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Testing in Microbiome-Profiling Studies with MiRKAT,
the Microbiome Regression-Based Kernel Association Test

Ni Zhao,1 Jun Chen,2,* Ian M. Carroll,3 Tamar Ringel-Kulka,4 Michael P. Epstein,5 Hua Zhou,6

Jin J. Zhou,7 Yehuda Ringel,3 Hongzhe Li,8 and Michael C. Wu1,*

High-throughput sequencing technology has enabled population-based studies of the role of the humanmicrobiome in disease etiology

and exposure response. Distance-based analysis is a popular strategy for evaluating the overall association betweenmicrobiome diversity

and outcome, wherein the phylogenetic distance between individuals’ microbiome profiles is computed and tested for association via

permutation. Despite their practical popularity, distance-based approaches suffer from important challenges, especially in selecting the

best distance and extending the methods to alternative outcomes, such as survival outcomes. We propose the microbiome regression-

based kernel association test (MiRKAT), which directly regresses the outcome on the microbiome profiles via the semi-parametric kernel

machine regression framework. MiRKATallows for easy covariate adjustment and extension to alternative outcomes while non-paramet-

rically modeling the microbiome through a kernel that incorporates phylogenetic distance. It uses a variance-component score statistic

to test for the association with analytical p value calculation. The model also allows simultaneous examination of multiple distances,

alleviating the problem of choosing the best distance. Our simulations demonstrated that MiRKAT provides correctly controlled type

I error and adequate power in detecting overall association. ‘‘Optimal’’ MiRKAT, which considers multiple candidate distances, is robust

in that it suffers from little power loss in comparison to when the best distance is used and can achieve tremendous power gain in com-

parison to when a poor distance is chosen. Finally, we applied MiRKAT to real microbiome datasets to show that microbial communities

are associated with smoking and with fecal protease levels after confounders are controlled for.
Introduction

The advent of massively parallel sequencing has enabled

high-throughput profiling of the microbiota in a large

number of samples via targeted sequencing of the 16S

rDNA sequence,1–4 which contains information about spe-

cies identity. Knowledge on how microbial communities

differ across individuals can provide key information on

the role of communities in relation to variation in biolog-

ical and clinical variables and is essential for gaining a

broader understanding of biological mechanisms underly-

ing disease and response to exposures.5–9 Although consid-

erable resources have been devoted to sequencing technol-

ogies and to quantifying individual taxa, successful

application of microbial profiling to studying biomedical

conditions requires novel statistical methods for efficiently

testing for associations with microbial diversity.

A popular strategy for evaluating the association be-

tween overall microbiome composition and outcomes of

interest utilizes distance- or dissimilarity-based analysis,

referred to here as just distance-based analysis for

simplicity. Via standard methods, the 16S sequence tags

are clustered on the basis of their sequence similarity to

form operational taxonomic units (OTUs), which can

essentially be considered surrogates for biological taxa. Dis-

tance metrics are then constructed to measure the phylo-
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genetic or taxonomic dissimilarity between each pair of

samples by incorporating the phylogenetic relationship

or the absolute and relative abundance of different taxa.

Then, for assessing the association between the micro-

biome diversity and an outcome variable of interest, the

pairwise distance between each pair of samples is

compared to the distribution of the outcome variable.

For categorical outcome variables, this is essentially

comparing the pairwise distances within and between cat-

egories. Operationally, multivariate analysis10 or the top

principal coordinates11 of the matrix of pairwise distances

are used for testing for associations via permutation.

Among the many possible distances, the UniFrac dis-

tances are the most popular in the literature and are con-

structed on the basis of a phylogenetic tree relating taxa

to one another.12,13 There are several different versions of

UniFrac distances. The original, unweighted UniFrac dis-

tance between any pair of microbial communities is calcu-

lated as the proportion of the total branch length within

the tree, which leads to un-shared taxa (i.e., taxa in one

community but not the other). Thus, the UniFrac distance

primarily considers only the species presence and absence

information and is most efficient in detecting abundance

change in rare lineages given that more prevalent species

are likely to be present in all individuals. Weighted UniFrac

distance uses species abundance information to weight the
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UniFrac distance and thus has more power to detect

changes in common lineages. The generalized UniFrac dis-

tance14 was introduced as a compromise between

weighted and unweighted UniFrac distances; it down-

weights its emphasis on either abundant or rare lineages

and therefore has more power to detect changes in OTU

clusters with modest abundance. Generalized UniFrac

distance involves an additional parameter (a), such that

the generalized UniFrac distance with a ¼ 1 is equivalent

to the weighted UniFrac distance. A range of other dis-

tances that do not incorporate phylogeny are also avail-

able. For example, Bray-Curtis dissimilarity, which is also

commonly used, quantifies the taxonomic dissimilarity

between two different sites on the basis of counts at each

site. Similarly, Euclidean distance can also be used and is

frequently thought to be similar to weighted UniFrac dis-

tance because abundance information from common

taxa tends to dominate.

Despite successes, distance-based analysis suffers from a

number of limitations. First, as noted, many different dis-

tance metrics have been developed. Although there are

similarities, they are designed to capture distance differ-

ently, leading to differential performance across different

scenarios. This creates problems in which choosing a

particular metric to use as the best metric for any particular

dataset depends on the unknown true state of nature. A

non-optimal distance metric will reduce power to discover

true associations. Using multiple metrics and cherry pick-

ing the best result will result in inflated type I rates and

lead to large numbers of spurious results. Beyond diffi-

culties in choosing a particular distance metric, the need

for permutation can be computationally expensive.

Furthermore, the analysis framework is not easily inter-

pretable and does not allow for easy covariate adjustment.

Consequently, extending such approaches to accommo-

date more-sophisticated outcomes, such as survival or

multivariate information, is challenging.

We propose in this paper the microbiome regression-

based kernel association test (MiRKAT), a flexible regres-

sion approach for testing the association between

microbial community profiles and a continuous or dichot-

omous variable of interest, such as an environmental

exposure or disease. MiRKAT formalizes and extends the

strategy of Chen and Li15 to use the kernel machine

regression framework, previously developed for genotyp-

ing data,16–18 to directly regress the variable of interest

on the covariates (including potential confounders) and

the microbiome compositional profiles. The kernel is a

measure of similarity between samples’ microbiome com-

positions and characterizes the relationship between the

microbiome and the variable of interest. We propose us-

ing kernels that incorporate phylogenetic relationships

among taxa by transforming existing distance metrics

into similarities. A variance-component score test can be

used to rapidly obtain a p value for the association be-

tween microbial community profiles and the variable of

interest.
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In addition to providing fast computation, use of the

kernel machine approach enables flexible modeling and

testing, while still incorporating phylogenetic information

and naturally accommodating covariates, under a well-

studied, interpretable, and statistically rigorous frame-

work. Beyond providing extensions to allow alternative

types of outcomes, the framework allows for simultaneous

examination of multiple distance metrics. This enables

development of the ‘‘optimal’’ MiRKAT, which has high

power in the omnibus. We have demonstrated through

simulations and analysis of real data that MiRKAT and

optimal MiRKAT can be easily applied and can be more

robust than existing tests with well-controlled type I error

across a range of models for both continuous and dichoto-

mous variables. We also explicitly establish connections

between MiRKAT and existing distance-based approaches.

The well-studied kernel machine framework forms the

statistical underpinnings for our work, which is a strength

because this allows leverage of existing machinery within

a rigorous framework. However, MiRKAT differs from

previous, related kernel methods in the need to accommo-

date unique features of microbiome data. In particular, we

tailor the approach to accommodate microbiome data by

adopting kernels on the basis of dissimilarity measures

commonly used in microbiome compositional analysis.

Furthermore, microbiome studies usually have more

modest sample sizes, yet the kernels built on standard dis-

tance metrics are frequently of full rank and have poor

eigenvalue behavior. Consequently, in contrast to previous

analytic17–19 and perturbation-based20 p-value-calculation

approaches, which do not control type I error well, our

method uses alternative small-sample corrections21 (un-

published data) and permutation methods. The present

study differs from that detailed in our earlier conference

manuscript15 in that we formalize and fully flesh out the

overall framework, explicitly relate the approach to existing

distancemethods, use alternative small-sample corrections

to control type I error, and develop the optimal MiRKAT

method for testing across choices of distance metrics.
Material and Methods

Notationally, we assume that n samples have been collected and

that their microbial communities have been profiled. For the ith

subject, let yi denote the outcome variable of interest,

Zi ¼ ðZi1;Zi2;.;ZipÞ0 denote the abundances of all OTUs for indi-

vidual i (p is the total number of OTUs), andXi ¼ ðXi1;Xi2;.;XimÞ0
be the covariates—such as age, gender, and other clinical and envi-

ronmental variables that are suspected to influence microbial

community diversity and are related to outcomes—that we want

to control for. The goal is to test for association between the

outcome and microbial profiles while adjusting for covariates X.

Note that we will refer to y as an ‘‘outcome’’ that depends on

the microbiome composition, although in some situations it

might be a variable that is thought to influence microbial diver-

sity; however, because our goal is association testing rather than

causal modeling, the distinction does not affect the validity of
015



our method given the duality.22 We first consider the problem of

testing under a single distance metric (kernel) and then extend

the approach to optimally accommodate multiple distances

simultaneously.
MiRKAT Based on a Single Kernel
The intuition behind the kernelmachine framework is that it com-

pares pairwise similarity in the outcome variable to pairwise simi-

larity in the microbiome profiles, and high correspondence is

suggestive of association. MiRKAT exploits the kernel machine

regression framework to relate the covariates and the microbiota

profiles to the outcomes. Specifically, for a continuous outcome

variable, we use the linear kernel machine model

yi ¼ b0 þ b0Xi þ f ðZiÞ þ εi; (Equation 1)

and for a dichotomous outcome variable (e.g., y¼ 1 or 0 for case or

control samples, respectively), we use the logistic kernel machine

model

logit
�
P
�
yi ¼ 1

�� ¼ b0 þ b0Xi þ f ðZiÞ; (Equation 2)

where b0 is the intercept, b ¼ ½b1;.; bm�0 is the vector of regression
coefficients for them covariates, and εi is an error term with mean

0 and variance s2 for continuous phenotypes. This regression

framework can be easily extended to other, more-complicated out-

comes, such as survival or multivariate outcomes.

The relationship between the microbiome profile and the

outcome variable is fully characterized by the function

f ð,Þ —testing that there is no association between microbiome

composition and the outcome is equivalent to testing that

f ðZÞ ¼ 0. Under the kernel machine regression framework, f ðZiÞ
is assumed to be from a reproducing kernel Hilbert space, Hk,

generated from a positive definite kernel function, Kð,; ,Þ, such
that f ðZiÞ ¼

Pn
i0 ¼1ai0KðZi;Zi0 Þ for some a1;a2;.;an.

The kernel measures the similarity between different individ-

uals, and different choices of KðZi;Zi0 Þ correspond to different

underlying models. For example, setting KðZi;Zi0 Þ ¼
Pp

j¼1ZijZi0 j

implies that f ðZiÞ ¼
Pp

j¼1Zijbj, i.e., that the model is linear. There-

fore, by changing the kernel function, one is implicitly changing

the model being used. Usingmore-sophisticated kernels will result

in more-complex models that can allow for OTU interactions,

nonlinear OTU effects, or incorporation of phylogenetic relation-

ships among OTUs. The matrix of pairwise similarities between

pairs of individuals is defined as kernel matrix K, where the

ði; i0 Þth element of K is KðZi;Zi0 Þ.
For microbiome composition data, the OTUs are related by a

phylogenetic tree. Kernels that exploit the degree of divergence be-

tween different sequences can be much more powerful than sim-

ilaritymeasures that ignore the phylogenetic-tree information.We

can construct the kernel matrix, which measures similarities be-

tween themicrobiome composition among subjects, by exploiting

the correspondence with the well-defined distance metrics, which

measure dissimilarities between subjects. Specifically, we can

construct the kernel matrix via the following transformation of

the phylogenetic or taxonomic distance metrics:

K ¼ �1

2

�
I� 110

n

�
D2

�
I� 110

n

�
; (Equation 3)

where D ¼ ½dij� is the pairwise distance matrix (e.g., weighted or

unweighted UniFrac distance or the Bray-Curtis dissimilarity), I

is the identity matrix, 1 in ð110
=nÞ is a vector of ones, and D2 is
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the element-wise square. For each distance metric, we can

construct the corresponding kernel matrix, e.g., weighted or un-

weighted UniFrac kernels (Kw or Ku, respectively) can be con-

structed on the basis of weighted or unweighted distance metrics,

respectively. This choice of kernel is in line with the relationship

between kernel machine regression and distance-based regres-

sion23 in that it can recover the original distances by using stan-

dard kernel operation: d2ij ¼ Kii þ Kjj � 2Kij. Further, to ensure

that K is a positive semi-definite matrix, we apply the same

positive semi-definiteness correction procedure as in Chen

and Li.15 We first perform an eigenvalue decomposition of

eigenvaluesK ¼ ULU0, whereL ¼ diagðl1;/; lnÞ, and then recon-

struct with the absolute eigenvalues K* ¼ UL�U0, where L� ¼
diagðjl1j;/; jlnjÞ.
When only a single kernel is considered, we estimate the coeffi-

cients b and f ðZÞ by maximizing the following penalized log-

likelihood:

plðf ;bÞ ¼P
i¼1

n

log L
�
f ;b; yi; xi; zi

�� 1

2
lkf k2Hk

¼P
i¼1

n

log L
�
f ;b; yi; xi; zi

�� 1

2
la0Ka:

Through an important relationship between kernel machine

regression and mixed models,24–26 f ðZÞ can be viewed as a subject-

specific random effect that follows a distribution with mean 0 and

variance tK. Then, testing for an association between the micro-

biome composition and the outcome is equivalent to testing the

nullhypothesis thatH0 : t ¼ 0.Under themixed-model framework,

this can be done with a standard variance-component score test.27

In particular, the score statistic is computed as

Q ¼ 1

2f

�
y� by0

�0
K
�
y� by0

�
; (Equation 4)

where by0 is the predicted mean of y under H0 (i.e., by0 ¼ bb0 þ bb0
X

for continuous traits, and by0 ¼ logit�1ðbb0 þ bb0
XÞ for dichotomous

traits), bb0 and bb are estimated under the null model by regression

of y on only the covariates X, and f is the dispersion parameter.

For the linear kernel machine regression, f ¼ bs2
0, where bs2

0 is the

estimated residual variance under the null model. In the logistic

kernel machine regression, f ¼ 1.

Under the null hypothesis, Q asymptotically follows a weighted

mixture of c2 distributions, and the p value can be analytically ob-

tained through higher-order moment matching28 or exact

methods29,30 with possible small-sample adjustments via resam-

pling.19 However, the comparatively small sample sizes for many

microbiome studies and the complexity of the kernels considered

here (often of full rank and with erratic eigenvalue behavior) lead

to very conservative tests. Previously considered Satterthwaite

methods15 lead to inflation of type I error. Thus, MiRKAT further

considers the use of new, alternative small-sample adjustments

for both continuous and dichotomous traits21 (unpublished data).

A key advantage of the score test is that it only requires fitting

the null model yi ¼ b0 þ b0Xi þ εi for continuous traits and

logitðPðyi ¼ 1ÞÞ ¼ b0 þ b0Xi for dichotomous traits. Consequently,

MiRKAT allows for fast, supervised, distance-based association

testing under a regression framework that permits controls for po-

tential confounding.

Because the proposed test is a score test, all the parameters are

estimated under the null model (linear regression or logistic regres-

sion), i.e., f ðZÞ does not need to be estimated. This means that

even if a poor kernel is chosen, the test is still statistically valid.
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Better choices of kernels simply improve power. From the perspec-

tive of testing, a metric that better reflects the true relationship be-

tween the microbiome compositional profiles and the outcome

will result in substantially higher power.

Optimal MiRKAT, Based on Multiple Kernels
As noted, althoughMiRKAT is valid even if a poor kernel is chosen,

better kernel choices can lead to improved power. Unfortunately,

the best kernel requires knowledge of how the microbiome influ-

ences the outcome. This is unknown a priori given that knowledge

of this would preclude need for analysis. Therefore, in this section,

we develop the optimal MiRKAT, which extendsMiRKAT to simul-

taneously consider multiple possible kernels.

Suppose that we have a set of [ different candidate kernels,

K1;.;K[, such as unweighted UniFrac, weighted UniFrac, Bray-

Curtis kernels, etc., which are constructed from corresponding dis-

tance matrices via Equation 3.

The intuition behind the optimalMiRKAT is that it will consider

testing with each individual kernel, obtain the p value for each of

the tests, select the minimum p value, and then adjust for having

taken the minimum via a multiple-comparison technique. If sam-

ple sizes are large, this can be accomplished via the perturbation-

based approach of Wu et al.,20 but when the sample size is more

modest, we can apply a residual permutation approach to obtain

the empirical null distribution of the test statistic. Specifically,

we use the following procedure:

1. Fit the null linear or logistic regression model by regressing

y on X and obtain the residuals r ¼ y� by0, where by0 is the

estimated value of y based on the null model.

2. For eachKk, calculateQk ¼ ð1=2fÞr0Kkr and the correspond-

ing p values, pk, through the asymptotic distribution of Qk.

Then, the minimum p value across all the [ kernels is

po ¼ mink˛ð1;.;[Þpk.

3. Use residual permutation to obtain the null distribution of

po to accommodate the fact that we have considered multi-

ple kernels.
800
a. For a continuous outcome, use the permutation

approach of Freeman and Lane.31 Specifically, for each

permutation j,

i. Reshuffle the residuals, r, to obtain the permuted re-

siduals, rj.

ii. Create new values of yj as yj ¼ by0 þ rj.

iii. Consider yj as the new outcome. Refit the null linear

regression model by regressing yj on X to obtain the

estimated residuals brj
and bfj

for calculating the score

statistic Q
j
k ¼ ð1=2bfjÞbrj

0
Kkbrj

with each kernel.

Obtain the kernel-specific p value, p
j
k, by comparing

Q
j
k to the same asymptotic distribution as in step 2.

iv. Obtain p
j
o ¼ mink˛ð1;.;[Þp

j
k.

b. For a dichotomous outcome, use the permutation

approach of Epistein et al.,32 which uses Fisher’s non-

central hypergeometric distribution to generate

permuted 1/0 outcome values. Specifically,

i. Obtain the estimated odds of being a case for each in-

dividual sample, i.e., expðbb0 þ bb0
XiÞ, where bb0 and bb

are the estimated coefficients under the null logistic

regression model in step 1.

ii. For each permutation j, generate new binary out-

comes on the basis of the estimated odds by using

the Fisher’s non-central hypergeometric distribution

(modified version of the BiasedUrn package33 in R).
The American Journal of Human Genetics 96, 797–807, May 7, 2015
iii. Use the permuted outcome to calculate the score sta-

tistic, Q
j
k, as in step 2 for each kernel and the kernel-

specific p value, p
j
k, by comparing Q

j
k to the same

asymptotical mixture of c2 distribution.

iv. Obtain p
j
o ¼ mink˛ð1;.;[Þp

j
k.
4. Repeat step 3 for a large number of times B to form an empir-

ical null distribution for po.

5. Calculate the final p value as p ¼ ð1=BÞPB
b¼1Iðpo > pb

oÞ.

For each permutation j, p
j
1;/;p

j
[ are calculatedwith the same set

of permuted outcomes and are thus correlated; taking the mini-

mum p value across different kernels accounts for this correlation.

Although the optimal MiRKAT requires permutation for the final

p value calculation, it only estimates residuals under each permu-

tated data by using the null model, which essentially equates to

finding the QR residuals for continuous outcomes or logistic

regression for binary outcomes and thus can be done very fast.

Additionally, for each kernel, each Q
j
k follows the same weighted

mixture of the c2 distribution with the weights and degree of

freedom needed to be estimated only once.

Simulation Study
We conducted simulation studies under a range of scenarios in or-

der to verify that MiRKATcorrectly controls type I error rate and to

assess the relative power of MiRKAT by using different kernels and

the power of optimal MiRKAT.

We first simulated microbiome datasets according to Chen and

Li’s general approach,15 which has been shown to generate simu-

lated data reflective of real OTU counts. In particular, we simulated

datasets composed of n ¼ 100, 200, or 500 individuals. Then, we

generated the OTU information for each individual in a simulated

dataset from a Dirichlet-multinomial distribution, which accom-

modates the over-dispersion of OTU counts. To employ realistic

parameter values for the Dirichlet-multinomial distribution, we

estimated the dispersion parameters and the proportion means

from Charlson et al.’s real upper-respiratory-tract microbiome da-

taset,34 which consists of 856 OTUs measured on each of 60 sam-

ples. Then, for each individual we generated OTU counts on the

same 856 OTUs by using the estimated parameters and assumed

1,000 total counts per sample. For both continuous outcomes

and dichotomous outcomes, we considered two simulation sce-

narios that differed in how the OTUs were related to the outcome.

Under simulation scenario 1, the outcome was related to a clus-

ter of taxa that depend on a phylogenetic tree. Specifically, we par-

titioned all the OTUs into 20 clusters (lineages) by performing the

partitioning-around-medoids algorithm on the basis of the OTU

distance matrix. The abundance of these OTU clusters varied

greatly, such that each OTU cluster corresponded to some possible

bacterial lineage. We then used the model to choose a relatively

abundant OTU cluster that constituted 19.4% of the total OTU

reads to be related to the outcome. For continuous outcomes, we

simulated under the model

yi ¼ 0:5X1i þ 0:5X2i þ bscale

 X
j˛A

Zij

!
þ εi; (Equation 5)

where εi � Nð0;1Þ.
For dichotomous outcomes, we simulated under the model

logit
�
E
�
yi jXi;Zi

�� ¼ 0:5scaleðX1i þX2iÞ þ bscale

 X
j˛A

Zij

!
:

(Equation 6)



For both continuous and dichotomous outcomes,X1i andX2i are

covariates to be adjusted for, and A denotes the indices of the

OTUs in the selected cluster. The ‘‘scale’’ function standardizes

the total OTU abundance in the associated cluster to have mean

0 and SD 1. X1i was simulated as a Bernoulli random variable

with success probability 0.5. For X2i, we considered situations in

which X2i and microbiome profiles (Zi) were correlated and in

which X2i and Zi were independent. In the simulation wherein

X2i and Zi were independent, X2i was simulated as Nð0;1Þ. For
the case wherein X2i and Zi were correlated, we let

X2i ¼ scale ðPj˛AZijÞ þ Nð0;1Þ.
Under simulation scenario 2, the outcome was associated with

the ten most abundant OTUs in all samples, without regard for

the phylogeny. In particular, instead of clustering the OTUs

on the basis of the phylogenetic relationship, we simply selected

the ten OTUs with the largest average number of reads across all

samples. Then, we simulated the continuous outcome as

yi ¼ 0:5X1i þ 0:5X2i þ bscale

 X
j˛A

ZiðjÞ
ZðjÞ

!
þ εi: (Equation 7)

We simulated the dichotomous outcome as

logit
�
E
�
yi jXi;Zi

�� ¼ 0:5scaleðX1i þ X2iÞ þ bscale

 X
j˛A

ZiðjÞ
ZðjÞ

!
;

(Equation 8)

where εi � Nð0;1Þ, X1i and X2i are defined as earlier,A denotes the

set of the tenmost abundant OTUs, and ZðjÞ is the average number

of reads for the jth OTU across samples. We divided the OTU reads

by their corresponding average to avoid a situation in which a sin-

gle or a few OTUs could dominate the total effect.

We simulated the additional covariates (X) as before, and we

again considered the scenario in which the covariates were associ-

ated with the microbiome and the scenario in which the covari-

ates were independent of the microbiome.

For both simulation scenarios, we considered using the

weighted and unweighted UniFrac kernels (Kw and Ku, respec-

tively), the Bray-Curtis kernel (KBC), and four generalized UniFrac

Kernels with a values chosen as 0, 0.25, 0.5, and 0.75, which are

denoted as K0, K0.25, K0.5, and K0.75, respectively. All of these ker-

nels were computed from the corresponding distances. We consid-

ered these particular kernels (distances) because they represent a

range of different classes of kernels: the UniFrac-based methods

utilize phylogenetic relationships, whereas the Bray-Curtis kernel

does not, and the weighted and generalized UniFrac kernels

account for abundance information to differing degrees, whereas

the unweighted UniFrac kernel does not.

We used each kernel to apply MiRKAT to the simulated datasets

to test for associations between the simulated OTUs (Z) and the

outcome (y). Additionally, we also applied optimal MiRKAT. We

applied tests with and without adjustment for the potential con-

founders (X). For comparison, we further considered a naive Bon-

ferroni-adjusted test, which selects theminimump value across all

the single-kernel testing and uses [ 3 pmin, where pmin is the small-

est p value across all single-kernel tests and [ is the total number of

tests, as the final p value. For each choice of sample size n, simula-

tion scenario, and correlation structure between the microbiome

and covariates, we conducted 5,000 simulations with b ¼ 0 to

examine the type I error rate. To assess the statistical power of

the tests across both simulation scenarios, we varied values of

the coefficient b and conducted 2,000 simulations for each choice
The Am
of sample size, simulation scenario, correlation structure, and

value of b.
Results

In this section, we present the simulation results from per-

forming our proposed MiRKAT and optimal MiRKAT

methods, as well as the results from applying our methods

to two real datasets. We also consider the relationship be-

tween MiRKAT and existing methods and demonstrate a

close connection.
Simulation Results

The type I error rates ofMiRKATand optimalMiRKATacross

different simulation scenarios for continuous outcomes are

shown inTable1. In simulation scenario1, a singlephyloge-

netic cluster of OTUs was associated with the outcome, and

in simulation scenario 2, the tenmost abundantOTUswere

associatedwith the outcome.Note thatwhen the covariates

were independent of the microbiome, both simulation sce-

narios were equivalent because there was no association

between y and Z. For both simulation scenarios, when the

covariates (X) and themicrobiomecomposition (Z)were in-

dependent,MiRKATwas validwith or without adjusting for

X. However, whenX and Zwere correlated, adjusting forX

was necessary: the type I error was seriously inflated if the

confounderX was not accounted for.

Figures 1 and 2 show the statistical power for the tests

with continuous outcomes in simulation scenario 1, in

which a phylogenetic cluster of OTUs was associated

with the outcome. Specifically, Figure 1 shows the power

when X and Z were independent, and Figure 2 shows

the power when X and Z were correlated. Note that for

Figure 2, we only considered statistical tests that adjusted

for X because the tests without X adjustment had inflated

type I error and were invalid in such situations.

The power is presented for MiRKATwith each individual

kernel, the optimal MiRKAT (which incorporates multiple

kernels), and the naive Bonferroni-adjusted test. For all the

kernels that were considered, the power increased when

the association strength increased. Good kernel choices

can greatly improve the statistical power of detecting asso-

ciation, whereas improper kernel choice leads to little po-

wer to detect the association. For this simulation scenario,

the weighted UniFrac kernel and the generalized UniFrac

kernel with a ¼ 0.75 produced the highest power, and

the unweighted UniFrac kernel was the least powerful.

Compared to the weighted UniFrac kernel, the optimal

MiKRAT, which considers all metrics, lost some power

but still maintained power considerably better than that

of many other kernel choices. As expected, the optimal

test was always more powerful than the naive Bonfer-

roni-adjusted test.

Figures 3 and 4 show the statistical power for simulation

scenario 2, where the top ten most abundant OTUs were

associated with the outcomewithout regard for phylogeny.
erican Journal of Human Genetics 96, 797–807, May 7, 2015 801



Table 1. Empirical Type I Errors for MiRKAT and Optimal MiRKAT with Continuous Outcome

Simulation Setup n

Empirical Type I Errors

Kw Ku KBC K0 K0.25 K0.5 K0.75 Koptimal Kpmin

Simulation Scenario 1: Clustered OTUs

XtZ, no adjustment for X 100 0.053 0.050 0.050 0.046 0.047 0.048 0.052 0.050 0.023

200 0.052 0.047 0.051 0.053 0.049 0.048 0.051 0.051 0.026

XtZ, adjustment for X 100 0.056 0.048 0.047 0.049 0.045 0.050 0.048 0.046 0.024

200 0.051 0.050 0.053 0.048 0.047 0.052 0.049 0.050 0.027

X Z, no adjustment for X 100 0.389* 0.062* 0.172* 0.268* 0.345* 0.384* 0.182* 0.268* 0.183*

200 0.790* 0.080* 0.398* 0.587* 0.732* 0.791* 0.387* 0.651* 0.547*

X Z, adjustment for X 100 0.055 0.047 0.047 0.049 0.046 0.049 0.046 0.049 0.024

200 0.052 0.049 0.051 0.047 0.047 0.052 0.050 0.049 0.026

Simulation Scenario 2: Top Ten OTUs

XtZ, no adjustment for X 100 0.053 0.050 0.050 0.045 0.048 0.049 0.053 0.050 0.025

200 0.051 0.047 0.050 0.053 0.050 0.047 0.051 0.050 0.026

XtZ, adjustment for X 100 0.056 0.048 0.047 0.050 0.046 0.051 0.047 0.049 0.021

200 0.051 0.049 0.053 0.047 0.047 0.052 0.050 0.051 0.023

X Z, no adjustment for X 100 0.153* 0.048* 0.669* 0.105* 0.124* 0.147* 0.157* 0.516* 0.067*

200 0.307* 0.048* 0.976* 0.194* 0.239* 0.293* 0.320* 0.932* 0.151*

X Z, adjustment for X 100 0.056 0.048 0.047 0.049 0.046 0.050 0.047 0.049 0.020

200 0.052 0.049 0.051 0.048 0.048 0.051 0.049 0.049 0.024

Type I error was evaluated for scenarios in which additional covariates were independent of the OTUs ðXtZÞ or related to the OTUs (X Z) with the use of 5,000
simulated datasets. Kw, Ku, KBC, K0, K0.25, K0.5, and K0.75 represent MiRKAT results for the weighted UniFrac kernel, unweighted UniFrac kernel, Bray-Curtis kernel,
and generalized UniFrac kernels with a ¼ 0, 0.25, 0.5, and 0.75, respectively. Koptimal represents the simulation results for optimal MiRKAT considering all seven
kernels, and Kpmin

shows the results for a naive Bonferroni-adjusted test. The p values for optimal MiRKAT were obtained by 1,000 permutations. *Inflated type I
error.
We again show the power whenX and Zwere independent

(Figure 3) and whenX and Zwere correlated (Figure 4). Re-

sults were similar to those of simulation scenario 1, except

that the Bray-Curtis distance metric gave the highest po-

wer. Optimal MiRKAT, which considers all distance met-

rics, had power that was smaller but comparable to that

of the Bray-Curtis distance but much higher than that of

the naive Bonferroni-corrected test. The unweighted Uni-

Frac kernel provided the least power.

In practice, the optimal kernel depends on the true state

of nature and can vary from case to case. The two simula-

tion scenarios show that proper kernel choice is essential

for being well powered to discover associations between

microbiome composition and outcomes and that poor

kernel choice leads to tremendous power loss. Optimal

MiRKAT, however, alleviates the problem by considering

different kernels and is more robust than single-distance-

based analysis given that it hedges against different sce-

narios and works well in the omnibus.

The simulation results for dichotomous outcomes are

quantitatively similar to the results obtained from

continuous outcomes. The type I error results are sum-

marized in Table S1, and power results are shown in Fig-

ures S1–S4.
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Relationship between MiRKAT and Existing Methods

A key advantage of MiRKAT is that it is already closely

related to existing approaches for analyzing the association

between microbiome composition and an outcome. In

particular, with large sample size, the PERMANOVA

method10 can be shown to be a special case of the kernel

machine testing framework under the scenario in which

there are no confounding variables.23 Consequently, MiR-

KAT with a single kernel can be viewed as a PERMANOVA

generalization that accommodates additional covariates.

In numerical simulations, the correlation between p values

obtained from single-kernel MiRKAT and the correspond-

ing distance-based method is usually more than 0.99 in

scenarios without covariates to be adjusted for. For

example, Figure S5 shows the p values for MiRKAT and

the distance-based approach for 2,000 simulated datasets

when a single distance or kernel was used. However,

because it uses the asymptotic distribution, MiRKAT is

considerably faster than corresponding distance-based ap-

proaches, especially with large sample sizes (Figure S6).

Analysis of Smoking Data

Recently, a microbiome-profiling study was conducted to

examine the communities within the upper respiratory
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tract34 in order to explain the effect of cigarette smoking

on the orpharyngeal and nospharyngeal microbiome.

Although details can be found in the original manuscript

and subsequent re-analyses,14 in brief, swab samples were

collected from the right and left nasopharynx and

oropharynx of 29 smoking and 33 non-smoking adults.

The variable region 1–2 (V1–V2) of the bacterial gene 16S

rRNA was PCR amplified and subjected to multiplexed py-

rosequencing. OTUs were constructed with the QIIME

pipeline. Samples with fewer than 500 reads and OTUs

with only one read were removed, resulting in an OTU ta-

ble with 60 samples (28 smokers and 32 nonsmokers) and

856 OTUs. Additional covariates in these data included

gender and antibiotic use within the last 3 months.

Distance-based analysis of the oropharyngeal samples

via permutation-based distance analysis (PERMANOVA)

with both weighted and unweighted UniFrac distances

identified significant association betweenmicrobiome pro-

files and smoking status. However, the analyses did not

take into account potential confounders: within the

collected study sample, 75% of smokers were male, yet

only 56% of non-smokers were male. The odds ratio of

smoking between males and females was 2.33 within the

dataset. The imbalance in the proportion of male and fe-

male subjects indicates strong potential for confounding:

it is unclear whether the differences inmicrobiome profiles

between smokers and non-smokers is driven by smoking or

by the gender imbalance. Additionally, the tests were con-

ducted with either weighted or unweighted UniFrac dis-

tance; it is practically attractive to consider multiple

possible distance measurements while controlling for

possible confounding effects. MiRKAT represents a natural

analysis approach.

Therefore, we re-analyzed the data from the oropharyn-

geal samples by using MiRKAT. Specifically, we applied

MiKRAT to analyze the association between smoking and

microbial community composition by using weighted

and unweighted UniFrac distance matrices and the Bray-
The Am
Curtis distance, except that here we transformed them to

be similarity metrics to form the kernels and further

adjusted for gender and antibiotic use. We also applied

the optimal MiRKAT. Using MiRKAT under individual dis-

tance metrics, we found the p values from Kw, Ku, and KBC

to be 0.0048, 0.014, and 0.002, respectively. The optimal

MiRKAT generated a p value of 0.0031. Thus, despite the

potential for confounding, our results show that the asso-

ciation between microbiome profiles and smoking status

remains significant after the potential confounders are

controlled for, reaffirming and providing greater confi-

dence in the earlier results. In addition to validating a pre-

vious analysis, this result also demonstrates the utility and

importance of MiRKAT with regard to accommodating co-

variates and multiple kernels.

Analysis of Fecal Protease Data

Fecal proteases (FPs) are enteric enzymes that are elevated

in subsets of individuals with irritable bowel syndrome

(IBS) and inflammatory bowel disease (MIM: 266600). It

was demonstrated that FPs from IBS-affected individuals

have a profound impact on intestinal physiology,

including visceral sensitivity and colonic permeability in

mice.35 Although there is evidence that elevated FP levels

can alter intestinal physiology by activating proteinase-

activated receptors, it remains unclear whether the FP

levels are of human or microbial origin. Consequently,

Carroll et al.36 conducted a study to examine the relation-

ship between FP levels andmicrobiota in human fecal sam-

ples from 30 individuals affected by IBS and 24 healthy

adults. 454 pyrosequencing of the gene 16S rRNA was

again used for profiling the microbiomes, and QIIME was

again applied to quantify the composition and diversity

of each community.

The original study identified a significant association be-

tweenmicrobiome composition and FP levels.However, an-

alyses were restricted to the subjects with the highest and

lowest FP levels. Thus, we applied MiRKAT to the dataset
erican Journal of Human Genetics 96, 797–807, May 7, 2015 803
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Figure 2. Type I Error and Power of MiRKAT Based on Different
Kernels for Simulation Scenario 1 with Continuous Outcome
when X and Z Are Correlated
A selected phylogenetic cluster of the OTUs were associated with
the outcome, and covariates (X) and microbiome composition
(Z) were correlated such that X2i ¼ scale ðPj˛AZijÞ þNð0;1Þ,
where A represents the selected cluster. Results are presented
only for MiRKAT with X adjustment because unadjusted tests
gave seriously inflated type I error. Kw, Ku, KBC, K0, K0.25, K0.5,
and K0.75 represent MiRKAT results for the weighted UniFrac
kernel, unweighted UniFrac kernel, Bray-Curtis kernel, and gener-
alized UniFrac kernels with a ¼ 0, 0.25, 0.5, and 0.75, respectively.
Koptimal represents the simulation results for optimal MiRKAT
considering all seven kernels, and Kpmin

shows the results for a
naive Bonferroni-adjusted test. Sample size n ¼ 100.
(limiting to the 23 diarrhea-predominant IBS-affected sub-

jects and 23 healthy control subjects) to test for an associa-

tion between FP levels and microbiome composition,

except that we treated FP levels as continuous (so as to use

all subjects), andwe further adjusted for additionalpotential

confounders, including age, bodymass index, gender, race,

and functional bowel disorder. We considered MiRKAT by

using the weighted UniFrac, unweighted UniFrac, and

Bray-Curtis kernels, as well as the optimal MiRKAT.

Interestingly, the three distances gave discordant con-

clusions in that the unweighted UniFrac kernel and Bray-

Curtis kernel yielded significant p values (p ¼ 0.0046 and

0.039, respectively), whereas the weighted UniFrac kernel

gave a non-significant result (p ¼ 0.124). The unweighted

UniFrac kernel is primarily based on the presence or

absence of an OTU, whereas the weighted UniFrac kernel

further incorporates abundance, which could account for

the differences, but the difference in association results

makes it difficult to draw a single conclusion. The optimal

MiRKAT, which simultaneously considers the three candi-

date kernels, gave a single p value of 0.0116 after covariate

adjustment. This further demonstrates the advantages of
804 The American Journal of Human Genetics 96, 797–807, May 7, 2
optimal MiRKAT to be able to consider multiple kernels

given that using individual distance metrics yielded dispa-

rate results and is difficult to interpret.
Discussion

We proposeMiRKAT to test for the association betweenmi-

crobial community composition and a continuous or

dichotomous outcome of interest in which covariate

effects are modeled parametrically and the microbiome ef-

fect is modeled non-parametrically. The kernel matrix,

which defines the functional form of the microbiome ef-

fect, is constructed via the exploitation of its correspon-

dence with the popular distancemetric designed to convey

phylogenetic or taxonomic information among different

OTUs. Additionally, the proposed method allows the

incorporation of multiple candidate kernels simulta-

neously, enabling development of the optimal MiRKAT.

Simulations and real-data analyses indicate that the

approach has reasonable power and that the optimal

MiRKAT is robust to poor kernel choice. Close connections

between MiRKAT and existing analysis frameworks ensure

that the approach is a natural addition to the currently

available methodology.

The optimal MiRKAT enables researchers to consider

multiple distance and dissimilaritymetrics simultaneously.

Here, we focused primarily on the UniFrac, weighted Uni-

Frac, generalized UniFrac, and Bray-Curtis metrics because

our experiences have shown that these tend to work well

in practice. In principle, one can include a wide range of

other metrics with little penalty with regard to the false-

positive rate, but the trade-off is that one might lose power

if there are toomany overly disparate kernels under consid-

eration—use of highly correlated kernels will not affect

power very much. In the most extreme cases, optimal

MiRKAT from multiple perfectly correlated kernels will

generate the same p value as will each of the individual

kernel tests. Furthermore, we note that the tests using

each of the individual kernels are constructed on the basis

of the same datasets and are non-negatively correlated (i.e.,

not competitive). Thus, the optimal MiRKAT should al-

ways have higher power than the naive Bonferroni-

adjusted test.

A reasonable alternative to the proposed omnibus test

approach is to construct, as a kernel, a weighted combina-

tion of multiple kernels. In practice, the optimal ‘‘weight’’

is unknown and needs to be estimated from data or

selected via other approaches, such as a grid search. From

the mixed-model point of view, estimating the weights is

equivalent to estimating a variance component that disap-

pears when the null hypothesis is true; this violates the

common regularity conditions in the standard asymptotic

tests. Statistical methods for such problems, such as likeli-

hood-ratio tests, recently have been the focus of consider-

able statistical research.37,38 However, this is frequently

much more computationally intensive than the score
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Figure 3. Type I Error and Power of MiR-
KAT Based on Different Kernels for Simu-
lation Scenario 2 with Continuous
Outcome when X and Z Are Independent
The ten most abundant OTUs were associ-
ated with the outcome. Additional covari-
ates (X) and the microbiome profiles (Z)
were simulated independently. Results are
shown for tests that did (A) or did not (B)
adjust for X. Kw, Ku, KBC, K0, K0.25, K0.5,
and K0.75 represent MiRKAT results for
the weighted UniFrac kernel, unweighted
UniFrac kernel, Bray-Curtis kernel, and
generalized UniFrac kernels with a ¼ 0,
0.25, 0.5, and 0.75, respectively. Koptimal

represents the simulation results for
optimal MiRKAT considering all seven ker-
nels, and Kpmin

shows the results for a naive
Bonferroni-adjusted test. Sample size n ¼
100.
test, especially when many kernels are under consider-

ation. Furthermore, very limited work has been conducted

on the likelihood-ratio test for variance components when

some parameters disappear under the null and when the

null values are on the boundary of the parameter space.

On the other hand, selecting the best ‘‘weight’’ through a

grid search can be conducted similarly to the optimal

MiRKAT, in which each of the weighted combination of

candidate kernels is treated as a new kernel. However,

when the number of kernels under consideration increases

or when a finer grid is used, the computation burden in-

creases quickly as a result of the large search space and

rapidly becomes computationally prohibitive. Therefore,

if prior evidence is available to suggest that a single kernel

is the best kernel, then using that single kernel or using a

smaller set of kernels will be more powerful. In the absence

of prior knowledge, then we suggest using a modest range

of kernels with differing characteristics, e.g., a combina-

tion of phylogeny-based and non-phylogeny-based ker-

nels, as in our simulations.

Beyond assessing the association with overall composi-

tion, there is considerable interest in identifying the indi-

vidual taxa that are driving the apparent associations.

This approach for analyzing microbiome data is

frequently complementary and parallel to methods for

testing overall composition and diversity. One common

approach for doing this is to assess the marginal associa-

tion between each OTU and the outcome. However, in

addition to difficulties in determining the scale of the

analysis, i.e., whether to use composition percentages or

raw OTU counts, a problem of considerable interest lies

in using distance metrics to inform the identification of

individual taxa related to the outcome. To this end, as a

regression-based approach combined with relatively fast

computation, MiRKAT could enable a stepwise variable se-

lection approach with the Akaike information criterion or

the Bayesian information criterion. Such an approach

could be applied post hoc to identify the variables most

strongly driving apparent associations. It might also be
The Am
possible to use a penalized regression approach within

the kernel framework,39 but this remains a topic for future

research.

Microbiome studies are now being included within

epidemiological, population-based, and clinical studies.

In contrast to early microbiome studies with modest sam-

ple sizes and relatively controlled experimental conditions,

current microbiome studies consider issues such as con-

founding, covariate adjustment, and accommodation of

more-sophisticated outcomes to be increasingly impor-

tant. MiRKAT’s ability to control for confounders within

a principled regression-based framework while maintain-

ing type I error and adequate power make it an attractive

alternative to currently available methods. Furthermore,

although we focused on dichotomous and continuous var-

iables of interest, the framework can be generalized to

alternative types of outcomes, such as multivariate, longi-

tudinal, and survival data. Thus, with growing interest in

applying the microbiome to complex clinical and popula-

tion-based studies, MiRKAT can be extended to open new

avenues of research by enabling analysis of data from the

emerging studies with more-sophisticated outcomes.
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Figure 4. Type I Error and Power of MiRKAT Based on Different
Kernels for Simulation Scenario 2 with Continuous Outcome
when X and Z Are Correlated
The ten most abundant OTUs were associated with the outcome.
Additional covariates (X) and the microbiome profiles (Z) were
correlated such that X2i ¼ scaleðPj˛AZijÞ þ Nð0;1Þ, whereA repre-
sents the top ten most abundant OTUs. Results are presented only
for MiRKATwithX adjustment because unadjusted tests gave seri-
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shows the results for a naive Bonfer-
roni-adjusted test. Sample size n ¼ 100.
Web Resources

The URLs for data presented herein are as follows:

Implementation of MiRKAT in the R language, http://research.

fhcrc.org/wu/en.html

MiRKAT R package and manual, http://research.fhcrc.org/wu/en.

html

OMIM, http://www.omim.org
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Figure S1: Type I error and Power of MiRKAT Based on Different Kernels for
Simulation Scenario 1 with Dichotomous Outcome when X and Z are Indepen-
dent: a selected phylogenetic cluster of the OTUs are associated with the out-
come. Additional covariates X and microbiome effect Z were simulated indepen-
dently. Panel A shows the results for tests that do not adjust for X and panel
B shows results that adjust for X. Kw, Ku, KBC , K0, K0.25, K0.5 and K0.75 repre-
sents MiRKAT results using different individual kernels respectively: weighted
UniFrac, unweighted UniFrac, Bray-Curtis, and generalized UniFrac kernels with
α = 0, 0.25, 0.5 and 0.75. Koptimal represents the simulation results for optimal
MiRKAT considering all seven kernels and KminP shows the results using a naive
Bonferroni adjusted test. Results were presented at n = 200.
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Figure S2: Type I error and Power of MiRKAT Based on Different Kernels for
Simulation Scenario 1 with Dichotomous Outcome when X and Z are Corre-
lated: a selected phylogenetic cluster of the OTUs are associated with the out-
come. Additional covariates X and microbiome composition Z are correlated
through X2i = scale (

∑
j∈A Zij) + N(0, 1). We only considered MiRKAT with X

adjustment because unadjusted tests give seriously inflated type I error. Kw, Ku,
KBC , K0, K0.25, K0.5 and K0.75 represents MiRKAT results using different indi-
vidual kernels respectively: weighted UniFrac, unweighted UniFrac, Bray-Curtis,
and generalized UniFrac kernels with α = 0, 0.25, 0.5 and 0.75. Koptimal repre-
sents the simulation results for optimal MiRKAT considering all seven kernels
and KminP shows the results using a naive Bonferroni adjusted test. Sample Size
n = 200.
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Figure S3: Type I error and Power of MiRKAT Based on Different Kernels for
Simulation Scenario 2 with Dichotomous Outcome when X and Z are Indepen-
dent: the 10 most abundant OTUs are associated with the outcome. Additional
covariates X and microbiome effect Z were simulated independently. Panel A
shows the results for tests that do not adjust for X and panel B shows results that
adjust for X. Kw, Ku, KBC , K0, K0.25, K0.5 and K0.75 represents MiRKAT results
using different individual kernels respectively: weighted UniFrac, unweighted
UniFrac, Bray-Curtis, and generalized UniFrac kernels with α = 0, 0.25, 0.5 and
0.75. Koptimal represents the simulation results for optimal MiRKAT considering
all seven kernels and KminP shows the results using a naive Bonferroni adjusted
test. Results were presented at n = 200.
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Figure S4: Type I error and Power of MiRKAT Based on Different Kernels for
Simulation Scenario 2 with Dichotomous Outcome when X and Z are Cor-
related: the 10 most abundant OTUs are associated with the outcome. Addi-
tional covariates X and microbiome composition Z are correlated through X2i =
scale (

∑
j∈A Zij) + N(0, 1). We only considered MiRKAT with X adjustment be-

cause unadjusted tests give seriously inflated type I error. Kw, Ku, KBC , K0, K0.25,
K0.5 and K0.75 represents MiRKAT results using different individual kernels re-
spectively: weighted UniFrac, unweighted UniFrac, Bray-Curtis, and generalized
UniFrac kernels with α = 0, 0.25, 0.5 and 0.75. Koptimal represents the simulation
results for optimal MiRKAT considering all seven kernels and KminP shows the
results using a naive Bonferroni adjusted test. Results were presented at n = 200.
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Figure S5: Example plot of the p-value correlation using distance based approach
and MiRKAT when no additional covariates are considered. 5000 simulations
are plotted at sample size n = 200 for continuous outcome. Unweighted UniFrac
distance and kernel were used for the distance based approach and MiRKAT re-
spectively.
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Figure S6: Computation times of MiRKAT and distance based test as a function of
the sample size for continuous outcome. The figure presents the total computation
time for 100 repeated tests with each sample size. 999 permutations (the default
number) were used in distance based approaches.



Table S1: Empirical type I errors for MiRKAT and “optimal” MiRKAT with di-
chotomous outcome. Type I error was evaluated for scenarios when additional
covariates are independent with the OTUs (X ⊥ Z) and scenarios when covari-
ates are related to the OTUs (X �⊥ Z) using 5000 simulated data sets. Kw, Ku, KBC ,
K0, K0.25, K0.5 and K0.75 represents MiRKAT results using different individual ker-
nels respectively: weighted UniFrac, unweighted UniFrac, Bray-Curtis, and gen-
eralized UniFrac kernels with α = 0, 0.25, 0.5 and 0.75. Koptimal represents the
simulation results for optimal MiRKAT considering all seven kernels and KminP

shows the results using a naive Bonferroni adjusted test. P-values for “optimal”
MiRKAT were obtained by 1000 permutations. Numbers in bold show inflated
type I error.

Simulation scenario 1: Clustered OTUs
X ⊥ Z Unadjust for X

n KW KU KBC K0 K0.25 K0.5 K0.75 Kopt KminP

200 0.051 0.049 0.049 0.051 0.052 0.054 0.051 0.049 0.025
500 0.046 0.049 0.054 0.056 0.053 0.054 0.053 0.053 0.028

X ⊥ Z Adjust for X
200 0.054 0.051 0.050 0.051 0.053 0.054 0.054 0.053 0.028
500 0.047 0.048 0.051 0.053 0.055 0.051 0.049 0.055 0.029

X �⊥ Z Unadjust for X
200 0.105 0.054 0.075 0.081 0.099 0.116 0.123 0.092 0.057
500 0.156 0.056 0.092 0.149 0.210 0.260 0.285 0.214 0.138

X �⊥ Z Adjust for X
200 0.048 0.054 0.049 0.050 0.050 0.053 0.052 0.051 0.028
500 0.045 0.051 0.050 0.051 0.048 0.049 0.049 0.048 0.024

Simulation scenario 2: top 10 OTUs
X ⊥ Z Unadjust for X

n KW KU KBC K0 K0.25 K0.5 K0.75 Kopt KminP

200 0.046 0.052 0.047 0.048 0.048 0.047 0.047 0.050 0.028
500 0.058 0.044 0.045 0.051 0.050 0.052 0.053 0.048 0.025

X ⊥ Z Adjust for X
200 0.045 0.052 0.048 0.046 0.048 0.046 0.046 0.051 0.028
500 0.052 0.045 0.040 0.048 0.052 0.052 0.050 0.042 0.022

X �⊥ Z Unadjust for X
200 0.066 0.051 0.201 0.064 0.069 0.070 0.073 0.125 0.077
500 0.123 0.049 0.544 0.101 0.104 0.123 0.126 0.378 0.307

X �⊥ Z Adjust for X
200 0.047 0.056 0.052 0.044 0.047 0.052 0.052 0.049 0.024
500 0.051 0.047 0.056 0.051 0.050 0.046 0.049 0.054 0.024
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