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Copy-Number Variation of the Glucose Transporter
Gene SLC2A3 and Congenital Heart Defects
in the 22g11.2 Deletion Syndrome
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The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS) is the most common microdeletion syn-
drome and the phenotypic presentation is highly variable. Approximately 65% of individuals with 22q11DS have a congenital heart
defect (CHD), mostly of the conotruncal type, and/or an aortic arch defect. The etiology of this phenotypic variability is not currently
known. We hypothesized that copy-number variants (CNVs) outside the 22q11.2 deleted region might increase the risk of being born
with a CHD in this sensitized population. Genotyping with Affymetrix SNP Array 6.0 was performed on two groups of subjects with
22q11DS separated by time of ascertainment and processing. CNV analysis was completed on a total of 949 subjects (cohort 1,
n = 562; cohort 2, n = 387), 603 with CHDs (cohort 1, n = 363; cohort 2, n = 240) and 346 with normal cardiac anatomy (cohort 1,
n = 199; cohort 2, n = 147). Our analysis revealed that a duplication of SLC2A3 was the most frequent CNV identified in the first cohort.
It was present in 18 subjects with CHDs and 1 subject without (p = 3.12 x 1073, two-tailed Fisher’s exact test). In the second cohort, the
SLC2A3 duplication was also significantly entiched in subjects with CHDs (p = 3.30 x 10”2, two-tailed Fisher’s exact test). The SLC2A3
duplication was the most frequent CNV detected and the only significant finding in our combined analysis (p = 2.68 x 10~*, two-tailed
Fisher’s exact test), indicating that the SLC2A3 duplication might serve as a genetic modifier of CHDs and/or aortic arch anomalies in
individuals with 22q11DS.

(VSD), truncus arteriosus, and interrupted aortic arch
type B.” Both genetic and environmental etiologies of
CTDs have been described.* ® With respect to genetic etiol-
ogies, CTDs have been identified in individuals with single

Introduction

Congenital heart defects (CHDs) are the leading cause of
birth defect-related deaths in newborns' and are estimated

to occur in 0.5% to 1% of live births.” They can develop as
an isolated abnormality or in conjunction with a syn-
dromic condition. Approximately one third of CHDs result
from malformations of the cardiac outflow tract and are
collectively referred to as conotruncal heart defects
(CTDs), examples of which include tetralogy of Fallot

gene disorders, gain or loss of entire chromosomes, and
submicroscopic unbalanced structural rearrangements or
copy-number variants (CNVs). One of the most common
CNVs associated with CTDs is the 22q11.2 deletion.”®
The 22q11DS (velocardiofacial syndrome; DiGeorge
syndrome, VCFS/DGS [MIM: 192430, 188400]) is the

(TOF), pulmonary atresia with ventricular septal defect most common microdeletion syndrome, affecting
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approximately 1 in 2,000-4,000 individuals.”'° The vast
majority of individuals with 22q11DS carry the typical
3 million base pair (3 Mb) deletion of one homolog of
chromosome 22; nested, smaller interstitial 1.5-2 Mb
22q11.2 deletions are seen in <10% of individuals.''
Both the typical 3 Mb deletion and most nested interstitial
deletions occur between low copy repeats that punctuate
the 22q11.2 region.'” This deletion is usually de novo
but can also be inherited."” The 22q11DS phenotype is
highly variable and includes CHDs, dysmorphic facial fea-
tures, palatal anomalies, hypocalcemia, immunodefi-
ciency, cognitive impairment, and various neuropsychi-
atric disorders. A variety of CHDs and/or aortic arch
defects have been detected in approximately 65% of indi-
viduals with 22q11DS, the most prevalent of which are
CTDs.'*!> The etiology of this cardiovascular phenotypic
variability is not currently known, but it does not appear
to correlate with sex, race, 22q11.2 deletion size, or parent
of origin of the deletion.®'*'”

The variable expressivity and reduced penetrance of
CHDs in 22q11DS (including aortic arch anomalies) is
probably influenced by genetic factors because individuals
with 22q11DS and a CHD are more likely to have an unaf-
fected relative with an isolated CHD than individuals with
22q11DS that have normal intracardiac and aortic arch
anatomy.® These findings are not explained by the inheri-
tance of the non-deleted chromosome 22, suggesting that
the variants that influence the development of CHD in
these families lie outside of the 22q11.2 region.® More
than 40 genes are in the typically deleted region in
22q11DS. One of the strongest candidate genes for CHD
on 22ql1DS is TBX1 (MIM: 602054), which encodes a
T-box transcription factor.'® 2 We previously sequenced
coding exons of TBX1 in this cohort and did not find evi-
dence for mutation on the remaining allele.”’ Therefore,
we hypothesized that individuals with 22q11DS and
CHDs have structural variants that affect their risk of being
born with intracardiac and/or aortic arch malformations,
possibly through epistatic interactions with the dosage-
sensitive gene(s) in the 22q11.2 deleted region.

Our study is an investigation in search of CNV genetic
modifiers involved in the variable 22q11DS cardiac pheno-
type and represents the largest genomic study of a micro-
deletion syndrome performed to date. Genome-wide
analysis of CNVs was performed on two separate cohorts
of subjects with 22q11DS ascertained and processed in
two different time periods: the first cohort consisted of
562 subjects (CHD, n = 363; no CHD, n = 199) and the sec-
ond cohort comprised 387 subjects (CHD, n = 240; no
CHD, n = 147) for a total of 949 subjects (CHD, n = 603;
no CHD, n = 346). By analyzing 949 subjects with
22q11DS, we were able to identify a common CNV that
was significantly enriched in 22q11DS-positive subjects
with a CHD. This CNV and the gene it overlaps have not
been previously reported in the CHD literature. The result
supports the possibility that this is a genetic modifier of
CHDs in individuals with 22q11DS.

Material and Methods

Subject Cohorts

Blood or saliva samples were obtained from subjects with
22q11DS, with their informed consent and in accordance with
the ethical standards of the appropriate committees on human
experimentation (Internal Review Board, 1999-201, Albert Ein-
stein College of Medicine, NY; 07-005352_CR2 CHOP IRB). Two
groups of subjects with 22q11DS were ascertained and processed
at two distinct time points and were therefore treated as separate
cohorts, referred to as cohort 1 and cohort 2. The recruitment
goals for the two 22q11DS cohorts were a confirmed 22q11.2 dele-
tion, self-reported as white of European descent, and (for familial
cases) only one individual per family. Fluorescence in situ hybrid-
ization or multiplex ligation-dependent probe amplification
(MLPA) testing was used to verify the 22q11.2 deletion in each
subject and parents when available. Phenotypic information on
intracardiac and aortic arch anatomy was obtained from echocar-
diograph and cardiology summary reports from the referring insti-
tutions; every subject enrolled in the study had an echocardio-
gram. The phenotypes of 227 of these subjects have been
described in an earlier publication.”!

A separate cohort of subjects with CTDs was recruited as part of a
larger collaborative program (HD70454). These subjects tested
negative for a 22q11.2 deletion and had no other recognizable ge-
netic syndrome. A detailed description of the subject enrollment
requirements, cardiac phenotypes, and array genotyping proce-
dure for this non-deleted, CTD cohort has been published else-
where.””

Genome-wide SNP Array, Quality Control, and CNV
Detection

Genomic DNA samples from subjects with 22q11DS were
analyzed with the Affymetrix SNP Array 6.0 platform according
to the manufacturer’s instructions (Affymetrix) at the Genomics
Core at Albert Einstein College of Medicine. Quality control
values were calculated in Affymetrix Genotyping Console (Affy-
metrix) and any samples with contrast QC greater than 0.4 or
mean absolute pairwise difference (MAPD) greater than 0.35
were excluded from further analysis. Only samples that had a
typical 3 Mb 22q11.2 deletion or a proximal nested 22q11.2 dele-
tion were included; all atypical deletions were excluded from the
study. In addition, samples were removed if there was insuffi-
cient cardiac phenotype information about the subject or if the
gender determined on the basis of X and Y chromosome SNP ge-
notypes did not match their reported gender. SNP analysis was
performed to exclude duplicate or related samples via estimation
of identity by descent (IBD) with the PLINK software package.”*
Figure S1A depicts this initial quality assessment and sample
elimination.

A custom copy number (CN) baseline reference was generated
with 215 Affymetrix SNP 6.0 arrays from phenotypically normal,
non-22q11DS control individuals that were ascertained concur-
rently with the 22q11DS cohorts. These reference arrays were
run in the same facility, the Genomics Core at Albert Einstein Col-
lege of Medicine, during the same time period and with an iden-
tical protocol as our experimental 22q11DS arrays in order to con-
trol for any batch variation. The reference arrays were subjected to
and passed the same QC metrics, and equivalent ratio of male:fe-
male arrays were used to prevent gender bias (106 male, 109
female).
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The CNV detection was performed on all three cohorts (both
22q11DS groups and the non-syndromic CTD group) via two
methods: PennCNV?* and CNV workshop.?* The PennCNV-Affy-
metrix tool was used to extract the signal intensity data from the
raw .cel files.”* The canonical genotype clustering file used for
CNV calling with PennCNV was generated from our custom CN
baseline reference set.”* The log2ratios generated by PennCNV
were used in CNV Workshop to produce CNV calls via circular bi-
nary segmentation.”® The B allele frequency and log R ratio plots
were visualized with the Affymetrix Chromosome Analysis Suite
to support CNV calls. The final QC step occurred after CNV detec-
tion: any samples with elevated log2ratio SD (>0.44) or a large
number of detected CNVs (>300) were excluded from further anal-
ysis, as shown in Figure S1B. A total of 949 22q11DS samples, 562
in the first cohort and 387 in the second cohort, passed all of the
QC metrics and were included in our analysis.

CNV Analysis

A list of autosomal CNVs detected by greater than 10 contiguous
probes for deletions and greater than 20 probes for duplications
was generated with relevant annotations for analysis. Only
CNVs detected by both PennCNV and CNV Workshop were
included in the analysis, because these CNVs are less likely to be
false positives due to variation in algorithms. CNV boundaries
were determined by averaging the breakpoint locations predicted
by CNV workshop and PennCNV. Any CNVs with a 50% or greater
overlap with centromere, telomere, immunoglobulin regions,
and/or segmental duplications were excluded. In addition, olfac-
tory receptor genes were removed from further analysis. Finally,
we merged CNVs separated by less than 10 kb to consider them
as possible single contiguous events. CNV detection and analysis
was performed with the GRCh36/hg18 build, and then CNV coor-
dinates were converted to the GRCh37/hg19 build via the UCSC
Genome Browser LiftOver tool. All genomic coordinates presented
in figures and tables herein are based on the February 2009 Human
Genome Build (GRCh37/hg19).

Common and rare CNVs were analyzed separately. We defined
rare CNVs as those with a frequency of less than 0.1% of a previ-
ously published control population (dbVaR: nstd54);?° all remain-
ing CNVs were categorized as common. Here we focus on com-
mon CNVs to determine the impact of common variants as
genetic modifiers of the 22q11DS cardiac phenotype.

In Silico Analysis of Gene Function

CNVs in subjects with 22q11DS that passed all selection criteria
were annotated with the RefSeq gene set downloaded from the
UCSC Table browser of the hg18 build. Gene Ontology (GO) anno-
tations for each RefSeq gene were obtained from the Ensembl data-
base and their Mammalian Phenotype Ontology (MPO) term anno-
tations were retrieved from the Mouse Genome Informatics (MGI)
database (July 2014 available version). Previously published analyt-
ical methods were employed to expand the annotation of the Gene
Ontology and Mammalian Phenotype Ontology terms.>’ For each
functional term (GO and MPO), we directly compared the fre-
quency of occurrence between cases and controls via Fisher’s exact
test. Duplication and deletion events were evaluated separately af-
ter excluding genes deleted in the 22q11.2 region.

Statistical Analysis
The Fisher exact test or the Wilcoxon rank sum test was used for
gene and CNV enrichment analyses. The Benjamin-Hochberg

false discovery rate procedure was adopted as our default multiple
test correction method. Where appropriate, the permutation-
based false discovery rate estimation was applied to correct multi-
ple testing for functional analyses.”®

CNV Validation by qPCR

CNVs selected for validation were screened by real-time PCR. SYBR
Green detection on an ABI SDS-7500 Fast Real-Time PCR system
was used to quantify copy number (Applied Biosystems). Primer
Express 3.0 software (ABI) and Primer 3 were used to design primers
to amplify the region of interest; the specificity of each primer pair
was tested with the UCSC In-Silico PCR tool. The average length of
each amplicon was 62 base pairs (range: 51-97 base pairs). For each
CNV, primers were designed to amplify two regions within the
deleted/duplicated region and at least one set of primers was de-
signed to amplify a flanking region with normal copy number.
Each qPCR run included amplification of an endogenous control
with known copy number (RPPHI). The sequences for all of the
qPCR primers used in the CNV validation are listed in Table S5.
Two DNA samples with normal copy number (one CEPH subject
and one 22q11DS-positive subject with normal copy number at
the particular CNV) were used as controls in each run. SYBR Green
qPCR was also used to amplify the DNA from the available parents
of subjects with 22q11DS to determine whether CNVs were in-
herited or de novo. 10 pl reactions were performed with 12.5 ng
of DNA according to the manufacturer’s recommended protocol.

Assessing SLC2A3 Duplication Frequency in Control
Populations

Publically available databases were examined to determine the
frequency of SLC2A3 duplications in phenotypically normal indi-
viduals. Many of the studies submitted to these databases did not
provide robust phenotypic information for control samples or a
sample ID associated with each CNV. It is not possible to know
how many samples are redundant or uniquely presented in a data-
base without adequate sample ID information, which prevents a
reliable calculation of the frequency of the SLC2A3 duplication
within the various databases. We were therefore restricted to previ-
ously published studies where sufficient sample ID information
was provided and individuals were rigorously vetted to ensure a
phenotypically “normal” control cohort (dbVaR: nstd21>° and
nstd54°°).

Mouse Embryo Dissections

Mouse embryos in the SW background were isolated in cold PBS at
E9.5 and E10.5. Somite pairs were counted to define stages: 19-21
pairs of somites were defined as E9.5 and 30-32 pairs of somites
were defined as E10.5.

Whole-Mount In Situ Hybridization

Digoxigenin-labeled RNA probe for Slc2a3 was amplified by PCR
from cDNA, with the primers 5'-TCCCCTCAGCTGCAGCCTA
CTT-3' and 5-TTGTTCAATCCCCCAGGGCCCT-3', forward and
reverse, respectively. The forward primer contained the T3 poly-
merase priming sequence and the reverse primer contained the
T7 polymerase priming sequence. The PCR products were purified
with the PCR Purification Kit (QIAGEN), and antisense RNA was
in vitro transcribed and labeled with T7 RNA polymerase (Roche)
and the DIG RNA Labeling Mix (Roche), via the Digoxigenin
Labeling Method. A sense RNA was generated with T3 RNA poly-
merase following the same procedure as the antisense RNA. The
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Table 1. Frequency of CHDs in Subjects with 22q11DS

First Cohort Second Cohort

Type of CHD Total® No. of Isolated” Total® No. of Isolated”
ASD 56 12 59 18
TIAAB 41 3 25 0
PS 105 3 21 2
PTA 35 0 19 0
RAA 114 30 41 14
TOF 149 40 59 47
VSD* 118 15 81 47

Abbreviations are as follows: ASD, atrial septal defect; IAAB, interrupted aortic
arch type B; PS, pulmonary atresia stenosis; PTA, persistent truncus arteriosus;
RAA, right aortic arch; TOF, tetralogy of Fallot; VSD, ventricular septal defect.
*Total number of subjects with each type of CHD. Subjects with >1 heart de-
fects are included in multiple categories.

PNumber of subjects with isolated CHDs.

“This category does not include VSDs found in association with TOF and PTA.

sense RNA served as control for the specificity of the expression
pattern observed with the antisense RNA. Digoxigenin-labeled
RNA probes were purified with mini Quick Spin RNA Columns
(Roche). Whole-mount in situ hybridization was performed as pre-
viously described.*”

Results

CNV Analysis in Two Consecutively Ascertained
Cohorts of Subjects with 22q11DS
CNV analysis was performed with PennCNV and CNV
workshop on 949 Affymetrix SNP6.0 arrays from two co-
horts of subjects with 22q11DS, cohort 1 and cohort 2.
The two cohorts were ascertained over different but
consecutive time periods. When combined there were
603 individuals (cohort 1, n = 363; cohort 2, n = 240)
with intracardiac defects and/or aortic arch defects and
346 (cohort 1, n = 199; cohort 2, n = 147) that had normal
heart and aortic arch anatomy. The specific defects
observed in these subjects are listed in Table 1. Each subject
had a 22q11.2 deletion that included TBX1 (Figure 1), a
strong candidate gene for the physical defects of the syn-
drome including CHDs.'®?° Although parental DNA was
not available to test from all subjects, the majority of the
22q11.2 deletions in the study cohort were de novo events.
Analysis of the 22q11.2 deletion sizes (Table S1) revealed
that 93.5% of subjects (n = 564) with a CHD carried the
typical 3 Mb (LCR-A to LCR-D) 22q11.2 deletion'??'
compared to 94.8% of subjects (n = 328) with a normal
heart (p = 0.48, two-tailed Fisher’s exact test). Figure 1 illus-
trates the various 22q11.2 deletions and Table S1 contains
the deletion size data broken down by cohort in addition
to the overall frequencies. These findings indicate that
the size of the 22q11.2 deletion does not play a role in
the development of congenital cardiac defects.

A total of 13,518 CNVs outside of the 22q11.2 region
were detected by both algorithms in the 949 subjects

(Table 2). These CNVs are unlikely to be false positives
because they were identified by two methods and passed
the probe cutoffs that were chosen based on extensive vali-
dation of such CNVs in the past. There was no significant
difference in the number of CNVs detected (14.29 + 5.34
versus 13.88 + 5.01, p = 0.37) or the average size of CNVs
(607.72 + 484.05 kb versus 575.48 + 437.78 kb, p = 0.22)
between subjects with CHDs including aortic arch anoma-
lies and those with normal cardiovascular anatomy in
either cohort or when the cohorts were combined (Table
2). CNVs affecting genes implicated in cardiac develop-
ment and/or overrepresented in case or control subjects
were chosen for qPCR validation (number of unique
CNVs = 23; Table S2). The validation rate for CNVs that
were identified by both algorithms (CNV Workshop and
PennCNV, n = 70) was 100%, but was lower for CNVs pre-
dicted by only one algorithm (validation rate for CNVs
identified only by CNV workshop = 35.5%; validation
rate for CNVs identified only by PennCNV = 71.4%).

Identification and Analysis of the SLC2A3

Duplication

In the analysis of the first cohort, only a single CNV
showed a statistically significant difference in frequency
between 22q11DS-positive subjects with and without
CHDs. A common duplication of chromosome 12p13.31
was detected in 18 (5.0%) 22q11DS-positive subjects with
a CHD and in 1 (0.5%) 22q11DS-positive subject with a
normal heart (p = 3.12 x 1073, two-tailed Fisher’s exact
test; Figure 2A). This duplication encompasses the entirety
of SLC2A3 (solute carrier family 2, member 3 [MIM:
138170]), the pseudogene NANOGPI, and part of
SLC2A14 (solute carrier family 2, member 14 [MIM:
611039]). SLC2A14 is expressed only in the testes®” and
the pseudogene NANOGPI is transcribed but not trans-
lated and therefore neither is relevant. Thus, this CNV at
12p13.31 is referred to as a duplication of SLC2A3
hereafter.

The second cohort was then examined and an additional
20 SLC2A3 duplications were identified: 17 (7.1%) subjects
had a CHD and 3 (2.0%) did not. The SLC2A3 duplication
was also significantly enriched in individuals with CHDs
within the second cohort (p = 3.30 x 102, two-tailed
Fisher’s exact test; Figure 2B). In total, 39 individuals
with a duplication of SLC2A3 were identified: 35 in
22q11DS-positive subjects with CHD (5.8%) and in 4
(1.1%) of the 22q11DS-positive subjects with normal
hearts (p = 2.68 x 10~*, two-tailed Fisher’s exact test;
Figure 2). A duplication of the entire SLC2A3 gene has
been previously observed in 45/2,026 (2.2%) of healthy in-
dividuals.?’ Thus, it appears that the overall frequency of
this duplication in our entire cohort with 22q11DS
(4.1%) is substantially greater than that seen in healthy
controls.

The SLC2A3 duplication was validated with qPCR in
all 37 individuals for whom DNA samples were still avail-
able (Figure 2C shows representative qPCR data). We
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Figure 1. Chromosome 22 Deletion Sizes

UCSC Genome Browser view of the 22q11.2 deletion sizes in the 949 subjects with 22q11DS from both cohorts. The typical 22q11.2
deletions are mediated by low copy repeats (LCRs); the deletions start at LCR A and end within LCR B, C, or D. The LCRs are shown
in black directly above the segmental duplication track. Table S1 contains the exact frequency and distribution for each of the typical
deletions. Individuals with atypical 22q11.2 deletions were excluded from analysis. The red hatched box contains the genes that are

typically deleted.

investigated whether the SLC2A3 duplication was de novo
or inherited in the 13 probands with parental DNA avail-
able for qPCR analysis (11 case subjects with CHDs and 2
controls without). As expected for a common variant,
100% of the individuals tested had inherited the SLC2A3
CNV from an unaffected parent that did not have a
22q11.2 deletion or a CHD (9 maternal; 3 paternal; 1
case where mother and father both carried the SLC243
duplication). A deletion of the SLC2A3 CNV was identified
in 9 subjects with a CHD (1.4%) and 4 subjects with a
normal heart (1.1%) (p = 0.78, two tailed Fisher’s exact
test). This indicates that only a duplication of SLC2A3
and not the hemizygous deletion is associated with
CHDs in subjects with 22q11DS.

The CNV analysis of the non-deleted CHD cohort (627
subjects with CHDs and 2,980 normal controls of Euro-
pean descent) was performed as previously described.”’
The detected CNVs were examined to determine whether
SLC2A3 duplications were associated with non-syndromic
CHDs. A duplication of SLC2A3 was identified in 19 of the
627 individuals with a CHD (3.0%) and in 75 of the 2,980
control subjects with no reported CHD (2.5%). The
SLC2A3 duplication was not enriched among individuals
with CHDs in this non-syndromic cohort (p = 0.49, two

tailed Fisher’s exact test). Deletions of SLC2A3 were identi-
fied in 3 individuals with a non-syndromic CHD and 22
normal controls (p = 0.60, two tailed Fisher’s exact test),
which is a similar distribution as was seen in the
22q11DS cohorts.

Slc2a3 RNA In Situ Hybridization of Mouse Embryos
Whole-mount in situ hybridization was performed to
determine whether Sic2a3 is expressed in the murine
pharyngeal apparatus and/or heart during development.
Cells from the pharyngeal apparatus migrate into the car-
diac outflow tract to form the conotruncal region. Slc2a3
was expressed in the brain, pharyngeal arches, and outflow
tract but less so in the heart and placenta at embryonic
days 9.5 and 10.5 (Figure 3). It was also expressed in the
pancreatic bud at embryonic day 10.5.

In Silico Analysis of CNV Function

To determine relevance of the common CNVs observed in
subjects with 22q11DS to cardiac development, we used
phenotype data from Gene Ontology and Mouse Genome
Informatics Resource as previously described.”® Gene
Ontology (GO) analysis was performed in order to examine
the annotated biological processes, cellular components,
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and/or molecular functions of genes impacted by CNVs in
CHD case versus control subjects. Mammalian Phenotype
(MP) analysis was performed to investigate the various
phenotypes associated with genes impacted by CNVs in
CHD case versus control subjects. The common and rare
CNVs were evaluated separately for each analysis. The
rare CNV analysis was less informative and will be reported
elsewhere (E.E.M. and B.S.E., unpublished data). The
results from the GO analysis are listed in Table S3. The
only GO terms that were statistically significant after
B-H/FDR adjustment were all related to SLC2A3 ontologies
and function. The results from the MP analyses are listed
in Table S4. Several of the statistically significant MP
terms enriched in 22q11DS-positive subjects with CHDs
involved physiological defects and lethality such as
“abnormal extraembryonic tissue physiology” and “com-
plete embryonic lethality” (Table S4).

p Value
0.59°
0.37¢
0.22¢
0.84°

No CHD
(n = 346)

175 (50.6%)
19.25 + 5.01
575.48 + 437.78

43

Cohorts Combined
CHD

(n = 603)

293 (48.5%)

14.29 + 5.34
607.72 + 484.05
72

p Value
0.53°
0.83¢
0.87¢
0.51°

Discussion

The goal of our study was to determine whether structural
genetic variants outside the 22q11.2 commonly deleted
region explain the incomplete penetrance of CHDs in
22q11DS. Our analysis of subjects with 22q11DS, divided
into two cohorts based upon time period of ascertainment
and processing, revealed that the number of autosomal
CNVs in those with CHDs compared to subjects with a
normal heart was not significantly different in either
cohort (Table 2). Furthermore, there was no correlation be-
tween the size of the 22q11.2 deletion and cardiac pheno-
type (Figure 1 and Table S1). However, one common CNV
was found to be significantly associated with subjects with
CHDs, suggesting that it might have an influence on car-
diac development in the presence of a 22q11.2 deletion.

No CHD
(n = 147)

68 (46.3%)
13.86 + 4.45
585.39 + 487.87
19

Second Cohort
CHD

(n = 240)

119 (49.6%)
14.09 + 4.57
577.55 + 423.61
25

p Value
0.22°
0.31¢
0.14¢
0.79°

Duplication of SLC2A3

One common CNYV, the duplication of SLC2A3, was signif-
icantly enriched in 22q11DS-positive subjects with a CHD.
In total, the SLC2A3 duplication was detected in 35
22q11DS-positive subjects with CHD (5.8%) and in 4
22q11DS-positive subjects with normal hearts (1.1%)
(p = 2.68 x 10*, two-tailed Fisher’s exact test; Figure 2).
This is the first study to report an association between a
gain of SLC2A3 and CHD. The SLC2A3 duplication does
not correlate with a specific type of heart defect in our
22q11DS-positive population, as shown in Table 3. This
CNV is present in 2.2% of healthy individuals (dbVaR:
nstd21)*’ and was inherited from a parent in all 13 of
the subjects with 22q11DS with available parental DNA.
Cooper et al. identified a SLC2A3 duplication in 1/575
subjects with cardiovascular disease (0.17%) and in 143/
8,329 controls (1.7%) (dbVaR: nstd54).>° Collectively,
these data suggest that the SLC2A3 duplication is benign
unless it is inherited in combination with the 22q11.2
deletion. This intriguing finding seems to be even more
compelling because it was initially found in excess in the

No CHD
(n = 199)

107 (53.8%)
13.90 + 5.39
568.15 + 397.87

24

14.34 + 5.49
627.67 + 519.78

First Cohort
(n =363)
174 (47.8%)

CHD
47

Table 2. Total Number and Length of All Autosomal CNVs® in 22q11DS-Positive Subjects with and without CHDs

No. of male subjects (Percent male)

Mean no. of CNVs per subject =SD

Mean CNV length (kb) per subject =SD (kb)
No. with >1 CNV >500 kb

Excluding the 22q11.2 deletion.

PFisher’s exact test.
“Wilcoxon rank-sum test.
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Figure 2. SLC2A3 Duplication

(A and B) UCSC Genome Browser view de-
picting the duplication of the entire
SLC2A3 gene, found in 39 subjects with
22q11DS. The duplications, which range
from 74 to 172 kb in size, span the pseudo-
gene NANOGPI and part of SLC2A14,
neither of which are relevant because
the pseudogene is not translated and
SLC2A14 expression occurs only in the
testis.*® Each track corresponds to a
unique subject with 22q11DS; the dupli-
cation is shown in green for individuals
with CHDs and gray for those with a
normal heart.

8,150,000

22q11DS Subjects with Congenital Heart Defects

B 10553

Cohort 2

22q11DS Subjects with Normal Hearts

10357

11342

11971

SLC2A14 SLC2A3 BH4—H4H
NANOGP1 5>>>>>>>>pf

Primers | | |

Segmental Dups ¢ > < > RN | <

(A) The 19 individuals from the first
cohort, 18 with a CHD and 1 without.

(B) The 20 individuals from the second
cohort, 17 with a CHD and 3 without.

(C) SYBR green qPCR validation of the
SLC2A3 duplication in 6 representative
samples from both cohorts (10638, blue;
5393, orange; 10717, green; 10553, purple;
7657, red; 11159, aqua) compared to two
controls (shown in gray). qPCR was per-
formed in triplicate with primers designed
to amplify regions proximal and distal
to the SLC2A3 duplication as well as three
regions within the predicted duplication
as shown in (A) and (B). These graphics
were constructed with the UCSC Genome

c SLC2A3 Duplication Validation by qPCR

Browser (GRCh37/hgl9). The qPCR

18
I

16 B

primer sequences are listed in Table S5.

>

=14 1
-

c
© 127

SLC2A14-5'

SLC2A14_i7 SLC2A3_e9

SLC2A3_e1

showed that GLUTS3 is the prevailing
glucose transporter in cardiomyo-
blasts and therefore it has been
suggested that GLUT3 has a predomi-
nant role during cardiac develop-
ment.”> Grover-McKay et al. deter-

SLC2A3-3' mined that SLC2A3 is expressed

mControl 1 [m10638 5393 m 10717 m 10553 m7657

11159

m Control 2

during human heart development

first cohort and then it was “replicated” in a separate,
consecutively ascertained group of subjects with 22q11DS
(i.e., in cohort 2).

SLC2A3, formerly known as GLUT3, encodes a facilitated
glucose transporter. SLC2A3 was first isolated from neu-
rons and was originally considered to be a neuronal-spe-
cific glucose transporter, but studies have shown that
SLC2A3 is expressed in a variety of human tissues.’’
SLC2A3/GLUT3 is important in tissues with heightened
energy demands and high metabolic rates because GLUT3
has the highest glucose affinity and greatest transport
capacity in the GLUT protein family; expression is most
abundant in the brain, high in adult cardiac myocytes,
liver, placenta, and at a barely detectable level in
kidney.*”>** Here we have shown that murine Slc2a3 is
expressed in the pharyngeal apparatus and cardiac outflow
tract at embryonic days 9.5 and 10.5 during murine cardiac
morphogenesis (Figure 3). Previous work done in rats

because SLC2A3 protein was present

in the fetal myocardium at 10 weeks,
increased protein levels were detected at 15 weeks,
and the levels then decreased at 20 weeks of gestation.*®
Recent work has shown that there are dynamic expression
changes in fetal myocardium during development:
SLC2A3 transcripts were detected at 15.9-fold higher levels
than in newborn infants.?” Together these observations
indicate that SLC2A3 might be involved in cardiac devel-
opment, but the specific function of SLC2A3 in the heart
during embryogenesis has not been delineated.

The importance of SLC2A3/GLUT3 during development
has been well documented. SLC2A3 is the main glucose
transporter responsible for transplacental transport of
maternal glucose, thereby controlling the rate at which
glucose is delivered to the fetus.”® SLC2A3 expression
adaptively responds to glucose demands of fetal growth
during normal development. Aberrant levels of SLC2A3
have been linked to intrauterine growth retardation
and pregnancy loss.””~*! Animal models have shown that
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Table 3.

Cardiac Phenotype for 22q11DS-Positive Subjects with

the SLC2A3 Duplication

Intracardiac Aortic Arch
ID Gender Inherited Phenotype Phenotype
Cohort 1
6960 F paternal TOF, PDA RAA, PS
5412 M ND TOF PS
5393 F ND TOF RAA
3920 M ND TOF aberrant RSCA
3943 F ND TOF RAA, aberrant
LSCA
7657 F ND TOF normal
5647 F ND TOF normal
6522 M ND VSD, ASD, IAAB
bicuspid aortic
valve, PDA
6953 M ND VSD, PFO aberrant RSCA,
TAAB
6498 F maternal VSD, ASD aberrant RSCA,
TGA, PS
7591 M ND VSD, ASD aberrant RSCA
5646 F ND VSD, bicuspid RAA, PS
aortic valve
6709 M maternal VSD RAA, aberrant
LSCA
5650 F ND ASD normal
6696 F ND PTA aberrant RSCA
4248 F maternal normal aberrant RSCA
6967 F ND normal aberrant LSCA
7530 F maternal normal aberrant RSCA
5377 M ND normal normal
Cohort 2
10638 M ND VSD, ASD, PDA coarctation
11025 F ND VSD, ASD normal
11336 M ND VSD, ASD normal
10553 M paternal VSD IAAB
11964 F both® VSD IAAB
10717 F maternal VSD normal
11223 F ND VSD normal
11914 M ND VSD normal
11292 F ND VSD normal
11322 M ND VSD PS
10904 M ND ASD, PDA normal
11327 F ND ASD normal
11258 M maternal PDA RAA, aberrant
LSCA
11960 F paternal bicuspid aortic aberrant RSCA

valve

Table 3. Continued

Intracardiac Aortic Arch
ID Gender Inherited Phenotype Phenotype
11323 F ND unspecified normal
congenital

heart defect”

11159 F maternal normal RAA, aberrant
LSCA, vascular
ring

12000 F ND normal aberrant LSCA

10357 F ND normal normal

11342 M maternal normal normal

11971 F maternal normal normal

Abbreviations are as follows: LSCA, left subclavian artery; RSCA, right subcla-
vian artery; PDA, patent ductus arteriosus; PS, pulmonary atresia stenosis;
PTA, persistent truncus arteriosus; RAA, right aortic arch; TGA, transposition
of the great arteries; ND, DNA not available for testing.

“Mother and father both carry the SLC2A3 duplication.

PRequired surgical intervention 3 months after birth.

SLC2A3 alterations can cause extremely deleterious devel-
opmental defects. The homozygous null deletion of
Slc2a3 is embryonic lethal in mice and the heterozygous
deletion is not lethal but results in intrauterine growth
retardation.’”*? Knockdown of the SLC2A3 zebrafish or-
tholog, slc2a3a, increased apoptosis and was embryonic
lethal.*®> Thus, although animal models have clearly
demonstrated that loss of SLC2A3 can cause significant
defects, currently there are no reports in the literature
about the developmental effect of a SLC2A3 duplication
or overexpression in animal models. However, it has
been shown in a variety of human cell types that a dupli-
cation of SLC2A3 results in significantly increased expres-
sion and protein levels.***°

There are two recent reports of SLC2A3 CNVs in asso-
ciation with human disease phenotypes.*>*° Both duplica-
tions and deletions of SLC2A3 were identified in a genetic
study of rheumatoid arthritis (MIM: 180300). The dele-
tions were deemed protective against rheumatoid arthritis
whereas duplications of SLC2A3 had no effect.*® SLC2A3
duplications and deletions were also detected in subjects
with Huntington disease (MIM: 143100); the duplication
correlated with delayed age of onset.*® It is important to
note that the individuals in the Huntington disease and
rheumatoid arthritis studies do not carry the 22q11.2 dele-
tion. In the absence of the 22q11.2 deletion, individuals
with a duplication of SLC2A3 do not present with congen-
ital heart defects, indicating that both mutations might be
required for the manifestation of a CHD.

Gains overlapping SLC2A3 have not been reported
in studies of non-syndromic CHDs although they have
been detected at the same frequency as the general popu-
lation.”” In our analysis of a different non-syndromic
cohort, the SLC2A3 duplication showed no enrichment
(p = 0.49, two-tailed Fisher’s exact test) (unpublished
data). These results are consistent with the fact that, in
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the 22q11.2-deleted cohorts, the SLC2A3 duplication is in-
herited from unaffected parents. Thus, it appears likely
that there might be an epistatic interaction between the
SLC2A3 duplication and dosage-sensitive gene(s) in the
22ql1.2-deleted region that increase the likelihood of a
structural cardiac defect. Therefore, SLC2A3 is probably a
modifier of the 22q11DS cardiac phenotype that exem-
plifies a “two-hit” model.

Genetic modifiers and the two-hit model are not unique
to 22q11DS, but thus far the two-hit model has been used
to explain only the variable expressivity of CNVs associ-
ated with neurodevelopmental phenotypes.*® The
SLC2A3 duplication might be a genetic modifier of the
22q11DS cardiac phenotype. However, it does not
completely explain the etiology of heart defects in the
22q11DS-positive population because the CNV was seen
in only 5.8% of subjects with a CHD and also in 4 individ-
uals with a purportedly “normal” heart. We classified these
4 subjects as controls because intracardiac defects were not
noted in their echocardiogram report. Although these indi-
viduals have a normal left arch, it is quite possible they
have an aberrant right subclavian that was not reported
because very few look for this type of abnormality or
because the imaging was insufficient to detect it. Alterna-
tively, the combined effect of the SLC2A3 duplication
with the 22q11.2 deletion increases the risk of having a
CHD but might not be sufficient to cause a structural
defect, and perhaps something additional in the genetic
background and/or possibly exposure to epigenetic, envi-
ronmental, or maternal factors in utero might be necessary
for the manifestation of a CHD.

Previously Identified CNVs Associated with Non-
syndromic CHDs

A number of recent studies have examined the prevalence
of CNVs in non-syndromic individuals with CHDs. These
studies have illustrated that rare CNVs can play a role in
the pathogenesis of non-syndromic CHDs.*”**~? Both

Figure 3.
tion
(A-D) Whole-mount in situ hybridization
on wild-type mouse embryos showing
the expression pattern of Slc2a3 (Glut3) at
embryonic stages E9.5 (A and B) and
E10.5 (C and D). Panels (A) and (C) show
the right side of the embryos, and panels
(B) and (D) show the left side. Slc2a3 is ex-
pressed in the brain, pharyngeal arches 1
and 2 (PA1 and PA2), in the heart field
(HF), and in the heart (H) at both embry-
onic stages.

(E-H) Higher magnification of the central
part of the embryos shown in (A)-(D).
Slc2a3 is also expressed in the placenta
(not shown) and in the pancreas bud at
E10.5 (H, white arrow).

Abbreviations are as follows: OFT, outflow
tract; IFT, inflow tract.

Slc2a3 RNA In Situ Hybridiza-

Pancreas
Bud

22q11DS cohorts were assessed for the CNVs reported in
these non-syndromic studies. With the exception of the
22q11.2 deletion reported by Greenway et al.,”” none of
the previously identified CNVs were detected or signifi-
cantly associated with CHDs in our 22q11DS cohorts.
This is not surprising because the non-syndromic CHD
studies focused predominantly on rare CNVs, which are
mechanistically distinct from the goal of this study. Rather
than looking for causal primary lesions in the form of rare
CNVs, we started with the 22q11.2 deletion and investi-
gated the genomes of deleted individuals for CNVs that
act as possible genetic modifiers.

Conclusion

This study sheds new insight onto the idea that copy-
number changes at two different loci might cause or affect
penetrance of a structural birth defect during develop-
ment.*® Individuals with 22q11DS carry an initial genetic
lesion that significantly elevates their risk of developing
CHDs with variable expressivity. The 22q11.2 deletion
was the only CNV present in every 22q11DS-positive indi-
vidual with a CHD; however, one common CNV was signif-
icantly enriched and associated with CHDs in our two co-
horts of subjects with 22q11DS. It suggests that variability
of CHD phenotype in 22q11DS might be in part due to a
duplication of SLC2A3. This finding supports a possible
“two-hit” model where CNVs outside of the deleted region
might explain the incomplete penetrance of the 22q11.2
deletion as a facilitator of congenital heart defects in a
subset of subjects with 22q11DS. In the future, functional
validation studies with a model system will help elucidate
the role of SLC2A3 duplication as a cardiac modifier.

Supplemental Data

Supplemental Data include one figure and five tables and can be
found with this article online at http://dx.doi.org/10.1016/j.
ajhg.2015.03.007.

The American Journal of Human Genetics 96, 753-764, May 7, 2015 761


http://dx.doi.org/10.1016/j.ajhg.2015.03.007
http://dx.doi.org/10.1016/j.ajhg.2015.03.007

Acknowledgments

Thanks to Colleen Franconi, Meghan McNamara, April Hacker,
Tracy Busse, Mark Bowser, Anne Marie Higgins, Chad Haldeman-
Englert, Petra Warner, Jenna Walck, and Danica Kuncio for tech-
nical assistance. Special thanks go to the subjects and their families
for their willing participation. We also thank the Molecular Cyto-
genetics and Genomics Cores at Einstein for preparing DNA and
genotyping with Affymetrix 6.0 arrays. This work was funded by
NIH (MH87636, HL84410, HD070454, and HD026979) and in
part by NIH/NCATS (National Center for Advancing Translational
Sciences), Grant UL1TR0O00003.

Received: December 4, 2014
Accepted: March 11, 2015
Published: April 16, 2015

Web Resources
The URLs for data presented herein are as follows:

dbVar, http://www.ncbi.nlm.nih.gov/dbvar/

Gene Ontology Consortium, http://geneontology.org/

Mouse Genome Informatics, http://www.informatics.jax.org/

OMIM, http://www.omim.org/

PLINK, http://pngu.mgh.harvard.edu/~purcell/plink/

Primer3, http://bioinfo.ut.ee/primer3

UCSC Genome Browser, http://genome.ucsc.edu

UCSC In-Silico PCR, http://genome.ucsc.edu/cgi-bin/hgPcr?
command=start

References

1. Rosano, A., Botto, L.D., Botting, B., and Mastroiacovo, P.
(2000). Infant mortality and congenital anomalies from
1950 to 1994: an international perspective. J. Epidemiol.
Community Health 54, 660-666.

2. van der Bom, T., Zomer, A.C., Zwinderman, A.H., Meijboom,
EJ., Bouma, B.J., and Mulder, B.J. (2011). The changing
epidemiology of congenital heart disease. Nat. Rev. Cardiol.
8, 50-60.

3. Goldmuntz, E., Clark, B.J., Mitchell, L.E., Jawad, A.E.,, Cuneo,
B.E, Reed, L., McDonald-McGinn, D., Chien, P., Feuer, ],
Zackai, E.H., et al. (1998). Frequency of 22q11 deletions in
patients with conotruncal defects. J. Am. Coll. Cardiol. 32,
492-498.

4. Pierpont, M.E., Basson, C.T., Benson, D.W,, Jr., Gelb, B.D.,
Giglia, T.M., Goldmuntz, E., McGee, G., Sable, C.A., Srivas-
tava, D., and Webb, C.L.; American Heart Association Congen-
ital Cardiac Defects Committee, Council on Cardiovascular
Disease in the Young (2007). Genetic basis for congenital heart
defects: current knowledge: a scientific statement from the
American Heart Association Congenital Cardiac Defects
Committee, Council on Cardiovascular Disease in the Young:
endorsed by the American Academy of Pediatrics. Circulation
115, 3015-3038.

5. Zhu, H., Kartiko, S., and Finnell, R.H. (2009). Importance of
gene-environment interactions in the etiology of selected
birth defects. Clin. Genet. 75, 409-423.

6. Jenkins, K.J., Correa, A., Feinstein, J.A., Botto, L., Britt, A.E.,
Daniels, S.R., Elixson, M., Warnes, C.A., and Webb, C.L.;

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

American Heart Association Council on Cardiovascular
Disease in the Young (2007). Noninherited risk factors and
congenital cardiovascular defects: current knowledge: a scien-
tific statement from the American Heart Association Council
on Cardiovascular Disease in the Young: endorsed by the
American Academy of Pediatrics. Circulation 115, 2995-3014.

. Lammer, E.J., Chak, ].S., Iovannisci, D.M., Schultz, K., Osoe-

gawa, K., Yang, W., Carmichael, S.L., and Shaw, G.M. (2009).
Chromosomal abnormalities among children born with cono-
truncal cardiac defects. Birth Defects Res. A Clin. Mol. Teratol.
85, 30-35.

. Swaby, J.A., Silversides, C.K., Bekeschus, S.C., Piran, S.,

Oechslin, E.N., Chow, E.W.,, and Bassett, A.S. (2011). Complex
congenital heart disease in unaffected relatives of adults with
22q11.2 deletion syndrome. Am. J. Cardiol. 107, 466-471.

. Burn, J., and Goodship, J. (1996). Developmental genetics of

the heart. Curr. Opin. Genet. Dev. 6, 322-325.

Robin, N.H., and Shprintzen, R.J. (2005). Defining the clinical
spectrum of deletion 22q11.2. J. Pediatr. 147, 90-96.
Emanuel, B.S. (2008). Molecular mechanisms and diagnosis of
chromosome 22q11.2 rearrangements. Dev. Disabil. Res. Rev.
14, 11-18.

Shaikh, T.H., Kurahashi, H., Saitta, S.C., O'Hare, A.M., Huy, P,
Roe, B.A., Driscoll, D.A., McDonald-McGinn, D.M., Zackai,
E.H., Budarf, M.L., and Emanuel, B.S. (2000). Chromosome
22-specific low copy repeats and the 22q11.2 deletion syn-
drome: genomic organization and deletion endpoint analysis.
Hum. Mol. Genet. 9, 489-501.

McDonald-McGinn, D.M., Tonnesen, M.K., Laufer-Cahana,
A., Finucane, B., Driscoll, D.A., Emanuel, B.S., and Zackai,
E.H. (2001). Phenotype of the 22q11.2 deletion in individuals
identified through an affected relative: cast a wide FISHing
net!. Genet. Med. 3, 23-29.

McDonald-McGinn, D.M., LaRossa, D., Goldmuntz, E., Sulli-
van, K., Eicher, P.,, Gerdes, M., Moss, E., Wang, P., Solot, C.,
Schultz, P, etal. (1997). The 22q11.2 deletion: screening, diag-
nostic workup, and outcome of results; report on 181 patients.
Genet. Test. 1, 99-108.

Ryan, A.K., Goodship, J.A., Wilson, D.L., Philip, N., Levy, A.,
Seidel, H., Schuffenhauer, S., Oechsler, H., Belohradsky, B.,
Prieur, M., et al. (1997). Spectrum of clinical features associ-
ated with interstitial chromosome 22q11 deletions: a Euro-
pean collaborative study. J. Med. Genet. 34, 798-804.
Sandrin-Garcia, P., Abramides, D.V., Martelli, L.R., Ramos, E.S.,
Richieri-Costa, A., and Passos, G.A. (2007). Typical pheno-
typic spectrum of velocardiofacial syndrome occurs indepen-
dently of deletion size in chromosome 22q11.2. Mol. Cell.
Biochem. 303, 9-17.

Goldmuntz, E., Driscoll, D.A., Emanuel, B.S., McDonald-
McGinn, D., Mei, M., Zackai, E., and Mitchell, L.E. (2009).
Evaluation of potential modifiers of the cardiac phenotype
in the 22q11.2 deletion syndrome. Birth Defects Res. A Clin.
Mol. Teratol. 85, 125-129.

Merscher, S., Funke, B., Epstein, J.A., Heyer, J., Puech, A., Lu,
M.M., Xavier, RJ., Demay, M.B., Russell, R.G., Factor, S.,
et al. (2001). TBX1 is responsible for cardiovascular defects
in velo-cardio-facial/DiGeorge syndrome. Cell 104, 619-629.
Jerome, L.A., and Papaioannou, V.E. (2001). DiGeorge syn-
drome phenotype in mice mutant for the T-box gene, Tbx1.
Nat. Genet. 27, 286-291.

Lindsay, E.A., Vitelli, F, Su, H., Morishima, M., Huynh, T.,
Pramparo, T., Jurecic, V., Ogunrinu, G., Sutherland, H.E,

762 The American Journal of Human Genetics 96, 753-764, May 7, 2015


http://www.ncbi.nlm.nih.gov/dbvar/
http://geneontology.org/
http://www.informatics.jax.org/
http://www.omim.org/
http://pngu.mgh.harvard.edu/%7Epurcell/plink/
http://bioinfo.ut.ee/primer3
http://genome.ucsc.edu
http://genome.ucsc.edu/cgi-bin/hgPcr?command=start
http://genome.ucsc.edu/cgi-bin/hgPcr?command=start
http://genome.ucsc.edu/cgi-bin/hgPcr?command=start

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Scambler, PJ., et al. (2001). Tbx1 haploinsufficieny in the Di-
George syndrome region causes aortic arch defects in mice.
Nature 410, 97-101.

Guo, T., McDonald-McGinn, D., Blonska, A., Shanske, A.,
Bassett, A.S., Chow, E., Bowser, M., Sheridan, M., Beemer, F.,
Devriendt, K., et al.; International Chromosome 22q11.2
Consortium (2011). Genotype and cardiovascular phenotype
correlations with TBX1 in 1,022 velo-cardio-facial/DiGeorge/
22q11.2 deletion syndrome patients. Hum. Mutat. 32, 1278-
1289.

Agopian, AJ., Mitchell, L.E., Glessner, J., Bhalla, A.D., Sewda,
A., Hakonarson, H., and Goldmuntz, E. (2014). Genome-wide
association study of maternal and inherited loci for conotrun-
cal heart defects. PLoS ONE 9, €96057.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira,
M.A., Bender, D., Maller, J., Sklar, P., de Bakker, P.I., Daly,
M.J., and Sham, P.C. (2007). PLINK: a tool set for whole-
genome association and population-based linkage analyses.
Am. J. Hum. Genet. 81, 559-575.

Wang, K., Li, M., Hadley, D., Liu, R., Glessner, ]J., Grant, S.E,
Hakonarson, H., and Bucan, M. (2007). PennCNV: an inte-
grated hidden Markov model designed for high-resolution
copy number variation detection in whole-genome SNP geno-
typing data. Genome Res. 17, 1665-1674.

Gai, X., Perin, J.C., Murphy, K., O’Hara, R., D’arcy, M., Weno-
cur, A., Xie, HM., Rappaport, E.E, Shaikh, T.H., and White,
P.S. (2010). CNV Workshop: an integrated platform for high-
throughput copy number variation discovery and clinical
diagnostics. BMC Bioinformatics 11, 74.

Cooper, G.M., Coe, B.P,, Girirajan, S., Rosenfeld, J.A., Vu, T.H.,
Baker, C., Williams, C., Stalker, H., Hamid, R., Hannig, V., et al.
(2011). A copy number variation morbidity map of develop-
mental delay. Nat. Genet. 43, 838-846.

White, P.S., Xie, HM., Werner, P., Glessner, J., Latney, B.,
Hakonarson, H., and Goldmuntz, E. (2014). Analysis of chro-
mosomal structural variation in patients with congenital left-
sided cardiac lesions. Birth Defects Res. A Clin. Mol. Teratol.
100, 951-964.

Gai, X., Xie, H.M., Perin, J.C., Takahashi, N., Murphy, K., We-
nocur, A.S., D’arcy, M., O’Hara, R.J., Goldmuntz, E., Grice,
D.E., et al. (2012). Rare structural variation of synapse and
neurotransmission genes in autism. Mol. Psychiatry 17,
402-411.

Shaikh, T.H., Gai, X., Perin, J.C., Glessner, ]J.T., Xie, H.,
Murphy, K., O’Hara, R., Casalunovo, T., Conlin, L.K., D’Arcy,
M., et al. (2009). High-resolution mapping and analysis
of copy number variations in the human genome: a data
resource for clinical and research applications. Genome Res.
19, 1682-1690.

Nowotschin, S., Liao, J., Gage, PJ., Epstein, J.A., Campione,
M., and Morrow, B.E. (2006). Tbx1 affects asymmetric cardiac
morphogenesis by regulating Pitx2 in the secondary heart
field. Development 133, 1565-1573.

Edelmann, L., Pandita, R.K., and Morrow, B.E. (1999). Low-
copy repeats mediate the common 3-Mb deletion in patients
with velo-cardio-facial syndrome. Am. J. Hum. Genet. 64,
1076-1086.

Wu, X., and Freeze, H.H. (2002). GLUT14, a duplicon of
GLUTS3, is specifically expressed in testis as alternative splice
forms. Genomics 80, 553-557.

Simpson, I.A., Dwyer, D., Malide, D., Moley, K.H., Travis, A.,
and Vannucci, S.J. (2008). The facilitative glucose transporter

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

435.

46.

47.

GLUT3: 20 years of distinction. Am. J. Physiol. Endocrinol.
Metab. 295, E242-E253.

Shepherd, P.R., Gould, G.W., Colville, C.A., McCoid, S.C.,
Gibbs, E.M., and Kahn, B.B. (1992). Distribution of GLUT3
glucose transporter protein in human tissues. Biochem. Bio-
phys. Res. Commun. 188, 149-154.

Abel, E.D. (2004). Glucose transport in the heart. Front. Biosci.
9, 201-215.

Grover-McKay, M., Walsh, S.A., and Thompson, S.A. (1999).
Glucose transporter 3 (GLUT3) protein is present in human
myocardium. Biochim. Biophys. Acta 1416, 145-154.

Kong, B., Liu, Y.L., and Lii, X.D. (2008). Microarray-bioinfor-
matics analysis of altered genomic expression profiles be-
tween human fetal and infant myocardium. Chin. Med. ]J.
(Engl.) 121, 1257-1264.

Fowden, A.L., Forhead, A.J., Coan, PM., and Burton, G.J.
(2008). The placenta and intrauterine programming.
J. Neuroendocrinol. 20, 439-450.

Ganguly, A., McKnight, R.A., Raychaudhuri, S., Shin, B.C., Ma,
Z., Moley, K., and Devaskar, S.U. (2007). Glucose transporter
isoform-3 mutations cause early pregnancy loss and fetal
growth restriction. Am. J. Physiol. Endocrinol. Metab. 292,
E1241-E1255.

Janzen, C., Lei, M.Y., Cho, ]., Sullivan, P., Shin, B.C., and
Devaskar, S.U. (2013). Placental glucose transporter 3
(GLUT3) is up-regulated in human pregnancies complicated
by late-onset intrauterine growth restriction. Placenta 34,
1072-1078.

Lesage, J., Hahn, D., Léonhardt, M., Blondeau, B., Bréant, B.,
and Dupouy, J.P. (2002). Maternal undernutrition during
late gestation-induced intrauterine growth restriction in the
rat is associated with impaired placental GLUT3 expression,
but does not correlate with endogenous corticosterone levels.
J. Endocrinol. 174, 37-43.

Schmidt, S., Hommel, A., Gawlik, V., Augustin, R., Junicke, N.,
Florian, S., Richter, M., Walther, D.J., Montag, D., Joost, H.G.,
and Schiirmann, A. (2009). Essential role of glucose trans-
porter GLUTS3 for post-implantation embryonic development.
J. Endocrinol. 200, 23-33.

Carayannopoulos, M.O., Xiong, F.,, Jensen, P., Rios-Galdamez,
Y., Huang, H., Lin, S., and Devaskar, S.U. (2014). GLUT3 gene
expression is critical for embryonic growth, brain develop-
ment and survival. Mol. Genet. Metab. 111, 477-483.
Laurent, L.C., Ulitsky, 1., Slavin, I., Tran, H., Schork, A., Morey,
R., Lynch, C., Harness, J.V,, Lee, S., Barrero, M.J., et al. (2011).
Dynamic changes in the copy number of pluripotency
and cell proliferation genes in human ESCs and iPSCs
during reprogramming and time in culture. Cell Stem Cell 8,
106-118.

Vittori, A., Breda, C., Repici, M., Orth, M., Roos, R.A., Outeiro,
T.E, Giorgini, E, and Hollox, E.J.; REGISTRY investigators of
the European Huntington’s Disease Network (2014). Copy-
number variation of the neuronal glucose transporter gene
SLC2A3 and age of onset in Huntington’s disease. Hum.
Mol. Genet. 23, 3129-3137.

Veal, C.D., Reekie, K.E., Lorentzen, J.C., Gregersen, P.K.,
Padyukov, L., and Brookes, A.J. (2014). A 129-kb deletion on
chromosome 12 confers substantial protection against rheu-
matoid arthritis, implicating the gene SLC2A3. Hum. Mutat.
35, 248-256.

Soemedi, R., Wilson, 1J., Bentham, ]J., Darlay, R., Topf, A.,
Zelenika, D., Cosgrove, C., Setchfield, K., Thornborough, C.,

The American Journal of Human Genetics 96, 753-764, May 7, 2015 763



48.

49.

50.

Granados-Riveron, J., et al. (2012). Contribution of global rare
copy-number variants to the risk of sporadic congenital heart
disease. Am. J. Hum. Genet. 91, 489-501.

Girirajan, S., Rosenfeld, J.A., Cooper, G.M., Antonacci, F, Sis-
wara, P., Itsara, A., Vives, L., Walsh, T., McCarthy, S.E., Baker,
C., et al. (2010). A recurrent 16p12.1 microdeletion supports
a two-hit model for severe developmental delay. Nat. Genet.
42, 203-209.

Erdogan, E, Larsen, L.A., Zhang, L., Tiimer, Z., Tommerup, N.,
Chen, W., Jacobsen, J.R., Schubert, M., Jurkatis, J., Tzschach,
A., et al. (2008). High frequency of submicroscopic genomic
aberrations detected by tiling path array comparative genome
hybridisation in patients with isolated congenital heart dis-
ease. J. Med. Genet. 45, 704-709.

Lalani, S.R., Shaw, C., Wang, X., Patel, A., Patterson, L.W., Ko-
lodziejska, K., Szafranski, P., Ou, Z., Tian, Q., Kang, S.H., et al.
(2013). Rare DNA copy number variants in cardiovascular

51.

52.

53.

malformations with extracardiac abnormalities. Eur. J. Hum.
Genet. 21, 173-181.

Tomita-Mitchell, A., Mahnke, D.K., Struble, C.A., Tuffnell,
M.E., Stamm, K.D., Hidestrand, M., Harris, S.E., Goetsch,
M.A., Simpson, P.M., Bick, D.P, et al. (2012). Human gene
copy number spectra analysis in congenital heart malforma-
tions. Physiol. Genomics 44, 518-541.

Greenway, S.C., Pereira, A.C., Lin, J.C., DePalma, S.R., Israel,
S.J., Mesquita, S.M., Ergul, E., Conta, ]J.H., Korn, J.M., McCar-
roll, S.A., et al. (2009). De novo copy number variants identify
new genes and loci in isolated sporadic tetralogy of Fallot. Nat.
Genet. 41, 931-935.

Silversides, C.K., Lionel, A.C., Costain, G., Merico, D., Migita,
O., Liu, B., Yuen, T., Rickaby, J., Thiruvahindrapuram, B.,
Marshall, C.R., et al. (2012). Rare copy number variations in
adults with tetralogy of Fallot implicate novel risk gene path-
ways. PLoS Genet. 8, e1002843.

764 The American Journal of Human Genetics 96, 753-764, May 7, 2015



The American Journal of Human Genetics

Supplemental Data

Copy-Number Variation of the Glucose Transporter
Gene SLC2A3 and Congenital Heart Defects
in the 22911.2 Deletion Syndrome

Elisabeth E. Mlynarski, Molly B. Sheridan, Michael Xie, Tingwei Guo, Silvia E. Racedo,
Donna M. McDonald McGinn, Xiaowu Gai, Eva W.C. Chow, Jacob Vorstman, Ann
Swillen, Koen Devriendt, Jeroen Breckpot, Maria Cristina Digilio, Bruno Marino, Bruno
Dallapiccola, Nicole Philip, Tony J. Simon, Amy E. Roberts, Malgorzata Piotrowicz,
Carrie E. Bearden, Stephan Eliez, Doron Gothelf, Karlene Coleman, Wendy R. Kates,
Marcella Devoto, Elaine Zackai, Damian Heine-Sufier, Tamim H. Shaikh, Anne S.
Bassett, Elizabeth Goldmuntz, Bernice E. Morrow, Beverly S. Emanuel and the

International Chromosome 22g11.2 Consortium



Figure S1:

1305 Affy 6.0 CEL files
Cohort 1: n = 803

a Cohort 2: n = 502
_ 213 CEL files removed
Quality Control > Cohort 1: n = 151
Cohort 2: n =62
Failed Affy QC; Atypical 22q11.2 deletion;
\ 4 Duplicates or relatives; Sex mismatch;

Insufficient phenotypic information

1092 usable CEL files
Cohort 1: n =652

b Cohort 2: n =440
_ 143 CEL files removed
CNV Detection > Cohort 1: n = 90
PennCNV & CNV workshop Cohort 2: n =53
StdDev > 0.44; > 300 CNV's
Y

949 usable CEL files

Cohort 1: n = 562
Cohort 2: n = 387

CNV Analysis

CHD specific

Rare & Common
Pathways & Networks




Figure S1: CNV detection and analysis. Flow chart representing our CNV detection
and analysis and the number of .CEL files from each cohort included at each step. (a)

initial assessment of .cel file quality. (b) CNV detection and quality control.
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Table S5: qPCR primers used in CNV validation

Primer Name

Primer Sequence 5' -> 3'

Primer Name

Primer Sequence 5' -> 3'

RPPH1F (control) |GCGGACGGAAGCTCATCAG DEFBelR CCCCGTCGGTATAAGGATGA
RPPHIR (control) |TCAGACCTTCCCAAGGGACAT DEFB+6kbF TGCCTTGGTGGCCTCTAGTG
ASTN2el0F ACTCACCCGCAGAACATGAAG DEFB+6kbR AACACGCTTGCAGCTCTGACT
ASTN2el0F TGCCCCTGCCCTACGAT DEFB+38kbF CCCATGTACTCCCTGCAGTATTT
ASTN2el2F CCTGTGGAGAGGAGCAGAGAGA DEFB+38kbR TTCCGCTCGTCCGTCAA
ASTN2el2R GCCCTGTAGTCCTCAGCAGTCT GNAl4i2aF GAGCATCCTCCCAGGGAAAG
ASTN2el6F CCTGAAATGAGCTGGTCATCTG GNA1l4i2aR CCCCTTAAATTTTGTGCCCTAGA
ASTN2el6R CATCACCTACCTCTCAGGTTTGC GNA14i2bF GGAGAATGCTCACGGGTACAG
ASTN2i9F AGGAGGAGCCCAGGATTAGTG GNA14i2bR CCCCACCCAGAGGTTCAGT
ASTNZ2i9R AAGAACATCTCACATTTTGGGAGAA GNA14i2cF CATTCATCAGGCATGCGTGTA
ASTNIl6F TGTTCAAAACAACAGCACAAGGT GNA14i2cR CTCGAATAATGCCTGGCAAAG
ASTNI16R GATGATGCCTTCTGCCTAAGCT GNA14i2dF CGAGCACTAAGACCTCCTCGTT
CDH13elF TCCCACGGAAAATATGCTCAGT GNA14i2dR TCCTGTCTGGTGTACCTGCACTT
CDH13elR CCGGCGGCGTTTTCA GRB2-19kbF CTCTCCTGAGCATACCTGTATTGC
CDH13ilaF GTGGGCACCACTTGAGACAGT GRB2-19kbR GGTCGTAATCTACAAAGCGTTTTG
CDH13ilaR GGTTTACCGGCCAGACACA GRB2-231F TCCCCCGTCTAATCACTTTATTTT
CDH13ilbF ACGTGAGCCCACCTGTGAA GRB2-231R GCCCCTACCCATCCAACTG
CDH13i1bR AGCTTCCTGGTGCTGGACAT GRB2e3F GAAGCCGTCTTTTCCATTAAGC
CDH13e2F GAAAGTTAGCAGGGCAAACACA GRB2e3R CAGGTTTTGAACGAAGAATGTGAT
CDH13e2R CAGCACCTGAGAAAACCAAAGC GRB2+673kbF GGGCTGACCATGCTACAGAGA
CDH13e5F CACTGGAAAGGGAGTGGATCA GRB2+673kbR GGGAGGCACCAAAGCAGAA
CDH13e5R CGCTCCCTGTGTTCTCATTGA GRB2+695kbF CTGCTAGAATTGCCCTTTCCA
CDH13i5aF AAAAGAAGAAAGGCAGGATAATCAAT GRB2+695kbR GCGCAGGTCCCTCTGAAAA
CDH13i5aR CCATCCAAATGCAAGGTCATAA GRM7i7F GCAAAGATCAGAAAGGATGATTCA
CDH13i5bF GGGATCCCAGCGAGCATAC GRM7i7R CTTGCCAGGAGCAAAACAGAT
CDH13i5bR GGTGGTTGGAGAGGACTTATTCC GRM7e8F GCCTTCATTCCAATTTTTTTTGG
CDH13e6F TGCCTCTGGAAGTCATTGTGAT GRM7e8R TGATGTGCATTTTCACTTACCTTTTC
CDH13e6R GGGCCTTCCCGAAAGATC GRM7el4F CCAAAGGGAGTGTTGAAACTCAA
COL4A1+205kbF |AGGGCCACAGAGACTTGGAA GRM7e14R GGCTCTCAGTGGTCCATTCTAAA
COL4A1+205kbR |TGTCCTGACCCCATCCTATCA GRM7+370kbF TCAAATCTGGCTTCCAGGAACT
COL4A1+212kbF |CATCACCTGGAAAAAAGGTCTGA GRM7+370kbR GAGGAAGATCTAGCCAATGGAAGA
COL4A1+212kbR |GCCTGGGCTCACTCTCTTCA GRM7+373kbF TGGAGGAGGGAGAAACCATTT
COL4A1-222kbF |CCCTGGTGGTGAGGGAAAC GRM7+373kbR GAGAATCACCTCCTTTGGATGTCT
COL4A1-222kbR  |AGTGTGGCTGATCAGACATTGG KCNMAlelF AGAGGCCCCCGAAGAAAGT
COL4A1-227kbF |GAGGCCGAGCCCCTACA KCNMAlelR GCATGTGGTGGGCTTTCC
COL4A1-227kbR |TTGACCGGCACACTCGTACA KCNMALlilaF GGGTGTCATTAGGGTCTGTGGAT
COL4Ale49F CAGCCAGTACGAGTAGTCATTTCG KCNMALlilaR GGGTATTTGAACCGGGTGATT
COL4Ale49R GCCCTTCCTGTTCTGCAATATT KCNMALilbF GACAGGCATGGTGCTTCGA
COL4A1e50F TGGCGTCTCCCCAGACA KCNMALi1bR GCGAGGCTTCTCCAAGTGTT
COL4A1e50R GGTGGTCCTCGCTGTGGAT KCNMALilcF CAGGAAGAGCCACCAAGAGTTT
COL4ALi49F CAAAAGCAGCAGCTTCAAGTACA KCNMALilcR AAGGTGCCTGTGGGCATTAG
COL4ALi49R ACACATCGAAGCTCAGCATGA LTBPle2F CAGCGATCTTGCTTTGTTTCAG
CXADR-275kbF GTGGATTGAGCTACCCTGCAA LTBP1le2R GGCCTTACTCCAGCCATGAC
CXADR-275kbR CCAGACACCTCGGCTAGTCTTT LTBPle4dF GACCCAGGAATACGTGCTCAA
CXADR-148kbF GGCTTAAAATGGTGGCTTTATCC LTBP1e4R GTGGACTGCTCTCCTGAAATCC
CXADR-148kbR GAATAGAATGAAGGAAATTAATGGTTAAGG LTBP1le3F CCATGTCAGAATGGAGGGATGT
CXADRe6F GCTTCAAATAAAGCTGGACTAATTGC LTBP1e3R TGGTCCCTGGTTTACACACACA
CXADRe6R TGATAAGACCAATGAGCGCTAGAG LTBP1i3F CCCTCGGCTTTGAACCAA
CXADR+274kbF |TCTGACCCCCAGGACCTCTA LTBP1I3R AAGGATTCCAGCAACTTGAAGGT
CXADR+274kbR |TGCCTTATGCTTTTCCAATTAAATC LTBP1+550kbF TGCAGCCTGCCTCATCTG
CXADR+292kbF |GATGCTCTTTCCCCTTTGCTT LTBP1+550kbR CAACAAACGAGGCATACACTACAAG
CXADR+292kbR |GGTAAATCTCTTAGATGAGCCTGTTTG MAPK9+56kbF GGGCGTCAGGTATGCAAACT
DEFB-347kbF CTCCTCTGCTCGTGCCTTTC MAPK9+56kbR TTCCTCAGGGTTCCTTTCAGTATT

DEFB-347kbR

GGTGTTCAGGGTCCTGCTCTAG

MAPK9-41kbF

CAGGAGGAATCCACAGTGTGTCT

DEFB-335kbF

AGCCACCATCACTGTCAATCC

MAPK9-41kbR

CGCCACCCCAACCCTATT

DEFB-335kbR

CCCCAGAGCCCAAATTCTC

MAPK9e4F

GCTCCATGTGAATAACCTGACATAA

DEFBelF

TGACGGCCGAGGTGAGA

MAPK9e4R

CCTTTTCTCCCTCAGGTATTTGG




Primer Name

Primer Sequence 5' -> 3'

Primer Name

Primer Sequence 5' -> 3'

MAPK9-161kbF TTGACGGCACTAGAAAGCAAAG RHOU+80kbR GCTGATTCTGGGAACCAGTTATG
MAPK9-161kbR GCGCGGGCTTCCAAGT RHOU-62kbF AGGTAGCAGCAGCCCGATT
MAPK9-180kbF GAGTCGGTGGTGAAGCACAA RHOU-62kbR AGTAAAGAATAAGCTGTGGCAGTTCA
MAPK9-180kbR CATGAGAGAGGAAGGCCTGAGA RHOU-82kbF AGGCCTTTTGGTGCTTACCA
MTHFDlelF GGGTTGGGTTGTCCTGCTT RHOU-82kbR TCTGCCTCCTCTCTCTATTCAGTCA
MTHFD1elR CGATGGACACCACCAATATCG RHOUe2F CGTGAGACTCCAACTCTGTGACA
MTHFD1e9F GTTTTGATTTCTCCCCCACTTG RHOUe2R CCCAGCACTGAGCTGTAACG
MTHFD1e9R CACCCACAACTTTTCTCCCATT SLC2A14-5'F CATGGCCTTCAGAAGAAGTTAAGAT
MTHFD1e27F TGCATGTCTGTTTACTTTAGTGACGTT SLC2A14-5'R ACACTGGTTGCTGTAGCAGAAACTA
MTHFD1e27R TGCAACACCAAGATGGCAAA SLC2A14i7F AGCATCATCTGTCCAGTCTTCATC
MTHFD1+85kbF |CAATTTATCAGTGCTGGTGTCACA SLC2A14i7R GCCTAATGTCCAGAGTGGGAAT
MTHFD1+85kbR |CATGAAACACCCTTAAATGCTCAT SLC2A3e9F GGCCACAATAAACCAGGGAAT
MYH11lelF CCCAGCCTTCCCCAACTC SLC2A3e9R GCTATCTTGGTCTTTGTAGCCTTCTT
MYH11lelR TCACAATGTCGTTGGCTTTTCT SLC2A3elF TTTTCAGCCAACAAAACCTTCA
MYH11e42F ATAACTCTACGTCCTCCAGACCTTCT SLC2A3elR TCCTGAGGACGTGGAGAAAACT
MYH11e42R AACCCACAGGCGAGGAAAC SLC2A3-3'F CACAACAGAGGCAAGGGTACATAT
MYH11e2F TGGTCCCCTGTGGAATAAGG SLC2A3-3'R AAGAAGGAGCAAATGCCAAGTT
MYH11e2R CTTCCGGGCTTGGTTGTG TRIM54+102kbF |CCCGTCCTCCAGTGTTTTCA
PAX8el3F CGGGAAAGAAAGGCGAGTTT TRIM54+102kbR |GGGTTTGCGGAGTCTGAGAGT
PAX8el3R GGCTTGGGCTGTGCTTTG TRIM54+126kbF |TCTCAGGTGAATCAACGGAATG
PAX8e2F CAGCCCTCCATGGCCTAAG TRIM54+126kbR |CCTCTGTATCCATGGCCAGGTA
PAX8e2R CAAACTCCTACCTGACCCTGACA TRIM54-198kbF TCTCACAGGTCCTCAAGGTGAA
PAX8elF CTGGGCCCGGTGTCTCT TRIM54-198kbR  |TCACTTCTCCCTCCAGAATCAAA
PAX8elR GGTGATGCCGGGTGGAT TRIM54-242kbF TGAGGGTTGTGGGTCTAAGCTT
PAX8-50kbF TGCAAATCATACCCGCTTGA TRIM54-242kbR  |TGAGTATGCACGTGAGTAGCTGTGT
PAX8-50kbR AATGCTCATTAGCCCTGATTGG TRIM54-255kbF GCCATGTGTCCCTCAACTGA
PRKG1i3aF CCTGGGAGGGTGGAGTATTACA TRIM54-255kbR  |GGTGCATGGGAGGTGGAA
PRKG1i3aR CACAAAGGAAAACACCACACACA TRIM54e4F TTCCTAGGACCCTTCATGCTTAAG
PRKG1i3bF CCTATGCGGGAGTTTGAACTTG TRIM54e4R GGAGTGCAGCGGCCTAGAG
PRKG1i3bR AAAAGAGCCCTGAACACTAAAAATTT 15q11.2aF GTGTGCTGGAGAAAGGATGCT
PRKG1i3cF AAATGGCTGTCACAATGGTACAA 15qg11.2aR CCATCAGGCAGGCAAATAATC
PRKG1i3cR CGTTTCCAGACAGCGTTCAG 15q11.2bF CCTGGCTGTGGAAGGTGACT
PRKG1i3dF GCTGCCAGTGGGTAAAAAGG 15q11.2bR TGTCAGTGACCAAGCCATCTG
PRKG1i3dR AATCACGGAAGTCACAAAGCATT 15g11.2cF TCCGCCATGTAAATTACGAGTTC
PTPRDellF CAGCGAGTCTGTCCGATCTG 15911.2cR GATGTGGCCCCCGACTCT
PTPRDellR CCCGCTTTCAGGCTCTGA 15qg11.2dF GCAACAAGGCCTGCAGGTAT
PTPRDil0OaF TGCCCATTTCCTTGGCTTT 15g11.2dR TGTGTCTCCAAATGGGCAGTT
PTPRDi10aR AGGAGGGAGAAGGCCCTACA 17912aF CATGGCGTCGCTCAAATGTA
PTPRDIi10bF AATGGTGTGAGAGGTGAACAACA 17912aR TGGGCTTCTCCAAGCAGATC
PTPRDIi10bR TTGTGGTGGAGGGAGCAAAT 17q12bF CCCCCTGCAGCAGCAA
PTPRDIi10cF TCTCATTTGCGTTCCTGAAAAA 17q12bR GAGCTAAATTTCCGCAGCAATAA
PTPRDIi10cR GCTGACCGTTTCTTTGTACATGAA 17912cR CCCATCTTCCAGCCCTGAA
RCANlelF GCATCCTGTTTGGACAGCAA 17912cR TCCTCGCACTCGCCACTAG
RCAN1elR CCTGTCTGCCTGCAAGCAT 17q12dF GGGCTTGGTTGGTGGGTAA
RCAN1le4F TCGCTGCGTGCAATTCAT 17gq12dR GAGGGCCAGGGATCATCAC
RCAN1e4R CTGAGTGACCCTGCGATTATTTT 18qllaF GGTTGTCCCTGACTCATTGTCA
RCAN1-58kbF GGATTTTTCCTGGTGATTGGAA 18qgllaR ACCATTCTGTGCCATCATCACA
RCAN1-58kbR TGCTGAGTTCACACAGTTGCTTAA 18q11.2bF CACATGCGCTCCACAAGTG
RCAN1-170kbF GGTGGTGGCTGGCTCTGT 18q11.2bR GCAGACACACACAAATTCAAATATTACA
RCAN1-170kbR TGTCCTTCAATTGGACTTTTTGC 18q11cF CCGCTGTGACTGCTTTCCA
RCAN1-163kbF GAACCAGGCACAGAGAAAGTAGAAG 18q11cR AGAACATCATGGTGGCTTTCAA
RCAN1-163kbR GGGCATTGAGAATCTCTGGTAATT 18q11dF TGGATAGGCTCATCAGGATCAA
RCANL1i2F TGGGCTCAGGAGTGTATTTCTCT 18q11dR TGCAAACCCACCATGTCATC
RCANL1i2R TCCCTGTGGCCAAGCAA 18qlleF CCATGTGCCTGCTGCTCTT
RHOU+70kbF CTGGGAAAGTGGACGTTGGT 18q1leR CCTGCCAAAGCCCCTTTAG
RHOU+70kbR AGCAAGTATGAAACCCCTCCTAAA 18ql11fF GCAGAATTCGGAACTGAGAAGAC
RHOU+80kbF AGCAGCCTTTGCCTATGCA 18q11fR TTGCACGCAAATCCTGTGA
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