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This supplementary material includes greater technical detail regarding the methods used in

the main paper. Specifically, Section A presents detailed derivations of the stochastic reaction

network approximations referred to in the main paper. Methods for inference for state space mod-

els, in particular the Kalman and particle filters are described in Section B with specific details

regarding implementation of the methodologies used in the main paper. All prior specifications

are given in Section C. The specification of the reversible jump methodology is given in Section

D and Section E describes the conjugate update of the hierarchical parameters. Further details

of the simulation study are given in Section F and finally, Section G gives details regarding the

data application used in the main paper.

APPENDIX

A. Stochastic Reaction Network Approximations

Stochastic reaction networks can be used to model systems of reactions by Markov jump processes

(MJPs), see for example Wilkinson (2011). Consider a system of ν stochastic reactions involving

D molecular species, X = (X1, ..., XD)
T in a well-mixed environment of volume Ω. The stochastic

process can be represented by the set of reactions,

PX
h−→ QX,

for matrices P and Q. The vector h, is the vector of hazard functions describing the rate at which

each reaction occurs and S := Q− P := [v1, ..., vν ] is the stoichiometric matrix. The vectors vj ,

describe the corresponding change in state for each reaction j. In general, each hazard function

will depend on the state of the system, x, and the associated kinetic rate of the reaction, denoted

by θ. By the law of mass action, the hazard functions are given by,

hj(X, θj) = θj

D
∏

k=1

(

xk

Pjk

)

, for j = 1, ..., ν, (A.1)

where Pjk is the jkth element of P and xk is the kth element of the state vector x.
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In order to define the limiting approximations, we let X(Ω) := X/Ω denote the concentration

of X, and in particular, X(Ω) satisfies the same SRN as X with hazard rates given by h(Ω) where,

h
(Ω)
j

(

X(Ω), θj

)

= Ωhj

(

X(Ω), θj

)

= Ωoj−1hj(X, θj)

= θjΩ
oj−1

D
∏

k=1

(

xk

Pjk

)

,

where the order of each reaction, oj :=
∑D

i=1 Pij I[Pij 6= 1], is defined to be the number of

reactant species (Wilkinson, 2011) .

It is useful in the following to express the Markov Jump process in terms of the following

Poisson process. Namely, for fixed τ the following equality holds,

X(t+ τ) = X(t) +

ν
∑

j=1

vjKj , (A.2)

Kj ∼ Pois

(
∫ t+τ

t

hj(X(s), θj)ds

)

,

where Kj is the number of type j events occurring. Equivalently, the rescaled concentration

process X(Ω) := 1
ΩX satisfies the Poisson process,

X(Ω)(t+ τ) = X(Ω)(t) + 1
ΩSK(Ω), (A.3)

K(Ω) ∼ Pois

(
∫ t+τ

t

Ωh(X(Ω)(s), θ)ds

)

,

where S is the stoichiometric matrix, K(Ω) is a vector of Poisson random variables and h =

(h1, ..., hν)
T is the vector of hazard rates.

A.1 Macroscopic limit

The direct deterministic analogue,XD(t), of the stochastic model,X(t), is given by the conditional

expectation of the stochastic process given its history (Chesson, 1978),

XD(t+ τ) = E
[

X(t+ τ)|X(t) = XD(t)
]

= XD(t) +

∫ t+τ

t

Sh(XD(s), θ) ds. (A.4)
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This can be rewritten in the equivalent ODE for XD, often referred to as the reaction rate

equation (RRE) or macroscopic limit,

dXD

dt
= A(XD) :=

ν
∑

j=1

vjhj(X
D, θj) = Sh(XD, θ), (A.5)

XD(0) = x0. (A.6)

Kurtz (1970) and Anderson and Kurtz (2011) show, using the law of large numbers, that this

ODE can be derived as the limit of X(Ω) as Ω → ∞,

X(Ω)(t+ τ) → X(Ω)(t) +

∫ t+τ

t

Sh(X(Ω)(s), θ)ds =: XD(t+ τ), as Ω → ∞.

As a consequence, for sufficiently large systems, intrinsic variability can be assumed to vanish

and a deterministic ODE model can be used.

For example, letting XD :=
(

MD, PD
)T

, the reaction rate equations of the gene transcription

model (2.1)-(2.2) are given by,

MD(t+ τ) = MD(t) +

∫ t+τ

t

β(s) − δmMD(s)ds,

PD(t+ τ) = PD(t) +

∫ t+τ

t

αMD(s)− δpP
D(s)ds.

Equivalently, formulating as an ODE,

d

dt

(

MD(t)
PD(t)

)

=

(

β(t)− δmMD(t)
αMD(t)− δpP

D(t)

)

.

A.2 Chemical Langevin Equation

The chemical Langevin equation was first derived in the chemical physics literature in Gillespie

(2000). We will follow this heuristic derivation although a more rigourous treatment can be found

in Anderson and Kurtz (2011).

Assuming τ is chosen to be small enough such that hj(X
(Ω), θj) can be considered constant

over the interval [t, t + τ) ∀j, known as the first leap condition (Gillespie, 2000), the updating
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equation (A.3) becomes,

X(Ω)(t+ τ) ≈ X(Ω)(t) + 1
ΩSK̃(Ω), (A.7)

K̃(Ω) ∼ Pois(h(Ω)(X(Ω)(t), θ)τ),

where the integrand in the Poisson rate has been replaced by a constant. Under the second leap

condition, namely Ωhj(X
(Ω)(t), θj)τ is large ∀j, this Poisson random variate can be replaced by

a normal density yielding, the (chemical) Langevin equation,

XC(t+ τ) = XC(t) + τSh(XC, θ) +
√
τ
√

S diag
(

h(XC, θ)
)

ST Z (A.8)

Z ∼ N (0, ID).

Formulating the CLE in terms of the concentration process X(Ω), we notice that the second leap

condition is satisfied as the system size Ω → ∞.

Taking the limit as τ → 0, equation (A.8) can be expressed by the following Itô diffusion

process (Gardiner, 1985),

dXC = A(XC)dt+
√

B(XC)dWt. (A.9)

A(XC) :=

ν
∑

j=1

vjhj(X
C, θj) = Sh(XC, θ), (A.10)

B(XC) := S diag
(

h(XC, θ)
)

ST . (A.11)

Returning to the linear gene transcription model of (2.1)-(2.2), the corresponding CLE,XC :=

(

MC, PC
)T

, will satisfy (A.9) with,

A =

(

β(t)− δmMC(t)
αMC(t)− δpP

C(t)

)

, B =

(

β(t) + δmMC(t) 0
0 αMC(t) + δpP

C(t)

)

.

The CLE has been used extensively for inference within SRNs, (Golightly and Wilkinson,

2005, 2011; Heron and others , 2007). Despite this there are several drawbacks, not least of all,

that the transition density often remains intractable. Moreover, in practice, data are measured at

discrete time intervals that cannot be assumed to satisfy the first leap condition and consequently,
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one is often required to integrate over the unobserved processes between observations as in Heron

and others (2007).

A.3 Linear Noise Approximation

The linear noise approximation (LNA) is a linearisation of the master equation and always results

in analytical transition densities. Derivations of varying degrees of rigour can be found in nu-

merous sources (see for example, van Kampen (1961); Kurtz (1971); Wallace and others (2012)).

Van Kampen’s system size expansion evolves from the Ansatz,

XL(t) = φ(t) + Ω−1/2ξ(t), (A.12)

where φ is a deterministic path, ξ a stochastic fluctuation and Ω is the size of the system. In

particular, φ := XD, is the macroscopic solution. The derivation then proceeds via a second

order Taylor expansion about the master equation for the solution (A.12). Kurtz (1971) on the

other hand, provides a rigourous foundation for the LNA with a detailed application to SRNs

given in Anderson and Kurtz (2011), which we follow here. In particular, the LNA is derived as

a central limit theorem to the Poisson process given in equation (A.3). To see this, we consider

V (Ω) :=
√
Ω(X(Ω)−φ) to be the deviation between the Poisson process,X(Ω), and the macroscopic

limiting process, φ,

V (Ω)(t+ τ) =
√
Ω
(

X(Ω)(t+ τ)− φ(t+ τ)
)

=
√
Ω
(

X(Ω)(t)− φ(t)
)

+ ...

... +
√
Ω

(

1
ΩSK(Ω) − S

∫ t+τ

t

h(φ(s), θ) ds

)

= V (Ω)(t) + 1√
Ω
SK(Ω) −

√
Ω

∫ t+τ

t

A(φ(s)) ds,
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where A is defined as in equation (A.5). Thus we have,

V (Ω)(t+ τ)− V (Ω)(t) = 1√
Ω
SK(Ω) −

√
Ω

∫ t+τ

t

A(φ(s)) ds, (A.13)

K(Ω) ∼ Pois

(
∫ t+τ

t

Ωh(X(Ω)(s), θ) ds

)

.

Using the trick of adding zero, we have,

V (Ω)(t+ τ) − V (Ω)(t) = 1√
Ω
SK(Ω) −

√
Ω

∫ t+τ

t

Ωh(X(Ω)(s), θ) ds+ ...

... +
√
Ω

∫ t+τ

t

Ωh(X(Ω)(s), θ) ds−
√
Ω

∫ t+τ

t

A(φ(s)) ds,

= 1√
Ω
SK(Ω) −

√
Ω

∫ t+τ

t

Ωh(X(Ω)(s), θ) ds+ ...

... +
√
Ω

∫ t+τ

t

(

A(X(Ω)(s))−A(φ(s))
)

ds.

By the central limit theorem the term, 1√
Ω
SK(Ω) −

√
Ω
∫ t+τ

t Ωh(XL(s), θ) ds → Z(Ω), where,

Z(Ω) ∼ N

(

0, S

∫ t+τ

t

h(X(Ω)(s), θ) dsST

)

. (A.14)

Moreover, under the assumptions that there exists a unique solution to the initial value problem

(A.5) and that the hazard rates are multinomial (assumptions that are immediately satisfied by

a stochastic reaction network), theorem K of Barbour (1974) allows one to rewrite the following,

√
Ω

∫ t+τ

t

(

A(X(Ω)(s))−A(φ(s))
)

ds ≈
√
Ω

∫ t+τ

t

(

∇A(φ(s))(X(Ω)(s)− φ(s))
)

ds

=

∫ t+τ

t

(

J(φ(s))V (Ω)(s)
)

ds

where J(φ(s)) is the Jacobian, Jij :=
∂Aj

∂φi
, of the macroscopic ODE. Consequently, taking the

limit as Ω → ∞, and defining ξ(t) := limΩ→∞ V (Ω)(t) = limΩ→∞(
√
Ω(X(Ω)(t)− φ(t))), equation

(A.13) becomes,

ξ(t+ τ)− ξ(t) =

∫ t+τ

t

J(φ(s))ξ(s) ds+ Z, (A.15)

Z ∼ N

(

0,

∫ t+τ

t

B(φ(s)) ds

)

, (A.16)
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where B is as in (A.11) and comes from equation (A.14).

We therefore arrive at the full specification of the LNA,

XL(t) = φ(t) + Ω−1/2ξ(t), (A.17)

where,

dφ

dt
= A(φ(t)) (A.18)

dξ = J(φ(t))ξ(t)dt +
√

B(φ(t))dWt, (A.19)

where dWt are independent Wiener processes. Equation (A.19) is linear with Itô representa-

tion and thus the transition, P(ξ(t + τ)|ξ(t)), is Gaussian with mean and variance defined by

(Komorowski and others , 2009),

dµ

dt
= J(φ(t))µ(t) (A.20)

dΣ

dt
= Σ(t)J(φ(t))T + J(t)Σ(t)T +B(φ(t))B(φ(t))T . (A.21)

Correspondingly, the transition probabilities of the state vector are derived to be (Finkenstädt

and others , 2013),

P(XL(t+ τ)|XL(t)) = N (φ(t) + Ω−1/2µ(t+ τ),Ω−1Σ(t+ τ)).

The LNA can always be expressed as a linear Gaussian state space model, for simplicity we

consider XL(t) to be the LNA of a linear stochastic reaction system. In this case, the Jacobian

is independent of φ and consequently is constant in time so that the state representation takes

the form,

XL(t+ τ) = eJτXL(t) + (φ(t + τ)− eJτφ(t)) + Ω−1/2η(t+ τ), (A.22)

η(t+ τ) ∼ N (0,Σ(t+ τ))

Σ(t+ τ) =

∫ t+τ

t

[eJ(t+τ−s)B(s)][eJ(t+τ−s)B(s)]T ds.
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As before, φ denotes the solution to the macroscopic ODE and J is the associated Jacobian. To

be explicit, for the gene transcription model (2.1)-(2.2), φ := (φm, φp)
T , where φm and φp solve

the following ODE system,

dφm

dt
= β(t)− δmφm(t),

dφp

dt
= αφm(t)− δpφp(t),

and

J =

(

−δm 0
α −δp

)

, B(φ(t)) =

(
√

β(t) + δmφm(t) 0

0
√

αφm(t) + δpφp(t)

)

.

A.4 Birth Death Approximation

Recall that the gene transcription model consists of four reactions,

∅ β(t)−−−→ M, M
δm−−−→ ∅, (A.23)

M
α−−−→ M + P, P

δp−−−→ ∅. (A.24)

This stochastic reaction network models two species of interest, mRNA (M) and protein (P ), with

corresponding transition density given by P(M(t), P (t)|M(0), P (0)) which satisfies the following

differential master equation,

d

dt
P(m, p, t) = β(t)P(m− 1, p, t) + δm(m+ 1)P(m+ 1, p, t)

+ αmP(m, p− 1, t) + δp(p+ 1)P(m, p+ 1, t)

− (β(t) + δmm+ αm+ δpp)P(m, p, t). (A.25)

P(m, p, 0) =

{

1 if m = m0 and p = p0,

0 if m 6= m0 or p 6= p0.
(A.26)

Here, P(m, p, t) denotes the transition density P(M(t) = m,P (t) = p|M(0) = m0, P (0) = p0).

To derive an approximation to this transition density, one can construct an approximate
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Fig. 1. In each panel, the black envelope is the empirical 95% pointwise simulation interval for the true
continuous time mRNA process and the red, green and blue envelopes correspond to the empirical 95%
pointwise envelopes for M∗ under approximation 1, 2, and 3 respectively. The two panels correspond to
different parameter scenarios, corresponding to increasing molecular numbers (left to right).

reaction network that consists of two conditionally independent sub-networks,

∅ β(t)−−−−−→ M, M
δm−−−−−→ ∅, (A.27)

∅ αM∗(t)−−−−−→ P, P
δp−−−−−→ ∅, (A.28)

which corresponds to factorising the joint transition as follows

P(M(t), P (t)|M(0), P (0)) = P(M(t)|M(0), P (0))P(P (t)|M(t), P (0))

≈ P(M(t)|M(0))P(P (t)|M∗(t), P (0)). (A.29)

Note that the exact system will be derived by setting M∗ to be the continuous time mRNA

process, M(t). We have considered three different definitions of M∗,

1. M∗(t) := m0, the mRNA level at the previous time point. As the distance between obser-

vations becomes small, this will converge to the exact process.

2. M∗(t) := mt, the mRNA level at the current time point. Again, as the distance between

observations becomes small, this will converge to the exact process.

3. M∗(t) := E(M(t)|M(0) = m0), the expected value of the continuous time mRNA process

given the previous observation. This approximation will converge to the exact process when
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Fig. 2. In each panel, the black envelope is the empirical 95% pointwise simulation interval for the
true Protein process and the red, green and blue envelopes correspond to the empirical 95% pointwise
envelopes for the approximate Protein process given M∗ calculated under approximation 1, 2, and 3
respectively. The two panels correspond to different parameter scenarios, corresponding to increasing
molecular numbers (left to right).
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Fig. 3. In each panel, the black histogram is the empirical transition density for the true marginal
Protein process and the red, green and blue histograms correspond to the transition densities for the
marginal Protein process given M∗ calculated under approximation 1, 2, and 3 respectively. Each panel
corresponds to a different simulated scenario of different sampling intervals (increasing sampling interval
from left to right). In particular, the final panel has a sampling interval large enough to contain a switch
in transcription.

either the time between observation becomes small or the intrinsic variability of the mRNA

process vanishes.

Note that in all cases, the marginal transition for the mRNA process will remain exact and it

is through the protein process that the approximation to the joint transition occurs. Figure 1

shows how each approximation M∗ compares to the true underlying process M for 2 different
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simulations. Clearly, approximation 3) underestimates the variance in the true process, with only

minor differences being observed between the other two approximations. Figure 2 shows the 95

% pointwise simulation intervals for the corresponding Protein population levels under these

different simulations for each of the above approximations. Again, it can be seen that under

approximation 3), in all scenarios, the variance is underestimated. In comparison, when the

sampling interval is small with respect to the speed of the reactions (Figure 2 a)), the difference

between approximations 1) and 2) is small. However, as the sampling interval increases, some

differences appear particularly about the switch points in transcription. Taking the previous

mRNA population as a proxy to the continuous time mRNA process will result in delaying the

estimated switch points in transcription, whereas the current mRNA population will accelerate

the estimation of switch points. Figure 3, which shows the marginal transition density of the

Protein process under each approximation, shows more clearly that as the sampling interval

becomes even larger, approximation 2) becomes the more accurate proxy to the true process.

Therefore, we restrict our research to using only approximation 2), which we will term the birth-

death decomposition (BDD), and note here that approximation 1) may also yield valid inference

for systems with a “reasonable” sampling window.

To solve the system (A.27)-(A.28), we note that a birth-death process of the form,

∅ b(t)−−→ X, X
d(t)−−→ ∅, (A.30)

has a closed form solution to the corresponding master equation given by,

d

dt
P(x, t) = b(t)P(x− 1, t) + d(t)P(x+ 1, t)− (b(t) + d(t))P(x, t), (A.31)

P(x, 0) =

{

1 if x = x0

0 if x 6= x0.

Explicitly, letting Z denote the random variable with transition density satisfying (A.31) then,

Z = ZP + ZB,
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where ZP ∼ Pois(λ) and ZB ∼ Bin(x0, π) and the corresponding parameters satisfy the following

system of ODEs,

dλ

dt
= b(t)− d(t)λ(t), λ(0) = 0,

dπ

dt
= −d(t)π(t), π(0) = 1.

A full derivation of this result is given in Gardiner (1985). This birth-death decomposition or

BDD may be further approximated by replacing the Poisson-binomial convolution by a bivariate

normal density truncated to the positive real line so that the transition densities are given by,

M(t)|M(0) ∼ N T (λ
m +m0π

m, λm +m0π
m(1− πm)) (A.32)

P (t)|(M∗(t), P (0)) ∼ N T (λ
p + p0π

p, λp + p0π
p(1− πp)) (A.33)

where N T indicates the normal density truncated to the positive real line and,

dλm

dt
= β(t) − δmλm(t),

dπm

dt
= −δmπm(t), λm(0) = 0, πm(0) = 1. (A.34)

dλp

dt
= αm0 − δpλ

p(t),
dπp

dt
= −δpπ

p(t), λp(0) = 0, πp(0) = 1. (A.35)

This normal approximation to the BDD is then termed the birth-death approximation of BDA

as referred to in the main paper.
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B. Inference for state space models

Suppose that we have observations Y0, ..., YT occurring at arbitrary times (t0, ..., tT ), and let

X0, ...,XT denote the sequence of states (X(t0), ...,X(tT )). Therefore, in the presence of a mea-

surement equation, any of the above approximations to the exact stochastic reaction network can

be modelled by a state space model of the form,

Xt+1 ∼ h(xt+1|xt, θ) Yt ∼ g(yt|xt, θ). (B.1)

Here, h is the transition density and g is the density of the measurement equation. As stated in

the main paper, the data likelihood is given by,

f(y|θ) =
∫

x

f(y,x|θ)dx (B.2)

=

∫

x

h(x0|θ)g(y0|x0, θ)
T
∏

t=1

h(xt|xt−1, θ)g(yt|xt, θ)dx. (B.3)

B.1 Kalman Methodology

Under the LNA with Gaussian measurement error, (B.1) becomes a linear Gaussian state space

model and consequently, the likelihood (B.2) can be evaluated explicitly. In this case, equation

(B.1) can be expressed in the following matrix form,

Xt+1 = FtXt + ct + ηt, (B.4)

Yt = GtXt + ǫt (B.5)

ηt ∼ N (0,Σt), ǫt ∼ N (0,Σǫ)

for matrices, Ft, Gt,Σt,Σǫ that are independent of the states Xt. Specifically, the following re-

cursive algorithm (Kalman, 1960) can be used to integrate over the latent states Xt,

1. Assign a prior distribution to the initial latent state, X0 ∼ N (a0, Q0).
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Letting S0 := G0X0G
T
0 +Σǫ, we get the predictive distribution,

Y0|X0 = x0 ∼ N (G0x0, S0). (B.6)

2. For time t = 1, ..., T ,

(a) Using the state equation (B.4), the predictive distribution for Xt|y0:t−1 becomes

N (bt, Rt), where the predictive equations are given by,

bt = Ft−1at−1 + ct−1, (B.7)

Rt = Ft−1Qt−1F
T
t−1 +Σt−1. (B.8)

(b) Using the observation equation (B.5), we can obtain the predictive distribution for

the observations Yt|y0:t−1,Xt = xt, yielding the predictive error,

Yt|Xt = xt ∼ N (Gtxt, St), (B.9)

St = GtRt−1G
T
t +Σǫ. (B.10)

In addition, the marginal predictive distribution for Yt|y0:t−1, is given by N (Gtbt, St)

(c) Finally, the posterior predictive distribution is given by Xt|y0:t ∼ N (at, Qt), where

the updating equations are given by,

at = bt +RtG
T
t R

−1
t (yt −Gtbt) (B.11)

Qt = Rt −RtG
T
t S

−1
t GtRt. (B.12)

The above results follow directly from the normality of Yt|y0:t−1,Xt = xt andXt|y0:t−1.
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The likelihood for the data y := y0:T is then given by the product of the marginal predictive

distributions,

f(y|θ) =f(y0|θ)
T
∏

t=1

f(yt|y0:t−1) (B.13)

= 1
(2π)T/2|S0| exp

(

− 1
2 (y0 −G0b0)

TS−1
0 (y0 −G0b0)

)

× ...

...×
T
∏

t=1

1
(2π)n/2|St| exp

(

− 1
2 (yt −Gtbt)

TS−1
t (yt −Gtbt)

)

.

In order to use the above methodology, one needs to specify a starting value for the recursions,

a0 and Q0. These starting values may depend upon the parameter vector θ. In particular, Ko-

morowski and others (2009) treat a0 as an additional parameter to be estimated and Q0 := Σ−1

is chosen to satisfy the following equation,

0 = J0Σ−1 +Σ−1J
T
0 +B0B

T
0 ,

where J0 := J(φ(0)) and B0 := B(φ(0)). This ensures that the initial covariance matrix is set to

be the covariance of the system at time t = 0 if the system was initialised at a steady state.

The restarting variant of the LNA (Fearnhead and others , 2014) uses the predictive distribu-

tion calculated in (B.11) of the Kalman filter, to reset the ODEs, φ, used in the transition densities.

Specifically, the ODE is recalculated at each time point subject to the condition, φt−1 = at−1,

where φt−1 is the ODE evaluated at time point t − 1. Note that under this Gaussian frame-

work, at−1 is the best linear unbiased predictor of Xt−1 and is often denoted by X̂t−1. The

restarting LNA method of Fearnhead and others (2014) is essential for non-linear systems as it

reduces the impact of the initial value. For linear systems, the difference becomes between the

restarting and non-restarting methods is reduced, in addition, due to the recursive nature of the

restarting method, the implementation can become considerably slower and we consequently fo-

cus our attention on the non-restarting version for this (piecewise-linear) application to the gene

transcription model of (2.1)-(2.2).
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B.2 Inference for non-linear or non-Gaussian state space models

When a state space model of the form (B.1) is either non-linear or non-Gaussian, it is often the

case that the data likelihood (B.2) cannot be explicitly evaluated. One way in which inference

may be performed in this scenario is to target an extended space, f(x, θ|y), consisting of both the

parameter vector, θ and the latent state variables, x. As stated in the main body of the paper,

this posterior can be targeted through the following two step Gibbs procedure,

1. Sample the parameter vector θ from f(θ|y,x).

2. Sample the latent states, x, from the filtering density, f(x|y, θ).

B.2.1 Particle Gibbs. In this paper we have implemented a particle Gibbs step (Andrieu and

others , 2010, 2009) in order to perform step 2 of the above Gibbs procedure. This is an extension

of the sequential importance sampling (SIS) algorithm of Doucet and others (2000), which is

outlined below.

Particle filters can be used to sequentially approximate the filtering density, f(xt|y0:t). In

particular, the filtering density is approximated by the discrete approximation,

fNp(xt|y0:t) =
Np
∑

i=1

w
(i)
t δ

x
(i)
t
,

where δx is a delta function centred at x and w
(i)
t are the importance weights. There are two

steps needed to obtain a sample {x(i)
t , w

(i)
t }:

1. Sample x
(i)
t ∼ q(.|x(i)

t−1, y0:t), where q is the importance density.

2. Compute the importance weights.

Given, the approximate filtering density fNp(x0:T |y0:T ), one can obtain a sample of the latent

states x := x0:T as required to calculate the extended likelihood under, for example, the BDA.
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The SIS develops from a recursive specification for f(x0:t|y0:t), namely,

f(x0:t+1|y0:t+1) ∝ g(yt+1|xt+1)h(xt+1|xt)f(x0:t|y0:t),

where h and g are the state and observation densities as given in the main paper. This means

that both the importance density and the weights are defined recursively,

q(x0:t+1|y0:t+1) ∝ q(xt+1|yt+1, xt)q(x0:t|y0:t),

w
(i)
t+1 =

f(x0:t+1|y0:t+1)

q(x0:t+1|y0:t+1)

∝ w
(i)
t

g(yt+1|xt+1)h(xt+1|xt)

q(xt+1|yt+1, xt)
.

In practice, this importance sampling procedure can lead to a weight degeneracy problem,

where only a small number of samples have a significant weight. To overcome this issue, one can

use a resampling procedure where the particle approximation {x(i)
t , w

(i)
t } is transformed into an

equally weighted sample by sampling with replacement. The full SIS algorithm with resampling

is given in Algorithm 1.

Algorithm 1. SIS algorithm with resampling

1: At time t = 0, sample Np particles from initial distribution X0 ∼ N T (a0, Q0) to obtain a

sample x
(1)
0 , ..., x

(Np)
0 . Compute the weights and normalise, where,

w
(i)
0 ∝ g(y0|x(i)

0 )h(x
(i)
0 )

q(x
(i)
0 |y0)

.

2: For t = 1, ..., T ,

a) for i = 1, ..., Np,

sample X
(i)
t ∼ q(.|x(i)

0:t−1, y0:t) to obtain Np paths x
(1)
0:t , ..., x

(Np)
0:t .

b) Calculate the incremental importance weights,

w
(i)
t ∝ w

(i)
t−1

g(yt|x(i)
t )h(x

(i)
t |x(i)

t−1)

q(x
(i)
t |x(i)

0:t−1, y0:t)
.
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c) Normalise weights,

W
(i)
t =

w
(i)
t

∑Np

j=1 w
(j)
t

.

d) Calculate the estimated effective sample size,

N̂eff = 1/

Np
∑

i=1

(

W
(i)
t

)2
.

If N̂eff < N̂Thres, resample the paths with weights, W
(i)
t , and set W

(i)
t = 1

Np
for

i = 1, ..., Np.

3: Sample from 1, ..., Np with weights W
(1)
T , ...,W

(Np)
T to obtain a sample of the full latent path

x
(B)
0:T consistent with the data y. Define the ancestral lineage, B = (B0, ..., BT ) of the sample

as the sequence of indices of the particle parents.

A key technicality of the particle filter is the resampling step 2 d) of Algorithm 1. This is used

to ensure we can efficiently sample paths compatible with the data, although it may result in a

particle degeneracy problem. Thus, we need to sample enough particles to ensure that there is a

sufficient number of independent paths at the end of the algorithm.

Since the particle filter is embedded within a Gibbs algorithm, one also needs to condition on

the latent path used in the previous iteration of the outer MCMC loop. We do this by using a

conditional systematic resampling algorithm (Kitagawa, 1996; Andrieu and others , 2010). Further

technical details of how to embed the SIS within a conditional framework are given in Andrieu

and others (2010, 2009). The main outline of the algorithm is given in Algorithm 2.

Algorithm 2. Particle Gibbs SIS

Initialisation. Initialise the static parameters, θ and run an SMC method (for example the SIS

in Algorithm 1) to obtain a sample x0:T and let B denote its ancestral lineage.
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Update. At each iteration of the MCMC, run the following conditional SMC algorithm,

1: At time t = 0, for i 6= B0 sampleNp−1 particles from initial distributionX0 ∼ N (a0, Q0)

to obtain a sample x
(1)
0 , ..., x

(B0)
0 , ..., x

(Np)
0 . Compute the weights and normalise, where,

w
(i)
0 ∝ g(y0|x(i)

0 )h(x
(i)
0 )

q(x
(i)
0 |y0)

.

2: For t = 1, ..., T ,

a) For i 6= Bt,

sample X
(i)
t ∼ q(.|x(i)

0:t−1, y0:t) to obtain Np paths x
(1)
0:t , ..., x

(B0:t)
0:t , ..., x

(Np)
0:t .

b) Calculate incremental importance weights,

w
(i)
t ∝ w

(i)
t−1

g(yt|x(i)
t )h(x

(i)
t |x(i)

t−1)

q(x
(i)
t |x(i)

0:t−1, y0:t)
.

c) Normalise weights,

W
(i)
t =

w
(i)
t

∑Np

j=1 w
(j)
t

.

d) Calculate the estimated effective sample size,

N̂eff = 1/

Np
∑

i=1

(

W
(i)
t

)2
.

If N̂eff < N̂Thres, resample the paths with weights, W
(i)
t , conditional on the an-

cestral lineage B, and set W
(i)
t = 1

Np
for i = 1, ..., Np.

3: Sample from 1, ..., Np with weights W
(1)
T , ...,W

(Np)
T to obtain a sample of the full latent

path x
(B)
0:T consistent with the data y, where B is the updated ancestral lineage.

B.2.2 Particle Gibbs Implementation of the BDA. As in the LNA, we treat the initial values of

the latent states as additional parameters to be estimated. In addition, in order to implement the

particle filter, one needs to define a proposal distribution. This proposal distribution is used to
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draw samples of the latent process, xt, conditional on the observations up to time t and the latent

molecular path up to time t − 1. Since this algorithm is an importance sampler, the proposal

distribution, q, will be optimal if it is equal to the filtering density,

q(xt|x0:t−1, y0:t) = f(xt|x0:t−1, y0:t).

If this density is not analytically available, q should otherwise be chosen as a good approximation

to f(xt|x0:t−1, y0:t) with slightly heavier tails.

Consider the gene transcription model (A.23) - (A.24) under the BDA. Recall that this de-

composition follows the non-linear state space model,

Yt ∼ N (
(

0 κ
)

Xt, σ
2
ǫ ), (B.14)

Xt+1 ∼ N T (µt+1, σ
2
t+1), (B.15)

where Xt+1 := (Mt+1, Pt+1)
T and,

µt+1 = λt + πtX
T
t ,

σ2
t+1 = λt + πt(1 − πt)X

T
t .

The vectors λt := (λm
t , λp

t )
T and πt := (πm

t , πp
t )

T satisfy the ODE system (A.34)-(A.35). Recall

that under the BDA, the joint transition density h(xt+1|xt) can be decomposed into,

h(mt+1, pt+1|mt, pt) = hm(mt+1|mt)hp(pt+1|mt+1, pt), (B.16)

where hm is the marginal transition for the mRNA process and hp is the marginal transition

density for the Protein process. Consequently, the joint filtering density can also be decomposed

as follows,

f(mt, pt|m0:t−1, p0:t−1, y0:t) = f(pt|m0:t−1,mt, p0:t−1, y0:t) × f(mt|m0:t−1, p0:t−1, y0:t)

= f(pt|mt, pt−1, yt)hm(mt|mt−1),

Letting g denote the observation density, one can propose xt := (mt, pt) in two steps.
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1. Propose Mt from the transition density hm(mt|mt−1) which will have importance weight

proportional to 1.

2. Secondly, propose Pt from the proposal q(pt|mt, pt−1, yt) given in (B.17) below.

In order to construct a reasonable proposal distribution, we note that,

f(pt|mt, pt−1, yt) ∝ hp(pt|pt−1,mt)g(yt|pt),

where hp is the truncated Gaussian transition density for Protein with mean µt := λp +

p0π
p and variance σ2

t := λp + p0π
p(1 − πp). Consequently, under the corresponding (non-

truncated) normal approximation to hp, (i.e. h
∗
p ∼ N (µt, σ

2
t )),

f(pt|mt, pt−1, yt)
approx∝ h∗

p(pt|pt−1,mt)g(yt|pt).

Thus enabling the construction of the following proposal proposal distribution for Pt|Pt−1,Mt, Yt,

Pt|Pt−1,Mt, Yt ∼ N (µ∗
t , σ

∗2

t ) (B.17)

σ∗2

t =

(

1
σ2
t
+ κ2

σ2
ǫ

)−1

, µ∗
t = σ∗2

t

(

µt

σ2
t
+ κyt

σ2
ǫ

)

.

C. Prior Distributions

Informative Priors. In order to ensure identifiability of the model under both the LNA and

BDA methods, informative priors are desirable. In particular, within a single cell imaging frame-

work, one can obtain prior information on the two degradation parameters. These priors are

parameterised by log-normal distributions,

log δm ∼ N (µδm , σ2
δm),

log δp ∼ N (µδp , σ
2
δp).

Within simulations, the parameters µδm , σδm , µδp , σδp were all fixed at the true value. For the

application to GFP imaging data, these values were obtained from Finkenstädt and others (2013),
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where,

µδm = log(0.14), σδm= 0.06,

µδp = log(0.57), σδp = 0.06.

Hierarchical Priors. The remaining kinetic and measurement parameters were incorporated

within a hierarchy with log-normal priors,

logα ∼ N (µα, σ
2
α),

log β ∼
2

∑

m=1

ωmN (µβm , σ2
βm

)

log κ ∼ N (µκ, σ
2
κ),

log σǫ ∼ N (µσ, σ
2
σ).

The hyper-parameters were assigned uninformative prior distributions where the mean was given

a N (0, 1002) prior, and the precision was given a Gamma(1, 0.001) prior while the weights of

the hierarchical mixture model have a Dirichlet(2, 2) prior. These hyper-parameters are sampled

from their conjugate distributions.

In addition, the initial values of the latent states were also incorporated into a hierarchy, with

gamma specification, parameterised by the mean and variance,

M0 ∼ Gamma(µm, σ2
m),

P0 ∼ Gamma(µp, σ
2
p).

The hyper-parameters were again assigned uninformative prior distributions where the mean was

given a N (0, 1002) prior, and the precision was given a Gamma(1, 0.0001) prior. These hyper-

parameters are sampled via a Metropolis-Hastings random walk sampler.

Switch Priors. The prior distributions over the switch parameters are chosen to be vague. Specif-

ically, we define a truncated negative binomial distribution over the prior number of switch points
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within the data conditional on the number of switches not exceeding some kmax. It is assumed

that the prior position of switch points is uniform over the entire observation window, [0, T ).

k ∼ NegBin(µk, σ
2
k; kmax),

s1, ..., sk|k ∼ Unif (0, T ).

The parameter µk, is the prior expected number of switches and should therefore be chosen

depending on the data application. For our purposes, this has been fixed at a value of 5 and kmax

has been fixed at 20. We have chosen a negative-binomial as opposed to a Poisson prior in order

to be less informative about the prior number of switches. In particular, we fix σ2
k to be 4µk.

D. Reversible jump MCMC scheme

At each iteration of the MCMC algorithm, we employ a reversible jump (Green, 1995) step in

order to update the log transcriptional profile, log β(t), where,

β(t) := βj for t ∈ [sj , sj+1).

A reversible jump method is used in order to sample across the different model dimensions,

corresponding to the number, k, of switch times within the transcriptional profile. This is imple-

mented according to a similar specification as in Jenkins and others (2013). At each iteration of

the reversible jump step, we allow one of the three following possible moves.

1. Propose the addition of a switch with probability bk.

A new switch, s∗ is proposed uniformly on [0, T ]. Suppose s∗ ∈ [sj , sj+1), then new values

for the transcription rates are required on this interval. In particular, the new rates are

defined as a perturbation of the old rates and since we are targeting the log-parameters,

this is done by first drawing u uniformly on [0, 1], and setting the new rates β∗
j , β

∗
j+1 so
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that the following set of equations are satisfied,

log β∗
j+1 = log βj + u

log β∗
j = log βj − u,

where βj was the original transcription rate over the interval [sj , sj+1). Since the new rates

have been proposed as a transformation of the old rates, log βj and the random variable u,

the corresponding Jacobian is given by,

J :=

∣

∣

∣

∣

∣

∣

∂β∗

j+1

∂βj

∂β∗

j+1

∂u
∂β∗

j

∂βj

∂β∗

j

∂u

∣

∣

∣

∣

∣

∣

= 2.

2. Propose the deletion of a switch with probability dk.

A switch is proposed uniformly from {s1, ...sk} for deletion. Suppose sj is the candidate for

deletion, then the new transcription rate, β∗, over [sj−1, sj+1) will be chosen so that,

log β∗ = (log βj−1 + log βj)/2.

Associated with this transformation is the inverse Jacobian,

J−1 :=

∣

∣

∣

∣

∣

∣

∂β∗

j+1

∂βj

∂β∗

j+1

∂u
∂β∗

j

∂βj

∂β∗

j

∂u

∣

∣

∣

∣

∣

∣

−1

= 1/2.

3. Propose to move a switch with probability 1− bk − dk.

A candidate switch for moving is proposed uniformly from {s1, ...sk}, say sj . The new place-

ment s∗j is proposed uniformly on the interval [sj−1, sj+1). Since there is no transformation

of the rate variables associated with this move, the Jacobian is equal to 1.

As in Green (1995), we let bk = cmin(1, f(k + 1)/f(k)), dk = cmin(1, f(k − 1)/f(k)), where

c is some constant (throughout our implementation, this has been fixed at 0.4) and f(k) is the

prior density for k switches. The proposed transcriptional profile obtained from performing one

of a), b) or c) is then accepted with probability,

α = min(1,Likelihood Ratio× Prior Ratio× Proposal ratio× Jacobian). (D.1)
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Note that the prior ratio is comprised of the ratio of the priors over, a) the number of switches, b)

the position of switches and c) the transcriptional rates. We note that conditional on k switches,

the prior assumption that switches occur uniformly corresponds to the distribution of consecutive

switches, (sj+1 − sj)/T following a Beta(2, 2k) distribution (Boys and Giles, 2007).

E. Conjugate Update of the Hierarchical Hyper-parameters

As specified in the main paper, the kinetic and measurement hyper parameters of the hierarchical

model can be updated by sampling from the full conditional distributions. To be explicit, we

consider the example of translation rates α := (α(1), ..., α(N)) for all cells 1, ..., N . It is assumed

that,

logα ∼ N (µα, σ
2
α), (E.1)

with hyper-prior distributions given by,

µα|σ2
α ∼ N (m, (σα

t )2), σ−2
α ∼ Gamma(a, b). (E.2)

Thus, given observations α, the hyper-parameters µα and σ2
α can be drawn from the following

full conditional distribution,

µα|σ2
α, α ∼ N (m∗, (σα

t∗ )
2), σ−2

α |α ∼ Gamma(a∗, b∗), (E.3)

where,

m∗ = (t−1m+NαL)/(t
−1 +N), 1/t∗ = t−1 +N .

a∗ = a+N/2, b∗ = b+ 1
2 (Ns2αL + (t−1N(αL −m)2)/(t−1 +N),

where αL := 1
N

∑

logα and s2αL := 1
N−1

∑

(logα − αL)
2. In exactly the same way, the hyper

parameters µκ, σκ, µσǫ , σσǫ can be updated. It has been assumed throughout that all hyper-prior
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distributions have the following parameters,

m = 0, t−1 = 100,

a = 1, b = 1/1000.

In order to update the hyper parameters of the mixture prior for transcription rates, β :=

(β(1), ..., β(N)) where β(i) := (β
(i)
0 , ..., β

(i)
K ) is the vector of all rates for all cells i = 1, ..., N , we

introduce some additional notation. Recall that the hyper-distribution is given by,

log β ∼
V
∑

v=1

wβvN (µβv , σ
2
βv
). (E.4)

Following the derivation given in McLachlan and Peel (2004), let fv be the density corresponding

to component v and let ζ = (ζ1, ..., ζN ) be the vector of indicator values such that,

ζiv =

{

1 if the ith observation is drawn from fv

0 otherwise.

Given these indicator variables, inference can be performed by a series of Gibbs steps as the

likelihood can now be written in the following form,

f(β, ζ|wβ , µβ , σ
2
β) = f(ζ|wβ)f(β|ζ, µβ , σ

2
β) (E.5)

=

N
∏

i=1

V
∏

v=1

(

wβvf(β
(i)|µβv , σ

2
βv
)
)ζiv

. (E.6)

With conjugate priors given by,

wβ ∼ Dirichlet(c1, ..., cV )

ζ|wβ ∼ Multinomial(1,wβ)

µβ1 , ..., µβV ∼ N (m, t)

σ−2
β1

, ..., σ−2
βV

∼ Gamma(a, b).

Consequently, in order to update the hyper-parameters, µβ , σ
2
β and wβ , conditional on the ob-

servations log β, sample from each of the following full conditional distributions,
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1. wβ | log β ∼ Dirichlet(c∗1, ..., c
∗
V ),

where c∗v =
∑N

i=1 ζiv + cv for v = 1, ..., V .

2. ζ|wβ , log β ∼ Multinomial (1,w∗
β),

where w∗
β ∝ wβf(log β|µβv , σ

2
βv
).

3. For v = 1, ..., V sample

(a) µβv | log β ∼ N (m∗, t∗),

where, m∗ = (t−1m+NvβL)/(t
−1 +Nv), and 1/t∗ = t−1 +Nv, with Nv :=

∑N
i=1 ζiv,

βL := 1
Nv

∑

i log β × ζiv.

(b) σ−2
βv

∼ Gamma(a∗, b∗),

where, a∗ = a+Nv/2, b
∗ = b+ 1

2 (Nvs
2
βL + (t−1Nv(βv −m)2)/(t−1 +Nv) and s2βL :=

1
Nv−1

∑

i(log β − βL)
2 × ζiv.

F. Simulation Study

We consider 3 scenarios of different parameter choices relating to 3 different underlying population

levels where each dataset contains 15 time series each measured over 50 hours with 100 discrete

measurements. Within each scenario, time series are simulated with a variety of switching regimes

and for each scenario we performed 10 simulations and applied both the BDA and LNA models.

Scenario 1 is simulated from the parameter set: log δm ∼ N (log(0.4), 0.02), log δp ∼ N (log(0.7), 0.02),

log β ∼ N (log(8), 0.3), logα ∼ N (log(4), 0.05), log κ ∼ N (log(2), 0.05), log σǫ ∼ N (log(4), 0.2).

For this scenario, the average mRNA level will be approximately 20 and average Protein

level will be approximately 115. The transcriptional rates are simulated from a single dis-

tribution with an average of 2 switches in each time series.

Scenario 2 is simulated from the parameter set: log δm ∼ N (log(0.4), 0.02), log δp ∼ N (log(0.7), 0.02),
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log β ∼ 0.5∗N (log(2), 0.2)+0.5∗N (log(10), 0.1), logα ∼ N (log(4), 0.05), log κ ∼ N (log(2), 0.05),

log σǫ ∼ N (log(4), 0.2). For this scenario, the average mRNA level will be approximately 15

and average Protein level will be approximately 85. The transcriptional rates are simulated

from a bimodal distribution with an average of 2 switches in each time series.

Scenario 3 is simulated from the parameter set: log δm ∼ N (log(0.4), 0.02), log δp ∼ N (log(0.7), 0.02),

log β ∼ 0.5∗N (log(2), 0.2)+0.5∗N (log(4), 0.1), logα ∼ N (log(1), 0.05), log κ ∼ N (log(4), 0.05),

log σǫ ∼ N (log(5), 0.2). For this scenario, the average mRNA level will be approximately 8

and average Protein level will be approximately 11. The transcriptional rates are simulated

from a bimodal distribution with an average of 2 switches in each time series.

F.1 Example

We present here an example from one simulation under Scenario 3. The 15 simulated time series

are shown in Figure 4, where a) gives the simulated transcriptional profiles, b) the unobserved

mRNA levels, c) the unobserved protein levels and d) the observed measurements. Specifically,

we present the results from running the LNA and the BDA with κ fixed at the true value.

Under the LNA, the MCMC algorithm for this simulation took 400,000 iterations compared

to the BDA version which took 1,500,000 iterations to sufficiently explore the posterior. The cor-

responding trace plots of the thinned Markov chains (every 10 iterations) after an initial burn-in

period for the hyper-parameters are shown in Figure 5 for the LNA and Figure 6 for the BDA.

Figures 7 and 8 give the trace plots of the thinned Markov chains for the individual parameters

of one randomly selected time series from Figure 4 under the LNA and BDA respectively. These

thinned Markov chains have been used to obtain an estimate of the marginal posterior distribu-

tions, shown in Figures 9-10 (LNA) and Figures 11-12 (BDA). It can be seen that the true values

all lie well within the estimated posterior densities.
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Fig. 4. 15 simulated time series from a single hierarchical distribution. a) gives the simulated transcrip-
tional profiles, b) the corresponding continuous time mRNA process, c) the continuous time protein
process and d) the observed measurements.
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Fig. 5. Trace plots of the thinned Markov chains for each of the hyper parameters calculated under the
LNA. Red line indicates the true value.
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BDA with red line indicating the true parameter value.



Stochastic Switch Model 33

1 2 3

x 10
4

−1.05

−1

−0.95

−0.9

−0.85

−0.8

Iteration

lo
g
 δ

m

1 2 3

x 10
4

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

Iteration

lo
g
 δ

p

1 2 3

x 10
4

−2

−1

0

1

2

3

Iteration

lo
g
 α

1 2 3

x 10
4

−0.5

0

0.5

1

1.5

2

Iteration

lo
g
 κ

0 2 4

x 10
4

0.5

1

1.5

2

2.5

Iteration

lo
g
 σ

e
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series calculated under the LNA with red line indicating the true parameter value.
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Fig. 9. Posterior densities for the two degradation parameters, calculated under the LNA. True values
are shown in blue and prior densities shown in red.
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shown in blue and prior densities shown in red.
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Fig. 11. Posterior densities for the two degradation parameters, calculated under the BDA. True values
are shown in blue and prior densities shown in red.
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F.2 Results

There are many ways in which one can extract the posterior transcriptional profiles from the

reversible jump output. For the purpose of this simulation study, we have only extracted the

marginal switch profiles as in Jenkins and others (2013). This is achieved by fitting a Gaussian

mixture model to the local maxima of the posterior density for switch times. Although this has

worked well in simulations, other methods may be applied and in particular, it should be noted

that by summarising through the marginal distribution of switch times, we are averaging over the

models sampled through the reversible jump methodology. As such, when applying to data, it is

recommended that a more detailed analysis of the posterior switch times should be performed.

Figure 13 shows the mean square errors (MSE) of the kinetic parameters calculated at the

posterior median values for each of the 3 simulation scenarios. We compare 5 different methods

for inferring these parameters:

1. LNA,

2. LNA with κ fixed at the truth,

3. LNA with κ fixed at the LNA posterior median (obtained from method 1)),

4. BDA with κ fixed at the truth,

5. BDA with κ fixed at the LNA posterior median (obtained from method 1)).

Since the BDA cannot reliably estimate the scaling parameter, κ, it needs to be fixed a priori.

In general, one may not know the value of κ, which motivates methods 3) and 5). A possible

alternative to fixing κ would be to run the algorithm over a grid of “reasonable estimates” for κ

and perform model selection.

From Figure 13 it can be seen that in some scenarios, the BDA provides a more accurate

estimate for the transcription rate, β, and the translation rate, α, regardless of whether the LNA
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is calculated with κ fixed at the truth. Interestingly, the LNA does reliably estimate the product

αβ and implies the BDA is better able to distinguish between these two parameters. Moreover,

Figure 14 shows the width of the 50% credible intervals under each of the different methods and

in general, the BDA tends to give narrower intervals. The main advantage of the LNA is its

computational efficiency and furthermore in practice one would be required to run the LNA to

first obtain an estimate of κ before running the BDA methodology. These results show that one

can use the BDA to further refine the LNA estimates of the kinetic parameters which themselves

give reasonable accuracy in reasonable computational run time.
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Fig. 13. The mean square error for each estimated parameter calculated under the LNA (circle), the LNA
with κ fixed at the truth (square), the LNA with κ fixed at the posterior median of the LNA (triangle),
the BDA with κ fixed at the truth (square) and the BDA with κ fixed at the posterior median of the
LNA (cross). Each panel corresponds to a different simulation scenario, with Scenario 1 shown in the top
panel, Scenario 2 in the middle pan ale and Scenario 3 in the bottom panel. For each scenario, there are
10 different simulations containing 15 individual time series. The MSE is therefore calculated from 150
different estimates of the posterior median. The vertical lines are centred at the mean square error with
length given by two standard deviations of the square error for each parameter.
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Fig. 15. Posterior densities for the two degradation parameters of the immature dataset, calculated under
the LNA. Prior densities are shown in red.

G. Data Application

Provided in Figures 15-22 are the posterior densities obtained from running the LNA and BDA

methodologies to the two datasets shown in Figure 2 of the main paper.

Figures 15 and 16 Obtained from applying the LNA to the immature data shown in Figures

2 a) of the main paper.

Figures 17 and 18 Obtained from applying the BDA with κ fixed at the LNA posterior median

to the immature data.

Figures 19 and 20 Obtained from applying the LNA to the mature data shown in Figure 2 b)

of the main paper.

Figures 21 and 22 Obtained from applying the BDA with κ fixed at the LNA posterior median

to the mature data.

In all four cases, the importance of the prior information regarding the degradation parame-

ters, δm and δp, can be seen. Specifically the posteriors for these parameters are often indistin-

guishable from the informative prior densities.
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Fig. 16. Posterior densities for the hierarchical parameters of the immature dataset, calculated under the
LNA. Prior densities are shown in red.
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Fig. 17. Posterior densities for the two degradation parameters of the immature dataset, calculated under
the BDA. Prior densities are shown in red.
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Fig. 18. Posterior densities for the hierarchical parameters of the immature dataset, calculated under the
BDA. Prior densities are shown in red.
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Fig. 19. Posterior densities for the two degradation parameters of the mature dataset, calculated under
the LNA. Prior densities are shown in red.

In order to assess how well each of the approximations fit the data, we look at the following

recursive residuals,

rt =
yt − E(Yt|y1:t−1)
√

Var(Yt|y1:t−1)
, for t = 1, ..., T, (G.1)

where Yt|y1:t−1 is the one-step ahead predictive distribution. The latter is computed as part of

the Kalman filter for the LNA, while under the BDA the moments of the predictive density

can be represented by the weighted sample, E(h(Xt)|y1:t−1) =
∑Np

i=1 wih(x
(i)
t )/

∑Np

i=1 wi, for any

function h, weights w1, ..., wNp and samples x
(1)
t , ..., x

(Np)
t . Therefore, it is straightforward to

extract the recursive residuals for both models. Under a state space formulation the residuals

in (G.1) will be i.i.d. with mean zero and variance one if the model fits the data. Moreover, if

the state space formulation is Gaussian, the residuals will also be Gaussian. Figure 23 shows the

residuals of the LNA and BDA models applied to the time series shown in Figure 9 of the main

paper. The residuals were computed at the posterior median of all parameter values and despite

the differences in the estimated transcriptional profiles, we see that in both cases, they satisfy all

assumptions. This residual analysis was performed on all cells to confirm uncorrelated Gaussian

residuals indicating that the stochastic switch model under both the LNA and BDA fits the data

well.
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Fig. 20. Posterior densities for the hierarchical parameters of the mature dataset, calculated under the
LNA. Prior densities are shown in red.
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Fig. 21. Posterior densities for the two degradation parameters of the mature dataset, calculated under
the BDA. Prior densities are shown in red.
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Fig. 22. Posterior densities for the hierarchical parameters of the mature dataset, calculated under the
BDA. Prior densities are shown in red.
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Fig. 23. Recursive residuals calculated for the time series shown in Figure 9 calculated at the posterior
median estimates obtained under a) the LNA and b) the BDA. The left column shows the recursive
residuals against index. The centre column gives a qq-plot of the residuals with no significant deviation
from normality in both cases (p < 0.05 according to a Kolmogorov-Smirnov test for normality). The right
column gives the autocorrelation of the residuals with the shaded region depicting the 95% envelopes of
a white noise process.
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