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1. ASYMPTOTIC BEHAVIOR

Sketch proof of Theorem 1. For fixed θ, denote the maximizer of ℓn(θ, F ) by F̂θ. Obviously, ψ̂n =

(θ̂n, F̂n) is just the joint maximizer of ℓn(ψ). By a similar argument as in the proof of Property 1 in

Vardi (1989), we can show that maximizing the log-likelihood function ℓn for a fixed θ is equivalent to

maximizing a strictly log-concave problem over a convex region, hence implying a unique maximizer F̂θ

for each θ in the compact set Θ. Then the compactness of Θ and the continuity of the profile likelihood

ℓn(θ, F̂θ) imply the existence of the maximum likelihood estimator. Furthermore, condition (A4) ensures

the uniqueness of the maximum likelihood estimator.

Next, we show that both θ0 and F0 are identifiable. Suppose we have Pθ,F = Pθ0,F0 almost every-
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where under Pθ0,F0
. Consider the densities on δ = 0, we see that F̄ (y)h(a,θ)/µ(θ, F ) = F̄0(y)h(a,θ0)/µ(θ0, F0)

for almost all 0 6 a 6 y 6 τ . Let t∗ = sup{t : F0(t) < 1}. Because F0 is assumed to be continuous,

there exists a sequence {y∗m,m > 1}, y∗m < τ , converging to t∗. As m → ∞, we have h(a,θ)/h(a,θ0) =

µ(θ, F )/µ(θ0, F0)× F̄0(y
∗
m)/F̄ (y∗m) → µ(θ, F )/µ(θ0, F0). The limit of the right side of the equation is

independent of a. Hence θ = θ0. Moreover, for δ = 1, we have f(y)h(a,θ)/µ(θ, F ) = f0(y)h(a,θ0)/µ(θ0, F0)

for 0 6 a 6 y 6 τ . Combining with the previous result, we can show that that f(y)/f0(y) = 1 for all

y ∈ [0, τ ].

The proof of consistency for ψ̂n is similar to those of Murphy (1995) and Parner (1998), thus we

only state the main results for the proof. Since ψ̂n is bounded, by Helly’s selection theorem, there exists

a convergent subsequence ψ̂nk
= (θ̂nk

, F̂nk
), whose limit is denoted by ψ∗ = (θ∗, F ∗) ∈ Θ × F . It

suffices to show that ψ∗ = ψ0 for any convergence subsequence. This can be accomplished by applying

the classical Kullback-Leibler information approach. Specifically, we choose θ̃ = θ0 and

F̃n(t) =
n−1

∑
tl6t

∑n
i=1 H(ai,θ0)

−1 [δiI(yi = tl) + E0{(1− δi)I(yi = tl)}]
n−1

∑L
k=1

∑n
j=1 H(aj ,θ0)−1 [δjI(yj = tk) + E0{(1− δj)I(yj = tk)}]

,

where E0 is the expectation under ψ0. In fact, if ψ0 was used as the initial value in the Expectation-

Maximization algorithm in Section 2, F̃n is simply the one-step estimator of F . Applying the Glivenko-

Cantelli Theorem and a standard argument for Donsker class, we can show that F̃n(t) converges to F0

almost surely and uniformly in [0, τ ]. By the strong law of large numbers for empirical processes, we can

show that n−1
k {ℓnk

(θ̂nk
, F̂nk

) − ℓnk
(θ̃, F̃n)} converges almost surely to the negative Kullback-Leibler

distance between Pψ∗ and Pψ0 , where Pψ is the probability measure under the parameter ψ = (θ, F ).

Because ℓnk
is maximized at ψ̂nk

, we have ℓnk
(θ̂nk

, F̂nk
) − ℓnk

(θ̃, F̃ ) > 0. Hence Pψ∗ = Pψ0 almost

surely. Thus by model identifiability, we have ψ∗ = ψ0. Because every convergent subsequence of ψ̂n

converges to the same limit ψ0, ψ̂n must converge to ψ0 for any t ∈ [0, τ ]. The convergence is almost

surely, since we only use the strong law of large numbers at most countably many times. The continuity

and monotonicity of F0 thus ensures the uniform convergence of F̂n in [0, τ ].
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We now prove the asymptotic normality of n1/2{θ̂n − θ0, F̂n(t) − F0(t)} by applying the general

Z-estimator convergence theorem (Theorem 3.3.1 in van der Vaart and Wellner, 1996). For theoretical de-

velopment, we reparametrize the model and express the log-likelihood in terms of the hazard function:

ℓn(φ) =
n∑

i=1

[δi log{λ(yi)} −Λ(yi) + log {h(ai,θ)} − log {µ(θ,Λ)}] .

where φ = (θ,Λ), λ(t) = dΛ(t)/dt, and µ(θ,Λ) =
∫ τ

0
h(u,θ) exp{−Λ(u)}du. Let ψ0 = (θ0,Λ0)

be the true parameter values, and let S0 and λ0 be the survival function and the hazard function that

correspond to the true cumulative hazard function Λ0.

Denote by φ̂n = (θ̂n, Λ̂n) the maximum likelihood estimator that maximizes ℓn(φ). Taking the

derivative of ℓn with respect to θ, we obtain the (normalised) score function for θ,

Un1(θ,Λ) =
1

n

n∑
i=1

{
h(1)(ai,θ)

h(0)(ai,θ)
−
∫ τ

0
h(1)(u,θ)S(u)du∫ τ

0
h(0)(u,θ)S(u)du

}
,

where, for convenience, we define the functionsh(k)(t,θ) = ∂h(k−1)(t,θ)/∂θ, k = 1, 2, and h(0)(t,θ) =

h(t,θ). To derive the likelihood equation for the nonparametric component Λ, we consider a submodel

defined by Λα(t) =
∫ t

0
{1 + αη(u)}dΛ(u), where η is any bounded, integrable function on [0, τ ]. By

taking the derivative of ℓn(θ,Λα) with respect to α, evaluating it at α = 0, and setting η(·) = 1(· 6 t),

the (normalised) likelihood equation for Λ is given by

Un2(θ,Λ)(t) =
1

n

n∑
i=1

{
δiI(yi 6 t)−

∫ t

0

I(yi > u)dΛ(u) +

∫ t

0

∫ τ

u

S(w)

µ(θ,Λ)
h(w,θ)dwdΛ(u)

}
.

Denote the vector of likelihood equations by Un(φ)(t) = {Un1(φ), Un2(φ)(t)}. The maximum likeli-

hood estimator φ̂n is the solution to the system Un1(φ) = 0 and Un2(φ)(t) = 0 for t ∈ [0, τ ].

Let E0 denote the expectation under the true value φ0. Define U(φ)(t) = {U1(φ),U2(φ)(t)} with

U1(φ) = E0{Un1(φ)} and U2(ψ) = E0{Un2(φ)}. The asymptotic normality of φ̂n can be established

by verifying the three main conditions of the general Z-estimator convergence theorem (Theorem 3.3.1 in

van der Vaart and Wellner, 1996): Fréchet differentiability, weak convergence of the likelihood equations

√
nUn(φ0), and the stochastic approximation of the likelihood equations.
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We first show that U is Fréchet differentiable atφ0 and its Fréchet derivative is continuously invertible.

The Gâteaux derivative of U exists at any (θ,Λ) ∈ Θ× L2[0, τ ], where L2[0, τ ] is the space of functions

with finite L2 norm on [0, τ ]. Considering submodels (θα,Λα) = (θ0 + αθ,Λ0 + αΛ), the Gâteaux

variations of U at (θ0,Λ0) can be obtained by taking the derivative of U(θα,Λα) with respect to α and

evaluating at α = 0. Specifically, let µ0 =
∫ τ

0
h(0)(u,θ0)S0(u)du and µ1 =

∫ τ

0
h(1)(u,θ0)S0(u)du,

then the Gâteaux derivative of U at (θ0,Λ0) is given by

U̇0(ψ) = −
(
σ11 σ12

σ21 σ22

)(
θ
Λ

)
,

where

σ11(θ) =

(
E0

[{
h(1)(A,θ)

h(0)(A,θ)

}⊗2
]
−
{
µ−1
0 µ1

}⊗2

)′

θ = J0θ,

σ12(Λ) =

∫ τ

0

∫ τ

u

S0(w)

µ0

{
µ1

µ0
h(0)(w,θ0)− h(1)(w,θ0)

}
dw dΛ(u),

σ21(θ)(t) =

[∫ t

0

∫ τ

u

S0(w)

µ0

{
µ1

µ0
h(0)(w,θ0)− h(1)(w,θ0)

}
dw dΛ0(u)

]′
θ,

σ22(Λ) =

∫ t

0

S0(u)

µ0

{∫ u

0

h(0)(v,θ0)Fc(u− v)dv

}
dΛ(u)

+

∫ τ

0

∫ τ

u

S0(w)

µ0
h(0)(w,θ0) {Λ0(t ∧ w)−K(t)} dw dΛ(u),

with u ∧ w = min(u,w), Sc being the survival function of the censoring time, and

K(t) =

∫ t

0

∫ τ

u

S0(w)µ0
−1h(0)(w,θ0)dwdΛ(u).

Thus it is easy to see that the mapping from ψ ∈ Θ × L2[0, τ ] to the derivative of U at ψ is continuous.

Hence by a similar argument as the proof of Lemma 15.8 in Kosorok (2008), we can show that U is Fréchet

differentiable and its derivative at ψ0 is given by U̇0. Note that the operator U0 is a linear continuous

operator defined on Rp × L2[0, τ ], where L2[0, τ ] is a Banach space. If the inverse operator U̇0 exists,

then it must be continuous by Banach’s continuous inverse theorem (Zeidler, 1995, page 179). Hence, to

prove the continuous invertibility of U0, we only need to show that the inverse operator of U̇0 exists.

Straightforward algebra shows that if σ11 and Φ = σ22 − σ21σ
−1
11 σ12 are invertible, then the inverse
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of U̇0 is

U̇
−1

0 = −
(
σ−1
11 + σ−1

11 σ12Φ
−1σ21σ

−1
11 −σ−1

11 σ12Φ
−1

−Φ−1σ21σ
−1
11 Φ−1

)
.

The operator σ11(θ) = J0θ is a linear operator, where the matrix J0 is the Fisher information for θ if Λ0

is known. By Assumption (A4), the matrix J0 is singular. Hence σ11 is invertible.

Define the functions

Q(t) =
S0(u)

µ0

{∫ u

0

h(0)(w,θ0)Fc(u− w)dw

}
and

R(t, u) =

∫ τ

u

S0(w)

µ0
h(0)(w,θ0) {Λ0(t ∧ w)−K(t)} dw

−
[∫ τ

u

S0(w)

µ0

{
µ1

µ0
h(0)(w,θ0)− h(1)(w,θ0)

}
dw

]′
J−1
0

×
[∫ t

0

∫ τ

u

S0(w)

µ0

{
µ1

µ0
h(0)(w,θ0)− h(1)(w,θ0)

}
dw dΛ0(u)

]
,

with Fc being the cumulative distribution of the censoring time. Then

Φ(Λ) = σ22(Λ)− σ21J
−1
0 σ12(Λ) =

∫ t

0

Q(u)dΛ(u) +

∫ τ

0

R(t, u)dΛ(u). (1.1)

The invertibility of Φ is equivalent to show that there exists a unique solution to the equation Φ(Λ) = Λ̃

for any function Λ̃ ∈ L2[0, τ ]. Define Ṙ(t, u) = ∂R(t, u)/∂t. Taking the derivative with respect to t on

both sides of (1.1), we have

dΛ̃(t) = Q(t)dΛ(t) +

∫ τ

0

Ṙ(t, u)dΛ(u),

which is a Fredholm equation of the second type. By Assumptions (A1) ∼ (A3), the bivariate function

Ṙ(t, u) is continuous on [0, τ ]× [0, τ ] and the function Q(t) is continuous and bounded away from 0 for

t > 0. Then it follows from the classical theory for integral equation (Tricomi, 1985, Chap 2) that there is

a unique solution dΛ(t) to the Fredholm integral equation, characterized by

dΛ(t) =
dΛ̃(t)

Q(t)
−
∫ τ

0

η(t, w)

Q(t)
dΛ̃(w)
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where the function η(u, v) satisfies

η(u,w) = − Ṙ(u,w)

Q(w)
−
∫ τ

0

η(u, s)
Ṙ(s, w)

Q(w)
ds.

Thus we show the invertibility of the functional Φ, where the inverse operator is

Φ−1(Λ)(t) =

∫ t

0

dΛ(u)

Q(u)
−
∫ τ

0

∫ t

0

η(u, v)

Q(t)
du dΛ(v).

It is easy to see that Un(φ) = {Un1(φ), Un2(φ)} is the sum of independently and identically dis-

tributed stochastic processes. The weak convergence of
√
n{Un1(φ0)−U1(φ0)} to a multivariate normal

distribution W1 follows from the multivariate central limit theorem. Moreover, by applying the central

limit theorem for processes with bounded variation (see Example 2.11.16 in van der Vaart and Wellner, 1996),

it can be shown that
√
n{Un2(φ0)−U2(φ0)} converges weakly to a tight Gaussian process W2. Thus the

weak convergence of
√
nUn(φ0) to W = (W1,W2) follows from the continuous mapping theorem.

Finally, to apply the Z-theorem for infinite dimensional estimating equations, we need to estab-

lish the stochastic approximation ∥
√
n{Un(φ̂n) − U(φ̂n)} −

√
n{Un(φ0) − U(φ0)} ∥= op(1). Let

U(θ,Λ)(t) = {U1(θ,Λ), U2(θ,Λ)(t)} the likelihood equations based on a single observation (a, y, δ),

that is,

U1(θ,Λ) =

{
h(1)(a,θ)

h(0)(a,θ)
−
∫ τ

0
h(1)(u,θ)S(u)du∫ τ

0
h(0)(u,θ)S(u)du

}
.

and

U2(θ,Λ)(t) = δI(y 6 t)−
∫ t

0

I(y > u)dΛ(u) +

∫ t

0

∫ τ

u

S(w)

µ(θ,Λ)
h(w,θ)dwdΛ(u).

The likelihood equations are defined on Θ×H. Let H̄ be the closed linear subspace generated by H. Thus

H̄ ⊂ BV [0, τ ], where BV [0, τ ] is the space of functions of bounded variation on [0, τ ]. Let the norm

∥ · ∥Θ×H̄ on Θ × H̄ defined as ∥ (θ,Λ) ∥Θ×H̄=∥ θ ∥ + ∥ Λ ∥v, where ∥ · ∥ is the Euclidean norm and

∥ · ∥v is the total variation norm.

We now show that the class of functions {U(φ)(t) − U(φ0)(t) : ∥ φ − φ0 ∥Θ×H̄< ϵ, t ∈ [0, τ ]}

is P0-Donsker. It follows (A2) that the classes of functions {h(1)(a,θ) : θ ∈ Θ} and {h(0)(a,θ) :
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θ ∈ Θ} are bounded, and hence both are P0-Donsker. Moreover, because the function S0 is of bounded

variation on [0, τ ] and
∫ τ

0
h(0)(u,θ)S(u)du is bounded away from 0, the classes of bounded functions

{
∫ τ

0
h(1)(u,θ)S(u)du :∥ φ − φ0 ∥Θ×H̄< ϵ} and {{

∫ τ

0
h(0)(u,θ)S(u)du}−1 :∥ φ − φ0 ∥Θ×H̄< ϵ}

are also P0-Donsker. Thus the class of functions {U1(θ,Λ) :∥ φ − φ0 ∥Θ×H̄< ϵ} is P0-Donsker, as the

summation and production of Donsker classes are also Donsker. Similarly, we can show that the classes

{
∫ t

0

∫ τ

u
S(w)h(w,θ)dwdΛ(u) :∥ φ − φ0 ∥Θ×H̄< ϵ, t ∈ [0, τ ]} and {µ(θ,Λ) :∥ φ − φ0 ∥Θ×H̄< ϵ} are

P0-Donsker, as they have uniformly bounded envelop functions. Again, by applying the fact that sums,

productions and Lipschitz transformations of P0-Donsker classes are still P0-Donsker, we can show that

{U2(θ,Λ) :∥ φ − φ0 ∥Θ×H̄< ϵ} is P0-Donsker. Now, because U(φ)(t) converges to U(φ0)(t) as ∥

φ−φ0 ∥Θ×H̄→ 0 for any t ∈ [0, τ ] and the convergence also holds in the square moment by the dominated

convergence theorem, we have supt∈[0,τ ] E0 ∥ U(φ)(t) − U(φ0)(t) ∥2
Θ×H̄→ 0. Thus it follows from

Lemma 3.3.5 of van der Vaart and Wellner (1996) that n1/2(Un−U)(φ̂n)−
√
n(Un−U)(φ0) = op(1).

The weak convergence of n1/2(φ̂n − φ0) to the mean zero Gaussian process −U̇
−1

0 (W) now follows

Theorem 3.3.1 of van der Vaart and Wellner (1996).

Let ϕ be the transformation from (θ,Λ) to (θ, F ) with ϕ(θ0,Λ0) = (θ0, F0). It is known that the map-

ping is Hadamard differentiable. Applying the functional delta method, we can show that n1/2{(θ̂n, F̂n)−

(θ0, F0)} converges weakly to a tight mean zero Gaussian process −ϕ′
0{U̇

−1
(W)}, where ϕ′

0 is the

Hadamard derivative of ϕ evaluated at ψ0.

2. ADDITIONAL SIMULATION RESULTS

We evaluated the power of the proposed semiparametric likelihood ratio test under various scenarios. We

simulated survival time T 0 from a truncated exponential distribution with density function exp(−t)/{1−

exp(−10)} for t ∈ (0, 10] and T 0/10 from a beta distribution with parameters 0.5 and 5. The underlying

truncation times were generated so that A0/10 followed the uniform distribution on [0, 1] and a beta distri-

bution with shape parameters 0.75 and 1. The censoring times were generated from uniform distributions
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so that the proportions of uncensored subjects were 100%, 75%, 50%. For each set of simulations, we con-

sidered different sample sizes n = 100, 200. The significance level of the semiparametric likelihood ratio

test was set at 0.05. Table S.1 summaries the estimated size and power of the proposed semiparametric

likelihood ratio test for testing H0 : θ1 = θ2 = θ3 = 0 in the smooth alternative density (3.5).

For comparison, we also applied the paired logrank test proposed by Mandel and Betensky (2007)

that compares the truncation time distribution and the residual survival time distribution, and reported the

size and power of the test in Table S.1. When the underlying truncation time is uniformly distributed, the

estimated sizes of both tests are close to the predetermined significance level (0.05). As expected, when

the truncation time distribution is not uniform, the power to reject the null hypothesis increases with the

sample size but decreases with the proportion of censored subjects. The proposed test is more powerful

than the paired logrank test when the proportion of censored subjects is low, and is as efficient as its

competitor when the censoring proportion is high.

Table S.1. Summary of power for the proposed test. LRT, the proposed semiparametric likelihood ratio test; PLR,
paired log-rank test; Uniform, A0/10 is generated from the uniform(0, 1) distribution; Beta, A0/10 is generated
from the Beta(0.75, 1) distribution.

T 0 ∼ exp(1) T 0 ∼ Beta(0.5, 5)
Uniform Beta Uniform Beta

n pr(∆ = 1) LRT PLR LRT PLR LRT PLR LRT PLR
100 1 0.06 0.05 0.60 0.50 0.06 0.05 0.57 0.47

0.75 0.06 0.06 0.58 0.51 0.06 0.05 0.54 0.49
0.50 0.06 0.05 0.53 0.53 0.05 0.05 0.50 0.50

200 1 0.05 0.05 0.88 0.78 0.06 0.05 0.87 0.78
0.75 0.05 0.05 0.85 0.80 0.05 0.05 0.85 0.79
0.50 0.05 0.04 0.82 0.81 0.05 0.05 0.80 0.80
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