001(0.001)  1.000(0.001)  1.001(0.001)  1.001(0.001)

all average  1.033(0.001)  1.034(0.001)  1.023(0.001)  1.023(0.001)  1.024(0.001)  1.024(0.001)

all Aac 1.006(0.001)  1.008(0.002)  1.007(0.001)  1.007(0.001)  1.005(0.001)  1.004(0.001)

1% causal  average  60.112(1.139)  59.863(1.135)  46.683(0.883)  45.969(0.859)  46.44(0.881)  47.368(0.905)
null average  1.000 (0.001)  1.000 (0.001)  0.999(0.001)  0.999(0.001)  0.999(0.001)  0.999(0.001)

all average  1.059(0.002)  1.058(0.002)  1.045(0.001)  1.044(0.001)  1.045(0.001)  1.045(0.001)

all Aac 1.002(0.001)  1.002(0.001)  1.004(0.001)  1.004(0.001)  1.001(0.001)  1.000 (0.001)

0.1% causal  average  79.864(1.54)  77.754(1.502)  67.059(1.278)  65.561(1.225)  65.232(1.251)  68.618(1.333)
null average  1.000 (0.001)  0.999(0.001)  0.999(0.001)  0.999(0.001)  0.999(0.001)  0.999(0.001)

all average  1.078(0.002)  1.076(0.002)  1.065(0.002)  1.063(0.002)  1.063(0.002)  1.067(0.002)

all Aac 1.002(0.001)  1.001(0.001)  1.004(0.001)  1.004(0.001)  1.000(0.001)  1.000(0.001)

Table S4. Complete results on simulated genotypes and simulated phenotypes. Results are analogous to Table 2, but are reported for other values of M and N
and consist of the same simulations as S3. For completeness, we also report ATT and MLM statistics computed using the underlying liability, where we again



observe a loss in power for MLM at lower prevalence. In bold are the settings where LTMLM demonstrates at least a 5% power improvement over MLM.



Prev

Statistic

ATT
Liability

MLM
Liability

MLM

LTMLM

10%

average

36.835(1.515)

16.352(0.683)

24.736(1.002) 23.406(0.951) 23.622(0.93)  22.399(0.883)

13.222(0.553)

12.172(0.536)

average

2.238(0.032)

0.789(0.014)

1.814(0.022)  1.632(0.020)  1.780(0.020)  1.601(0.019)

0.849(0.012)

0.753(0.011)

average

2.584(0.036)

0.944(0.016)

2.043(0.025)  1.849(0.023)  1.999(0.023)  1.809(0.022)

0.973(0.013)

0.867(0.013)

pvee

1.376(0.042)

0.373(0.006)

1.240(0.028)  1.064(0.010)  1.239(0.028)  1.062(0.010)

0.518(0.007)

0.458(0.011)

10%

average

33.100(1.375)

29.318(1.217)

22.606(0.943) 21.99(0.919)  21.672(0.876) 21.104(0.854)

20.412(0.867)

19.817(0.874)

average

1.342(0.004)

0.965(0.003)

1.232(0.003)  1.084(0.003)  1.226(0.003)  1.078(0.002)

0.976(0.002)

0.948(0.002)

average

1.374(0.004)

0.993(0.003)

1.253(0.003)  1.104(0.003)  1.246(0.003)  1.098(0.003)

0.995(0.003)

0.967(0.003)

Aac

1.258(0.036)

0.882(0.003)

1.174(0.025)  1.023(0.003)  1.174(0.025)  1.023(0.003)

0.920(0.003)

0.893(0.013)

10%

average

34.93(1.481)

32.625(1.39)

24.098(1.037) 23.592(1.014) 23.031(0.963) 22.568(0.943)

22.892(1.003)

22.811(1.006)

average

1.281(0.002)

0.982(0.002)

1.187(0.002)  1.042(0.001)  1.182(0.002)  1.038(0.001)

0.986(0.001)

0.981(0.001)

average

1.298(0.002)

0.998(0.002)

1.198(0.002)  1.053(0.002)  1.193(0.002)  1.048(0.001)

0.997(0.002)

0.992(0.002)

pvee

1.247(0.029)

0.939(0.002)

1.168(0.020)  1.013(0.002)  1.167(0.020)  1.013(0.002)

0.958(0.002)

0.953(0.006)

Table S5. Results on simulated genotypes and simulated phenotypes with population structure. We report average ? statistics for simulations with
population structure averaged across 100 simulations for each parameter setting (see main text).



N M Prev a set ATT Liability MLM Liability ATT ATT+PCs LogR LogR +PCs MLM LTMLM
1000 1000 10% 0.05 causal 0.758(0.014) 0.661(0.016) 0.719(0.015)  0.715(0.015)  0.719(0.015)  0.716(0.015)  0.611(0.017)  0.596(0.017)
0.001  causal 0.623(0.016) 0.421(0.017) 0.541(0.017)  0.535(0.017)  0.540(0.017)  0.530(0.017)  0.36(0.017)  0.334(0.016)
1x10°  causal 0.435(0.016) 0.220(0.014) 0.323(0.016) 0.316(0.016)  0.315(0.016)  0.307(0.016)  0.183(0.013)  0.153(0.013)
5x10%  causal 0.373(0.016) 0.176(0.013) 0.274(0.015)  0.261(0.015)  0.265(0.015)  0.256(0.015)  0.143(0.012)  0.116(0.011)
0.05 null 0.097(0.001) 0.020(0.001) 0.086(0.001)  0.069(0.001)  0.085(0.001)  0.069(0.001)  0.022(0.001)  0.020(0.001)
0.001 null 0.022(0.001) 0.012(0.001) 0.018(0.001) 0.016(0.001) 0.018(0.001) 0.016(0.001) 0.011(0.001)  0.010(0.001)
1x10°® null 0.012(5x10™%) 0.006(4x10%) 0.010 0.009(4x10%) 0.009 0.009(4x10%)  0.005(4x10%)  0.004(3x10%)
(4x10) (4x10™)
5x108 null 0.011(5x10%) 0.005(4x10%) ‘(‘).OOE 0.008(4x10%)  0.008(4x10%)  0.007(4x10%)  0.004(3x10%)  0.003(3x10%)
x10
1000 10000 0.05 causal 0.745(0.015) 0.729(0.015) 0.7(07(0.0)15) 0.702(0.016)  0.707(0.015)  0.702(0.016)  0.682(0.016)  0.674(0.016)
0.001  causal 0.587(0.016) 0.557(0.017) 0.495(0.017)  0.492(0.017)  0.494(0.017)  0.492(0.017)  0.475(0.017)  0.451(0.017)
1x10°®  causal 0.411(0.016) 0.380(0.016) 0.322(0.016)  0.314(0.016)  0.316(0.016)  0.311(0.016)  0.295(0.016)  0.280(0.015)
5x10%  causal 0.347(0.016) 0.315(0.016) 0.270(0.015)  0.269(0.015)  0.266(0.015)  0.259(0.015)  0.245(0.015)  0.225(0.014)
0.05 null 0.08(4x10%) 0.038(3x10%) 0.0714 0.054(3x10%)  0.071(4x10™%)  0.053(3x10%)  0.042(3x10%)  0.04(3x10™)
4x10°
0.001 null 0.006(1x10%) 0.002(7x10%) (0.0045 : 0.003(7x10%)  0.004(9x107%)  0.003(7x10°)  0.002(6x107)  0.002(7x107)
9x10
1x10°® null 0.001(5x10%%) 0.001(5x10%) (0.0015) 0.001(4x10%)  0.001(4x10)  0.001(4x10°)  0.001(4x10)  0.001(4x107)
4x10°
5x108 null 0.001(5x10%%) 0.001(5x10%) (0.0015) 0.001(4x10%)  0.001(4x10)  0.001(4x10°)  0.001(4x10)  0.001(4x107)
4x10°
1000 20000 0.05 causal 0.762(0.014) 0.753(0.014) 0.6(90(0.0)16) 0.687(0.016)  0.690(0.016)  0.686(0.016)  0.686(0.016)  0.682(0.016)
0.001  causal 0.588(0.016) 0.578(0.017) 0.512(0.017)  0.506(0.017)  0.511(0.017)  0.505(0.017)  0.490(0.017)  0.488(0.017)
1x10°  causal 0.412(0.016) 0.400(0.016) 0.315(0.016)  0.309(0.016)  0.311(0.016)  0.306(0.016)  0.297(0.015)  0.300(0.016)
5x10%  causal 0.356(0.016) 0.340(0.016) 0.264(0.015)  0.262(0.015)  0.260(0.015)  0.258(0.015)  0.254(0.015)  0.254(0.015)
0.05 null 0.078(3x10%) 0.043(2x10%) 0.0695 0.052(2x10%)  0.068(2x10%)  0.051(2x10%)  0.046(2x10%)  0.045(2x10%)
2x10°
0.001 null 0.005(7x107%) 0.002(4x107%) (0.0035) 0.002(4x107%)  0.003(5x10%)  0.002(4x10%)  0.002(4x10%)  0.002(4x107)
6x10°
1x10°¢ null 0.001(3x107%) 0.001(3x1079) (0.001 : 0 (NA) 0 (NA) 0 (NA) 0(NA) 0(NA)

(2x10%)




5x10°  null 0.001(2x10°) 0.001(2x10°) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

Table S6. Percentage of SNPs achieving alpha levels for simulated genotypes and simulated phenotypes with population structure. We report the true
positive and false positives at different a levels for the same simulations as in Table S5 (see main text).



Liability Observed
M Prevalence H-E REML H-E REML
1000 50% 0.259(0.013) 0.252(0.01) 0.165(0.008)  0.161(0.006)
25% 0.241(0.010)  0.238(0.008)  0.173(0.007)  0.171(0.006)
10% 0.245(0.011)  0.242(0.007)  0.233(0.010)  0.230(0.007)
10000 50% 0.236(0.014)  0.245(0.013)  0.150(0.009)  0.156(0.008)
25% 0.250(0.014)  0.264(0.013)  0.180(0.010)  0.190(0.010)
10% 0.259(0.012)  0.261(0.009)  0.246(0.011)  0.248(0.009)

Table S7. Heritability parameter estimates on simulated genotypes and phenotypes. Results are analogous to Table 3, under different settings of M and N.

Liability Observed
M Prevalence H-E REML H-E REML
1000 10% 0.470(0.013) 0.415(0.005) 0.446(0.012)  0.394(0.005)
10000 10% 0.407(0.031) 0.526(0.011) 0.438(0.044)  0.500(0.010)
20000 10% 0.383(0.030) 0.531(0.013) 0.408(0.040)  0.505(0.012)

Table S8. Heritability parameter estimates on simulated genotypes and phenotypes with population structure. These results are from the same simulations
used to generate Table S5 and S6. We report results on both liability and observed scales. The true 4’ explained by the SNPs used to build the GRM is 25% on

the liability scale for all simulations.



N M True Specified Set Statistic ATT Liablity = MLM Liability ATT LogR MLM LTMLM
Prev Prev
1000 1000 1% 1% causal average 55.732(2.12) 54.012(2.06) 42.316(1.565)  39.858(1.421)  40.611(1.539)  45.336(1.756)
null average 1.002(0.004) 0.988(0.004) 0.999(0.004) 0.997(0.004) 0.992(0.004) 0.999(0.004)
all average 1.550(0.028) 1.518(0.027) 1.412(0.021) 1.386(0.019) 1.388(0.020) 1.443(0.023)
all AGC 1.027(0.008) 1.012(0.007) 1.020(0.008) 1.019(0.008) 1.009(0.008) 1.018(0.008)
3.4% causal average As Above As Above As Above As Above As Above 44.441(1.805)
null average As Above As Above As Above As Above As Above 1.009(0.005)
all average As Above As Above As Above As Above As Above 1.444(0.023)
all AGC As Above As Above As Above As Above As Above 1.035(0.008)
0.2% causal average As Above As Above As Above As Above As Above 45.532(1.851)
null average As Above As Above As Above As Above As Above 1.002(0.004)
all average As Above As Above As Above As Above As Above 1.448(0.024)
all AGC As Above As Above As Above As Above As Above 1.023(0.008)
0.1% 0.1% causal average  73.159(2.847)  63.052(2.549)  58.946(2.157)  54.625(1.924)  51.507(2.045)  65.991(2.656)
null average 0.997(0.004) 0.974(0.004) 0.996(0.004) 0.994(0.004) 0.978(0.004) 0.996(0.004)
all average 1.718(0.037) 1.595(0.032) 1.575(0.029) 1.530(0.026) 1.483(0.026) 1.646(0.034)
all AGC 1.035(0.009) 1.008(0.007) 1.023(0.007) 1.023(0.007) 1.000(0.007) 1.014(0.008)
0.5% causal average As Above As Above As Above As Above As Above 65.281(2.617)
null average As Above As Above As Above As Above As Above 0.998(0.004)
all average As Above As Above As Above As Above As Above 1.641(0.033)
all AGC As Above As Above As Above As Above As Above 1.022(0.007)
0.02% causal average As Above As Above As Above As Above As Above 68.616(2.729)
null average As Above As Above As Above As Above As Above 1.003(0.005)
all average As Above As Above As Above As Above As Above 1.679(0.035)
all AGC As Above As Above As Above As Above As Above 1.022(0.008)

Table S9. Simulated genotypes and phenotypes with mis-specification of the liability threshold. LTMLM was run at prevalence of 1% and 0.1% under mis-
specification of the threshold, t=true +/- 0.5.



N M True Prev  Specified o set ATT Liability LogR ATT LogR MLM LTMLM
Prev Liability
5000 5000 1% 1% 0.05 causal 0.803(0.013) 0.796(0.013)  0.767(0.014)  0.767(0.014) 0.753(0.014) 0.769(0.014)
0.001 causal 0.666(0.016) 0.665(0.016)  0.632(0.016)  0.632(0.016) 0.619(0.016) 0.638(0.016)
1x10-6 causal 0.548(0.016) 0.543(0.016)  0.496(0.017)  0.491(0.017) 0.477(0.017) 0.501(0.017)
5x10-8 causal 0.504(0.016) 0.500(0.016)  0.449(0.016)  0.447(0.016) 0.433(0.016) 0.451(0.016)
0.05 null 0.050(0.001) 0.048(0.001)  0.050(0.001)  0.050(0.001) 0.049(0.001) 0.050(0.001)
0.001 null 0.001(1x10%)  0.001(1x10%) 0.001(1x10%) 0.001(1x10%)  0.001(1x10%)  0.001(1x10%)
1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)
5x10-8 null O(NA) 0(NA) 0(NA) 0(NA) O(NA) 0(NA)
3.4% 0.05 causal As Above As Above As Above As Above As Above 0.783(0.014)
0.001 causal As Above As Above As Above As Above As Above 0.647(0.016)
1x10-6 causal As Above As Above As Above As Above As Above 0.469(0.017)
5x10-8 causal As Above As Above As Above As Above As Above 0.428(0.016)
0.05 null As Above As Above As Above As Above As Above 0.051(0.001)
0.001 null As Above As Above As Above As Above As Above 0.001(1x10™%)
1x10-6 null As Above As Above As Above As Above As Above 0(NA)
5x10-8 null As Above As Above As Above As Above As Above 0(NA)
0.2% 0.05 causal As Above As Above As Above As Above As Above 0.774(0.014)
0.001 causal As Above As Above As Above As Above As Above 0.638(0.016)
1x10-6 causal As Above As Above As Above As Above As Above 0.491(0.017)
5x10-8 causal As Above As Above As Above As Above As Above 0.439(0.016)
0.05 null As Above As Above As Above As Above As Above 0.050(0.001)
0.001 null As Above As Above As Above As Above As Above 0.001(1x10%)
1x10-6 null As Above As Above As Above As Above As Above 0(NA)
5x10-8 null As Above As Above As Above As Above As Above O0(NA)
0.1% 0.1% 0.05 causal 0.820(0.013) 0.811(0.013)  0.815(0.013)  0.815(0.013) 0.801(0.013) 0.818(0.013)
0.001 causal 0.727(0.015) 0.689(0.015)  0.697(0.015)  0.697(0.015) 0.656(0.016) 0.695(0.015)
1x10-6 causal 0.585(0.016) 0.559(0.016)  0.551(0.016)  0.547(0.016) 0.510(0.017) 0.559(0.016)




5x10-8 causal 0.548(0.016) 0.511(0.016)  0.512(0.016) 0.510(0.016) 0.475(0.017) 0.525(0.016)
0.05 null 0.050(0.001) 0.046(0.001)  0.050(0.001)  0.049(0.001) 0.048(0.001) 0.050(0.001)
0.001 null 0.001(1x10%)  0.001(1x10*) 0.001(1x10% 0.001(1x10%)  0.001(1x10%)  0.001(1x10™*)
1x10-6 null 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)
5x10-8 null O(NA) O(NA) O(NA) 0(NA) O(NA) O(NA)
0.5% 0.05 causal As Above As Above As Above As Above As Above 0.823(0.013)
0.001 causal As Above As Above As Above As Above As Above 0.717(0.015)
1x10-6 causal As Above As Above As Above As Above As Above 0.569(0.016)
5x10-8 causal As Above As Above As Above As Above As Above 0.526(0.016)
0.05 null As Above As Above As Above As Above As Above 0.049(0.001)
0.001 null As Above As Above As Above As Above As Above 0.001(2x10™%)
1x10-6 null As Above As Above As Above As Above As Above O(NA)
5x10-8 null As Above As Above As Above As Above As Above 0(NA)
0.02% 0.05 causal As Above As Above As Above As Above As Above 0.824(0.012)
0.001 causal As Above As Above As Above As Above As Above 0.716(0.015)
1x10-6 causal As Above As Above As Above As Above As Above 0.573(0.016)
5x10-8 causal As Above As Above As Above As Above As Above 0.523(0.016)
0.05 null As Above As Above As Above As Above As Above 0.050(0.001)
0.001 null As Above As Above As Above As Above As Above 0.001(1x10™%)
1x10-6 null As Above As Above As Above As Above As Above O0(NA)
5x10-8 null As Above As Above As Above As Above As Above 0(NA)

Table S10. Percentage of SNPs achieving alpha levels for simulated genotypes and simulated phenotypes with mis-specification of the liability threshold.
This corresponds to the same set of simulations as table S9.



Prevalence Liability Observed
M True Specified H-E REML H-E REML

1000 1% 1% 0.246(0.007)  0.206(0.005)  0.445(0.013)  0.373(0.008)
3.4% 0.350(0.012)  0.290(0.007)  0.462(0.016)  0.383(0.010)

0.2% 0.182(0.006)  0.152(0.004)  0.445(0.014)  0.373(0.009)

0.1% 0.1% 0.247(0.008)  0.175(0.004)  0.701(0.023)  0.498(0.011)

0.5% 0.324(0.009)  0.234(0.004)  0.689(0.019)  0.499(0.009)

0.02% 0.184(0.006)  0.132(0.003)  0.677(0.022)  0.486(0.011)

Table S11. Heritability parameter estimates on simulated genotypes and phenotypes with misspecification of the liability threshold. This corresponds to
the same set of simulations as Table S9 and S10.



N M Prev Set Statistic ATT LogR MLM LTMLM

1000 1000 50% causal average 18.085(0.248) 17.859(0.242) 18.582(0.252) 18.576(0.254)
null  average  0.997(0.004)  0.996(0.004)  0.998(0.004)  0.997(0.004)
all average  1.168(0.007)  1.164(0.007)  1.174(0.008)  1.173(0.008)

all Agc 1.023(0.007)  1.022(0.007)  1.026(0.008) 1.02(0.007)
25% causal average 18.531(0.246) 18.295(0.24) 18.987(0.251) 18.954(0.253)
null  average  1.005(0.005)  1.003(0.004)  1.005(0.005)  1.004(0.005)
all average  1.180(0.008)  1.176(0.007)  1.185(0.008)  1.183(0.008)
all Agc 1.037(0.007)  1.036(0.007)  1.036(0.007)  1.035(0.007)
10% causal average 20.926(0.268) 20.628(0.26) 21.259(0.272) 21.347(0.272)
null  average  1.005(0.004)  1.003(0.004)  1.005(0.004)  1.004(0.004)
all average  1.204(0.008)  1.200(0.008)  1.207(0.008)  1.207(0.008)
all Aae 1.031(0.007)  1.031(0.007)  1.036(0.008)  1.037(0.008)
1% causal average 28.421(0.326) 27.886(0.314) 27.697(0.323) 28.974(0.338)
null  average  1.009(0.005)  1.007(0.005)  1.008(0.005)  1.008(0.005)
all average  1.283(0.010)  1.276(0.010)  1.275(0.010)  1.288(0.010)
all Agc 1.027(0.008)  1.027(0.008)  1.025(0.008)  1.028(0.008)
0.1% causal average 35.927(0.358) 35.100(0.342) 33.172(0.347) 36.654(0.373)
null  average  0.999(0.004)  0.997(0.004)  0.992(0.004)  0.998(0.004)
all average  1.348(0.012)  1.338(0.012)  1.314(0.012)  1.355(0.013)
all Age 1.031(0.007)  1.031(0.007)  1.012(0.007)  1.022(0.007)

Table S12. Simulated genotypes and phenotypes generated from a logit distribution. We report average 7 statistics for simulations with phenotypes
generated from a logit distribution averaged across 100 simulations for each parameter setting (see main text).



N M Prev o set ATT LogR MLM LTMLM

1000 1000 50% 0.05 causal 0.988(0.003) 0.988(0.003)  0.988(0.003)  0.988(0.003)
0.001 causal 0.827(0.012) 0.821(0.012)  0.832(0.012)  0.832(0.012)
1x10°° causal 0.210(0.013) 0.198(0.013)  0.227(0.013)  0.230(0.013)
5x10°8 causal 0.077(0.008) 0.072(0.008)  0.089(0.009)  0.088(0.009)
0.05 null 0.049(0.001) 0.049(0.001)  0.050(0.001)  0.050(0.001)
0.001 null 0.001(1x10™) 0.001(1x10%)  0.001(1x10%)  0.001(1x10%)

1x10°° null 0(NA) 0(NA) 0(NA) O(NA)

5x10°8 null 0(NA) 0(NA) 0(NA) O(NA)
25% 0.05 causal 0.997(0.002) 0.997(0.002)  0.997(0.002)  0.995(0.002)
0.001 causal 0.832(0.012) 0.830(0.012)  0.849(0.011)  0.844(0.011)
1x10°¢ causal 0.225(0.013) 0.209(0.013)  0.243(0.014)  0.245(0.014)
5x10°® causal 0.090(0.009) 0.081(0.009)  0.098(0.009)  0.093(0.009)
0.05 null 0.050(0.001) 0.050(0.001)  0.050(0.001)  0.050(0.001)
0.001 null 0.001(1x10™) 0.001(1x10%)  0.001(1x10%)  0.001(1x10%)

1x10°¢ null O(NA) 0(NA) 0(NA) O(NA)

5x10°8 null 0(NA) 0(NA) 0(NA) O(NA)
10% 0.05 causal 0.997(0.002) 0.997(0.002)  0.998(0.001)  0.998(0.001)
0.001 causal 0.893(0.010) 0.892(0.010)  0.894(0.010)  0.894(0.010)
1x10°¢ causal 0.344(0.015) 0.334(0.015)  0.357(0.015)  0.365(0.015)
5x10°8 causal 0.140(0.011) 0.129(0.011)  0.154(0.011)  0.160(0.012)
0.05 null 0.051(0.001) 0.051(0.001)  0.051(0.001)  0.050(0.001)
0.001 null 0.001(1x10%) 0.001(1x10%)  0.001(1x10%)  0.001(1x10™)

1x10°¢ null O(NA) O(NA) 0(NA) O(NA)

5x10°8 null O(NA) 0(NA) 0(NA) O(NA)

1% 0.05 causal 1(NA) 1(NA) 1(NA) 1(NA)
0.001 causal 0.978(0.005) 0.977(0.005)  0.973(0.005)  0.980(0.004)
1x10°¢ causal 0.640(0.015) 0.623(0.015)  0.613(0.015)  0.658(0.015)
5x10°® causal 0.397(0.015) 0.378(0.015)  0.376(0.015)  0.419(0.016)




0.05 null 0.051(0.001) 0.050(0.001)  0.051(0.001)  0.051(0.001)
0.001 null 0.001(2x10%)  0.001(2x10%)  0.001(2x10%)  0.001(2x10%)
1x10°6 null 0(NA) 0(NA) 0(NA) 0(NA)
5x10° null 0(NA) 0(NA) 0(NA) 0(NA)

0.1% 0.05 causal 1(NA) 1(NA) 1(NA) 1(NA)

0.001 causal 0.996(0.002) 0.996(0.002)  0.995(0.002)  0.997(0.002)
1x10° causal 0.868(0.011) 0.860(0.011)  0.797(0.013)  0.880(0.01)
5x10° causal 0.685(0.015) 0.664(0.015)  0.584(0.016)  0.702(0.014)

0.05 null 0.050(0.001) 0.050(0.001)  0.049(0.001)  0.050(0.001)
0.001 null 0.001(1x10%)  0.001(1x10%)  0.001(1x10%)  0.001(1x10%)
1x10° null 0(NA) 0(NA) 0(NA) 0(NA)
5x10° null 0(NA) 0(NA) 0(NA) 0(NA)

Table S13. Percentage of SNPs achieving alpha levels for simulated genotypes and phenotypes generated from a logistic distribution. Results are the same

simulations as described in Table S12



M Prev Set Statistic ~ ATT Liability MM Liability ATT ATT+PCs LogR LogR+PCs MLM LTMLM

1000 50% causal  average 25.684(1.137) 29.055(1.26) 16.234(0.723) 15.775(0.705) 15.566(0.674) 15.14(0.658) 17.480(0.780) 17.412(0.775)
null average  1.698(0.015)  1.792(0.017)  1.444(0.011)  1.425(0.010)  1.433(0.010) 1.415(0.010)  1.472(0.011)  1.471(0.011)

all average  1.938(0.021)  2.065(0.023)  1.592(0.014)  1.569(0.013)  1.574(0.013)  1.552(0.013)  1.632(0.015)  1.630(0.015)

all hVee 1.274(0.018)  1.278(0.019)  1.214(0.017)  1.224(0.017)  1.214(0.017)  1.223(0.017)  1.234(0.017)  1.226(0.016)

25% causal  average 30.169(1.211) 33.771(1.343) 19.277(0.771) 18.581(0.754) 18.47(0.721) 17.822(0.706) 20.493(0.82) 20.642(0.831)

null average  1.821(0.017)  1.917(0.019)  1.551(0.012)  1.507(0.011)  1.538(0.012)  1.495(0.011)  1.571(0.012)  1.577(0.013)

all average  2.104(0.023)  2.236(0.025)  1.728(0.015)  1.678(0.014)  1.707(0.015)  1.658(0.014)  1.761(0.016)  1.768(0.016)

all Jres 1.290(0.018)  1.288(0.019)  1.256(0.016)  1.245(0.017)  1.255(0.016)  1.245(0.017)  1.241(0.015)  1.243(0.015)

10% causal  average 34.865(1.45) 37.861(1.551) 22.838(0.961) 21.406(0.878) 21.618(0.881) 20.336(0.808) 23.865(1.022) 24.661(1.064)

null average  1.973(0.020)  2.039(0.021)  1.664(0.014)  1.583(0.012)  1.647(0.014) 1.568(0.012)  1.668(0.014)  1.695(0.015)

all average  2.302(0.027)  2.397(0.028) 1.876(0.018)  1.781(0.016)  1.846(0.017)  1.756(0.015)  1.890(0.019)  1.925(0.019)

all hvee 1.301(0.017)  1.302(0.018)  1.271(0.016)  1.285(0.015)  1.270(0.016)  1.284(0.015)  1.251(0.017)  1.270(0.016)

10000 50% causal  average 26.781(1.104) 27.44(1.129) 16.898(0.702) 16.815(0.698) 16.229(0.659) 16.156(0.655) 17.279(0.725) 17.26(0.725)
null average  1.114(0.002)  1.114(0.002)  1.078(0.002)  1.083(0.002)  1.074(0.002)  1.078(0.002)  1.078(0.002)  1.076(0.002)

all average 1.14(0.003) 1.140(0.003)  1.094(0.002)  1.099(0.002)  1.089(0.002)  1.094(0.002)  1.095(0.002)  1.092(0.002)

all Jves 1.046(0.005)  1.042(0.005)  1.039(0.005)  1.047(0.005)  1.039(0.005)  1.046(0.005)  1.039(0.005)  1.035(0.005)

25% causal  average 27.208(1.154) 27.938(1.178) 17.573(0.726) 17.293(0.696) 16.856(0.679) 16.61(0.654) 17.976(0.749) 18.077(0.758)

null average  1.112(0.002) 1.11(0.002) 1.076(0.002)  1.078(0.002)  1.071(0.002)  1.073(0.002)  1.074(0.002)  1.073(0.002)

all average  1.138(0.003)  1.137(0.003)  1.092(0.002)  1.094(0.002)  1.087(0.002)  1.089(0.002)  1.091(0.002)  1.090(0.002)

all Aae 1.048(0.005)  1.043(0.005)  1.040(0.004)  1.045(0.004)  1.040(0.004)  1.044(0.004)  1.040(0.004)  1.039(0.004)

10% causal  average 35.911(1.500) 36.598(1.525) 24.379(1.026) 24.116(1.014) 23.127(0.944) 22.894(0.934) 24.987(1.071) 25.399(1.091)

null average  1.161(0.003)  1.156(0.003)  1.112(0.002)  1.115(0.002)  1.107(0.002)  1.110(0.002)  1.108(0.002)  1.111(0.002)

all average  1.196(0.003)  1.192(0.003)  1.136(0.003)  1.138(0.003)  1.129(0.002)  1.132(0.002)  1.131(0.003)  1.135(0.003)

all Jves 1.059(0.005)  1.050(0.004)  1.051(0.005)  1.059(0.004)  1.050(0.005)  1.058(0.004)  1.044(0.004)  1.047(0.004)

Table S14. Complete results on real genotypes and simulated phenotypes. Results include results from Table 4 but we also report ATT and MLM statistics

computed using the underlying liability. We report average y’ statistics for simulations with real genotypes and simulated phenotypes averaged across 100

simulations for each parameter setting.



M Prev o ATT Liability MLM Liability ATT ATT+PCs LogR LogR +PCs MLM LTMLM
1000 50% 0.05 0.689(0.016) 0.717(0.015) 0.614(0.017)  0.602(0.017)  0.614(0.017)  0.603(0.017)  0.630(0.017)  0.625(0.017)
0.001  0.504(0.017) 0.533(0.017) 0.409(0.017)  0.408(0.017)  0.405(0.017)  0.403(0.017)  0.415(0.017)  0.415(0.017)

1x10°  0.3200.016) 0.348(0.016) 0.235(0.015)  0.227(0.014)  0.229(0.014)  0.218(0.014)  0.256(0.015)  0.256(0.015)

5x10°  0.289(0.015) 0.309(0.016) 0.185(0.013)  0.178(0.013)  0.179(0.013)  0.172(0.013)  0.205(0.014)  0.200(0.014)

0.05 0.095(0.001) 0.099(0.001) 0.084(0.001)  0.083(0.001)  0.084(0.001)  0.083(0.001)  0.085(0.001)  0.085(0.001)

0.001  0.002(0.001) 0.022(0.001) 0.014(0.001)  0.013(5x10%)  0.013(0.001)  0.013(5x10%)  0.014(0.001)  0.014(0.001)
1x10°  0.007(4x10%) 0.009(4x10) 0.0033x10%)  0.003(2x10%)  0.0033x10%)  0.003(2x10%)  0.004(3x10%)  0.004(3x107)
5x10°  0.005(3x107) 0.006(3x107) 0.002(2x10%)  0.002(2x10%)  0.002(2x10%)  0.002(2x10%)  0.003(2x107%)  0.003(2x107)

25%  0.05 0.737(0.015) 0.750(0.014) 0.682(0.016)  0.671(0.016)  0.680(0.016)  0.671(0.016)  0.689(0.016)  0.692(0.016)

0.001  0.579(0.017) 0.603(0.016) 0.491(0.017)  0.482(0.017)  0.486(0.017)  0.479(0.017)  0.498(0.017)  0.496(0.017)

1x10°  0.405(0.016) 0.437(0.017) 0.294(0.016)  0.278(0.015)  0.281(0.015)  0.266(0.015)  0.314(0.016)  0.311(0.016)

5x10°  0.336(0.016) 0.387(0.016) 0.231(0.014)  0.216(0.014)  0.218(0.014)  0.208(0.014)  0.248(0.015)  0.251(0.015)

0.05 0.102(0.001) 0.104(0.001) 0.091(0.001)  0.09(0.001) 0.091(0.001)  0.090(0.001)  0.091(0.001)  0.092(0.001)

0.001  0.023(0.001) 0.026(0.001) 0.016(0.001)  0.015(0.001)  0.016(0.001)  0.015(0.001)  0.017(0.001)  0.018(0.001)
1x10°  0.009(4x107) 0.01(4x10%) 0.0053x107%)  0.004(3x10%)  0.0053x107%)  0.004(3x10%)  0.0053x10%)  0.005(3x10")
5x10°  0.006(3x107) 0.007(4x10™) 0.0033x10%)  0.003(2x10%)  0.003(2x10%)  0.003(2x10%)  0.004(3x10%)  0.004(3x107)

10%  0.05 0.730(0.015) 0.740(0.015) 0.678(0.016)  0.678(0.016)  0.678(0.016)  0.678(0.016)  0.684(0.016)  0.694(0.016)

0.001  0.575(0.017) 0.593(0.016) 0.498(0.017)  0.492(0.017)  0.494(0.017)  0.490(0.017)  0.510(0.017)  0.517(0.017)

1x10°  0.410(0.016) 0.435(0.017) 0.332(0.016)  0.328(0.016)  0.324(0.016)  0.316(0.016)  0.340(0.016)  0.343(0.016)

5x10°  0.374(0.016) 0.388(0.016) 0271(0.015)  0.265(0.015)  0.261(0.015)  0.251(0.015)  0.276(0.015)  0.281(0.015)

0.05 0.106(0.001) 0.107(0.001) 0.096(0.001)  0.095(0.001)  0.095(0.001)  0.094(0.001)  0.095(0.001)  0.097(0.001)

0.001  0.027(0.001) 0.028(0.001) 0.019(0.001)  0.016(0.001)  0.019(0.001)  0.016(0.001)  0.020(0.001)  0.020(0.001)
1x10°  0.01(4x10) 0.011(5x10) 0.007(4x10%)  0.005(3x10%)  0.006(3x107%)  0.005(3x10%)  0.007(4x10%)  0.007(4x10")
5x10°  0.008(4x107) 0.008(4x10) 0.0053x10%)  0.004(3x10%)  0.0053x107%)  0.003(3x10%)  0.0053x10%)  0.005(3x10%)

10000 50% 0.05 0.713(0.015) 0.72(0.015) 0.653(0.016)  0.652(0.016)  0.652(0.016)  0.651(0.016)  0.656(0.016)  0.657(0.016)
0.001  0.535(0.017) 0.551(0.017) 0.427(0.017)  0.428(0.017)  0.422(0.017)  0.426(0.017)  0.432(0.017)  0.433(0.017)

1x10°  0.356(0.016) 0.365(0.016) 0.245(0.015)  0.244(0.015)  0.238(0.015)  0.237(0.015)  0.248(0.015)  0.245(0.015)

5x10°  0.306(0.015) 0.311(0.016) 0.187(0.013)  0.191(0.013)  0.181(0.013)  0.178(0.013)  0.190(0.013)  0.189(0.013)
0.05 0.058(3x107) 0.058(3x107) 0.0573x10%)  0.057(3x10%)  0.056(3x107)  0.057(3x10%)  0.0573x107%)  0.056(3x10%)




0.001  0.004(9x10%) 0.004(9x10°5) 0.003(7x10)  0.003(7x10%)  0.003(7x10)  0.003(7x10¥)  0.003(8x10)  0.003(8x10°)
1x10°  0.001(4x10%) 0.001(4x10%) 0.001(3x10%)  0.001(3x10%)  0.001(3x10%)  0.001(3x10%)  0.001(3x10%)  0.001(3x10%)
5x10°  0.001(4x10%) 0.001(4x10°) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)
25% 0.05 0.725(0.015) 0.726(0.015) 0.635(0.017)  0.633(0.017)  0.635(0.017)  0.632(0.017)  0.635(0.017)  0.635(0.017)
0.001  0.529(0.017) 0.538(0.017) 0.440(0.017)  0.438(0.017)  0.438(0.017)  0.437(0.017)  0.448(0.017)  0.445(0.017)
1106 0.352(0.016) 0.362(0.016) 0.266(0.015)  0.261(0.015)  0.256(0.015)  0.254(0.015)  0.270(0.015)  0.267(0.015)
5x10°  0.303(0.015) 0.309(0.016) 0.209(0.014)  0.206(0.014)  0.198(0.014)  0.197(0.014)  0.215(0.014)  0.216(0.014)
0.05 0.057(3x10%) 0.057(3x10%) 0.056(3x107%)  0.056(3x10%)  0.0553x107%)  0.056(3x10%)  0.056(3x107%)  0.055(3x10%)
0.001  0.004(9x10%) 0.004(9x107) 0.003(7x10)  0.003(7x10%)  0.003(7x10)  0.003(7x10%)  0.003(7x10)  0.003(7x10°)
1106 0.001(5x107) 0.001(5x10) 0.001(3x10%)  0.001(3x10%)  0.001(3x10)  0.001(3x10%)  0.001(3x10)  0.001(3x10°)
5x10°  0.001(4x10%) 0.001(4x10°) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)
10% 0.05 0.752(0.014) 0.756(0.014) 0.711(0.015)  0.711(0.015)  0.709(0.015)  0.706(0.015)  0.713(0.015)  0.715(0.015)
0.001  0.597(0.016) 0.603(0.016) 0.519(0.017)  0.528(0.017)  0.518(0.017)  0.523(0.017)  0.520(0.017)  0.517(0.017)
1x10°  0.437(0.017) 0.438(0.017) 0.329(0.016)  0.330(0.016)  0.322(0.016)  0.322(0.016)  0.328(0.016)  0.336(0.016)
5x10°  0.380(0.016) 0.388(0.016) 0.281(0.015)  0.275(0.015)  0.266(0.015)  0.264(0.015)  0.283(0.015)  0.284(0.015)
0.05 0.061(3x10) 0.06(3x10) 0.0593x10%)  0.059(3x10%)  0.058(3x10%)  0.059(3x10%)  0.058(3x10%)  0.058(3x10%)
0.001  0.005(1x10%) 0.005(1x107) 0.004(8x10%)  0.004(8x10)  0.003(8x10%)  0.003(8x10)  0.004(8x10%)  0.004(8x10%)
1106 0.001(5x10°) 0.001(5x10) 0.001(4x10)  0.001(4x10%)  0.001(4x10)  0.001(4x10%)  0.001(4x10)  0.001(4x10°)
5x10°  0.001(5x10%) 0.001(5x10) 0.001(4x10)  0.001(3x10%)  0.001(4x10)  0.001(3x10%)  0.001(4x10)  0.001(4x10°)

Table S15. Percentage of SNPs achieving alpha levels for real genotypes and simulated phenotypes. Results include results for Table 4, but we also report
results for ATT and MLM computed using the underlying liability.



Category Controlling Agc o ATT ATT+PCs LogR LogR+PCs MLM LTMLM
Genome Wide No 0.05 0.093(5x10™) 0.068(4x10™) 0.093(5x10™) 0.067(4x10™) 0.067(4x10™%) 0.07(4x10™)
Genome Wide No 0.001 0.006(1x10™) 0.003(9x107) 0.006(1x10™) 0.003(9x107) 0.003(9x10%) 0.003(1x10™)
Genome Wide No 1x10°¢ 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)
Genome Wide No 5x1078 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) 0(NA)

Published No 0.05 0.747(0.050) 0.733(0.051) 0.747(0.050) 0.747(0.050) 0.707(0.053) 0.747(0.05)

Published No 0.001 0.427(0.057) 0.387(0.056) 0.427(0.057) 0.387(0.056) 0.387(0.056) 0.360(0.055)

Published No 1x10°¢ 0.107(0.036) 0.080(0.031) 0.107(0.036) 0.067(0.029) 0.080(0.031) 0.093(0.034)

Published No 5x1078 0.053(0.026) 0.040(0.023) 0.053(0.026) 0.027(0.019) 0.027(0.019) 0.053(0.026)
Genome Wide Yes 0.05 0.053(4x10™) 0.053(4x10™) 0.053(4x10™) 0.053(4x10™) 0.053(4x10™) 0.053(4x10™)
Genome Wide Yes 0.001 0.002(7x107) 0.002(7x107) 0.002(7x107) 0.002(7x107) 0.002(7x107%) 0.002(7x107%)
Genome Wide Yes 1x10°¢ 0(NA) 0(NA) 0(NA) 0(NA) 0(NA) O0(NA)
Genome Wide Yes 5x108 0(NA) 0(NA) 0(NA) 0(NA) O(NA) O(NA)

Published Yes 0.05 0.720(0.052) 0.693(0.053) 0.720(0.052) 0.707(0.053) 0.693(0.053) 0.733(0.051)

Published Yes 0.001 0.320(0.054) 0.347(0.055) 0.320(0.054) 0.333(0.054) 0.347(0.055) 0.347(0.055)

Published Yes 1x10°¢ 0.040(0.023) 0.053(0.026) 0.040(0.023) 0.067(0.029) 0.040(0.023) 0.053(0.026)

Published Yes 5x1078 0.013(0.013) 0.013(0.013) 0.013(0.013) 0.013(0.013) 0.013(0.013) 0.013(0.013)

Table S16. Proportion of SNPs achieving alpha levels for WTCCC2 MS data set. The number of known associated SNPs that are significant for LTMLM but
not MM (or vice versa) after controlling for Agc are 3(0) at o= 0.05, 1(1) at a=0.001, 1(0) at a =1x10, 0(0) at o =5x10%.,



SNP Set ATT PCA MLM LTMLM

Genome Wide AVERAGE 1.38 1.16 1.14 1.17
Genome Wide LD Score INTERCEPT 1.29 1.09 1.08 1.10
Published SNPs AVERAGE 11.64 9.97 9.92 10.59
Published SNPs/Genome Wide Average 8.44 8.61 8.67 9.03
Published SNPs/LD score INTERCEPT 9.06 9.17 9.20 9.66

Table S17: Results on WTCCC2 MS data set with calibration via LD Score regression. We report the genome wide % averages using 10,034 individuals
over 360,557 SNPs and the average across 75 published SNPs standardized by the genome wide average and LD Score regression intercept.

SNP Set N ATT MLM LTMLM LTMLM
REML
Genome Wide AVERAGE 8188 1.16 1.11 1.14 1.14
Published SNPs AVERAGE 8.94 8.26 8.76 8.82
Published SNPs/Genome Wide Average 7.73 7.45 7.71 7.73
Genome Wide AVERAGE 10034 1.38 1.14 1.17 1.24
Published SNPs AVERAGE 11.64 9.92 10.59 11.04
Published SNPs/Genome Wide Average 8.44 8.67 9.03 8.92
Genome Wide AVERAGE 15633 3.95 1.23 1.08 1.50
Published SNPs AVERAGE 18.54 11.30 5.76 13.76
Published SNPs/Genome Wide Average 4.69 9.20 5.32 9.15

Table S18: Results on WTCCC2 MS data set at different levels of QC. We report results for stringently matched (N = 8,188), partially matched (N = 10,034)
and unmatched (N = 15,633) data sets (see main text). The additional column is for the LTMLM REML statistic calculated using the REML estimate of h.
LTMLM using the REML estimate for 4 produces inflated test statistics and it is not recommended.



Liability Observed

N HE REML HE REML
8188 0.363 (0.0017) 0.260 (0.001) 0.979 (0.005) 0.702 (0.003)
10034 0.704 (0.009) 0.279 (0.001) 1.901 (0.025) 0.753 (0.002)
15633 2.792 (0.010) 0.293 (0.001) 7.543 (0.0266) 0.792 (0.002)

Table S19: Heritability parameter estimates on WTCCC2 MS data set at different levels of QC. We report results for stringently matched (N = 8,188),
partially matched (N = 10,034) and unmatched (N = 15,633) data sets (see main text).
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