
Biostatistics (2014), 0, 0, pp. 1–24
doi:10.1093/biostatistics/BIOSTS˙14082˙SCPG˙supp˙v6

Statistical completion of a partially identified

graph with applications for the estimation of

gene regulatory networks: Supplementary

Materials

DONGHYEON YU

Department of Statistics, Keimyung University, Daegu, Korea

WON SON

Department of Statistics, Seoul National University, Seoul, Korea

JOHAN LIM

Department of Statistics, Seoul National University, Seoul, Korea

GUANGHUA XIAO∗

Department of Clinical Sciences, University of Texas Southwestern Medical Center, TX 75390,

USA

guanghua.xiao@utsouthwestern.edu

APPENDIX

A. Modification of the active shooting algorithm

Let ρ̂ij,(m) be the estimates of ρij at the mth iteration in Step 1. The modified active shooting

algorithm obtains the estimates for ρ by the following steps:
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• Step A1: (Initialization) From the one-dimensional lasso regression problems,

ρ̂ij,(0) =



















sign
(

YT X̃i,j
)

(

|YT X̃i,j | − λ
)

+

(X̃i,j)T X̃i,j
for (i, j) /∈ K

YT X̃i,j

(X̃i,j)T X̃i,j
for (i, j) ∈ K

,

where (x)+ = max(x, 0).

• Step A2: Define the active set A =
{

(i, j) | ρ̂ij,(m) 6= 0
}

.

• Step A3: For each (i, j) ∈ A, update ρ̂ij by the following equations:

for (i, j) /∈ K,

ρ̂ij,(m) = argmin
ρij

1

2
‖Y −

∑

(k,l) 6=(i,j)

X̃k,lρ̂kl,(m) − X̃i,jρij‖22 + λ|ρij |

= sign
(

eTijX̃
i,j
)

(

|eTijX̃i,j | − λ
)

+

(X̃i,j)T X̃i,j
,

(A.1)

for (i, j) ∈ K,

ρ̂ij,(m) = argmin
ρij

1

2
‖Y −

∑

(k,l) 6=(i,j)

X̃k,lρ̂kl,(m) − X̃i,jρij‖22 =
eTijX̃

i,j

(X̃i,j)T X̃i,j
, (A.2)

where eij = Y −∑

(k,l) 6=(i,j) X̃
k,lρ̂kl,(m) and (x)+ = max(x, 0).

• Step A4: Repeat Step A3 until ρ̂ij,(m) for (i, j) ∈ A converge.

• Step A5: For 1 6 i < j 6 p, update ρ̂ij,(m+1) by (A.1) and (A.2).

• Step A6: Repeat Steps A2–A5 until ρ̂ converges.

We remark that the modified equations above have inner products whose complexities are O(p2).

However, the column vector X̃i,j has many zero elements and, in addition, its non-zero elements

are systematically allocated to allow for an efficient computation of the inner products. For

example, (X̃i,j)T (X̃i,j) = v2ij
∑n

k=1(X
k
j )

2 + v2ji
∑n

k=1(X
k
i )

2 whose complexity is O(n).
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B. Preliminaries for the asymptotic properties

Assume we have observations from the model

Yi = xT
i β + ǫi, i = 1, 2, . . . , n

where xi is a p× 1 dimensional vector, β =
(

β1, β2, . . . , βp

)T
and ǫis are identically and indepen-

dently distributed with mean 0 and variance σ2. Let β̂lasso(λn) be the solution to

n
∑

i=1

(

Yi − xT
i β

)2
+ λn

p
∑

j=1

∣

∣βj

∣

∣. (B.1)

Suppose
(

1
/

n
)
∑n

i=1 xix
T
i converges to a non-singular matrix S with a size of p× p and λn

/√
n

approaches λ0. Then, Knight and Fu (2000) shows that

√
n
(

β̂lasso(λn)− β
)

→ argmin
(

V(u)
)

(B.2)

in distribution, where

V
(

u
)

= −2uTW + uTSu+ λ0

p
∑

j=1

{

ujsgn
(

βj

)

I
(

βj 6= 0
)

+
∣

∣uj

∣

∣I
(

βj = 0
)

}

, (B.3)

and W is a multivariate normal random vector with mean 0 and variance σ2S.

The above results of Knight and Fu (2000) could not be directly applied to our linear model

since the errors are not identically distributed. To be specific,

E =







ǫ1

...
ǫn






with ǫk =







ǫk1
...
ǫkp






, k = 1, 2, . . . , n,

and ǫkj s are uncorrelated (independent under normality) with each other but non-identically

distributed for j = 1, 2, . . . , p. However, the extension to the model with non-identical errors can

be determined from the convergence of the law of

Vn

(

u
)

=
1

2

n
∑

k=1

p
∑

j=1

(

(

ǫkj − uT X̃p(k−1)+j

/√
np

)2 − (ǫkj )
2

)

+λn

∑

16i<j6p

(

|ρij + uij

/√
np| − |ρij |

)
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with that of

−uTW +
1

2
uTSu+ λ0

∑

16i<j6p

(

uijsign(ρ
ij)I(ρij 6= 0) + |uij |I(ρij = 0)

)

,

where u = (u12, u13, . . . , u(p−1)p)
T is a

(

p(p− 1)
/

2
)

-dimensional vector, X̃T
i is the ith row vector

of X̃, W ∼ N(0,V), S and V are non-singular matrices with a size of
(

p(p−1)
/

2
)

×
(

p(p−1)
/

2
)

and λ0 > 0. To achieve this, we assume that

λn√
np

→ λ0 and
1

np

n
∑

k=1

p
∑

j=1

X̃p(k−1)+jX̃
T
p(k−1)+j → S as n → ∞

as in Knight and Fu (2000). In addition, to take care of non-identical errors, we assume that

1

np

n
∑

k=1

p
∑

j=1

(σjj)−1X̃p(k−1)+jX̃
T
p(k−1)+j → V as n → ∞, (B.4)

where (σjj)−1s are variances of ǫkj s for j = 1, 2, . . . p.

Another important result to be used in this section is the inequality from Anderson (1955).

The following lemma is from Anderson (1955) and will be used to compare error probabilities

between the SPACE and SCPG methods. In the lemma, a set A is denoted to be symmetric

(about the origin) if and only if ∀x ∈ S, −x ∈ S.

Lemma B.1 Let D be a convex set in n-space, symmetric about the origin. Let f(x) > 0 be a

function such that (i) f(x) = f(−x), (ii) {x | f(x) > u} = Ku is convex for every u (0 < u < ∞),

and (iii)
∫

D f(x) dx < ∞ (in Lebesgue sense). Then

∫

D

f(x+ ky) dx >

∫

D

f(x+ y) dx,

for 0 6 k 6 1.
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C. Proofs for the asymptotic properties

C.1 Proof of Theorem 1

The proof is performed using the asymptotic properties of the lasso estimate by Knight and Fu

(2000) and Anderson (1955)’s inequality. We recall that the SPACE model without the pre-

information η 6= 0 solves

1

2

np
∑

i=1

(

yi − bT
i γ − cTi η

)2
+ λn

( |G0|
∑

j=1

∣

∣γj
∣

∣+

|K|
∑

k=1

∣

∣ηk
∣

∣

)

, (C.1)

whereas the SCPG model with the pre-information η 6= 0 solves

1

2

np
∑

i=1

(

yi − bT
i γ − cTi η

)2
+ λn

( |G0|
∑

j=1

∣

∣γj
∣

∣

)

, (C.2)

where bT
i and cTi are the ith rows of matrices B and C, respectively.

Lemma C.1

P
(

γ̂ = 0
)

= P
(

− λ01|G0|×1 < Wγ − SγηS
−1
ηη

(

Wη − λ0sign(η)
)

< λ01|G0|×1

)

,

where Wγ − SγηS
−1
ηη

(

Wη − λ0sign(η)
)

∼ N(λ0SγηS
−1
ηη sign(η), Vγγ·η).

Proof. Let ρ̂ =
(

γ̂T , η̂T
)T

and ρ̂K =
(

γ̂T
K, η̂

T
K

)T
be the solutions to the SPACE and SCPG models,

respectively. Using the result of Knight and Fu (2000), we have

√
np

(

ρ̂(λn)− ρ
)

→ argmin
u

(

V (u)
)

in distribution, where for u =
(

uT
γ , u

T
η

)T
and W ∼ N

(

0,V
)

,

V
(

u
)

= −uTW +
1

2
uTS[γ,η]u+ λ0

( |G0|
∑

j=1

|uγ,j|+
|K|
∑

k=1

uη,ksign(ηk)

)

. (C.3)

In the above, S[γ,η] is the limit of

1

np

(

BTB BTC
CTB CTC

)
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and V is defined as the limit of a quadratic form of the design matrix X̃ of the model (3.11) in

the main article as in (B.4), and they are partitioned into

S[γ,η] =

(

Sγγ Sγη

Sηγ Sηη

)

and V =

(

Vγγ Vγη

Vηγ Vηη

)

.

We let Vγγ·η = Vγγ − SγηS
−1
ηη VηηS

−1
ηη Sηγ .

Let the solution to the minimum of (C.3) be u∗ =
(

(u∗
γ)

T , (u∗
η)

T
)T

. The solution u∗ satisfies

the optimality condition of V (u), defined as

S[γ,η]u
∗ −W = −λ0

(

∂‖uγ‖1
sign(η)

)

,

where ∂‖u‖1 is a subdifferential of ‖u‖1 such that (∂‖u‖1)j = sign(uj) if uj 6= 0 and (∂‖u‖1)j ∈

[−1, 1] if uj = 0. From the optimality condition, the event
{

u∗
γ = 0

}

occurs if and only if the

following coordinate-wise inequalities are satisfied

− λ01|G0|×1 < Wγ − SγηS
−1
ηη

(

Wη − λ0sign(η)
)

< λ01|G0|×1. (C.4)

Hence, in asymptotic true negative probability, the true negative probability of the lasso

estimate without the pre-information on η can be stated as

P
(

γ̂ = 0
)

= P
(

u∗
γ = 0

)

= P
(

− λ01|G0|×1 < Wγ − SγηS
−1
ηη

(

Wη − λ0sign(η)
)

< λ01|G0|×1

)

,
(C.5)

where Wγ − SγηS
−1
ηη

(

Wη − λ0sign(η)
)

∼ N(λ0SγηS
−1
ηη sign(η), Vγγ·η). �

Lemma C.2

P
(

γ̂K = 0
)

= P
(

− λ0 1|G0|×1 < Wγ − SγηS
−1
ηη Wη < λ0 1|G0|×1

)

,

where Wγ − SγηS
−1
ηη Wη ∼ N(0, Vγγ·η).

Proof. On the other hand, for the SCPG model with pre-information η 6= 0,

√
np

(

ρ̂K(λn)− ρ
)

→ argmin
u

(

VK(u)
)

(C.6)
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in distribution, where, for u =
(

uT
γ , u

T
η

)T
and W ∼ N

(

0,V
)

,

VK

(

u
)

= −uTW +
1

2
uTS[γ,η]u+ λ0

( |G0|
∑

j=1

|uγ,j|
)

.

Let the solution to the minimum of (C.6) be u∗
K =

(

(u∗
K,γ)

T , (u∗
K,η)

T
)T

. The solution u∗
K satisfies

the optimality condition of VK(u), defined as

S[γ,η]u
∗
K −W = −λ0

(

∂‖uγ‖1
0

)

,

where ∂‖u‖1 is a subdifferential of ‖u‖1 such that (∂‖u‖1)j = sign(uj) if uj 6= 0 and (∂‖u‖1)j ∈

[−1, 1] if uj = 0. From the optimality condition, the event
{

u∗
K,γ = 0

}

occurs if and only if the

following coordinate-wise inequalities are satisfied

− λ01|G0|×1 < Wγ − SγηS
−1
ηη Wη < λ01|G0|×1. (C.7)

The asymptotic true negative probability of the lasso estimate with the pre-information on

η 6= 0 is

P
(

γ̂K = 0
)

= P
(

u∗
K,γ = 0

)

= P
(

− λ0 1|G0|×1 < Wγ − SγηS
−1
ηη Wη < λ0 1|G0|×1

)

, (C.8)

where Wγ − SγηS
−1
ηη Wη ∼ N(0, Vγγ·η). �

We now compare the probabilities (C.5) and (C.8) using Lemma B.1 in Appendix B. Note

that they are the probabilities that two multivariate normal variables, having different mean

vectors and the same covariance matrix, are in the same rectangle centered at the origin. To be

specific, let Z = (Z1, Z2, . . . , Z|G0|)
T ≡ Wγ − SγηS

−1
ηη Wη ∼ N(0, Vγγ·η). For notational simplicity,

we let |G0|, the dimension of Z, be m. Suppose f(z) is the probability density function (pdf) of

the normal random variable Z, which is nonnegative and symmetric about the origin.

To apply Anderson’s lemma, we consider the level set Ku = {z | f(z) > u} and will show it

is convex for 0 < u < ∞. Recall that the pdf of Z is

f(z) = c exp
{1

2
zTV −1

γγ·ηz
}

,
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where c = (2π)−m/2|Vγγ·η|−1/2 and is strictly positive. In the above, since V −1
γγ·η is a non-negative

definite, we find that for z1, z2 ∈ Ku and 0 6 q 6 1,

qzT1 V
−1
γγ·ηz1 + (1− q)zT2 V

−1
γγ·ηz2 −

(

qz1 + (1− q)z2
)T

V −1
γγ·η

(

qz1 + (1− q)z2
)

= q(1− q)(z1 − z2)
TV −1

γγ·η(z1 − z2) > 0.

Thus,

f
(

qz1 + (1− q)z2
)

> f(z1)
qf(z2)

1−q

> min{f(z1), f(z2)} > u ⇒ qz1 + (1− q)z2 ∈ Ku,

which implies that Ku is convex for 0 < u < ∞. In the lemma, we consider the rectangular set

D = {z | |zj | < λ0, j = 1, 2, . . . ,m}. The set D is symmetric about the origin and convex in Rm.

Finally, using Anderson’s lemma with k = 0, x = z, y = −λ0SγηS
−1
ηη sign(η) and D = {z | |zj | <

λ0 for j = 1, 2, . . . ,m}, we show that

P
(

γ̂K = 0
)

=

∫

D

f(x) dx >

∫

D

f(x+ y) dx = P
(

γ̂ = 0
)

.

C.2 Proof of Theorem 2

Suppose we have knowledge on η 6= 0. We compare the asymptotic probabilities

P
(

α̂ 6= 0
)

and P
(

α̂K 6= 0
)

, (C.9)

where α̂ and α̂K are the lasso estimates without/with information on η 6= 0.

The SPACE model without information on η 6= 0 solves

1

2

n
∑

i=1

(

yi − aTi α− cTi η
)2

+ λn

( |G1|
∑

j=1

∣

∣αj

∣

∣+

|K|
∑

j=1

∣

∣ηj
∣

∣

)

, (C.10)

and the SCPG model with the pre-identified information solves

1

2

n
∑

i=1

(

yi − aTi α− cTi η
)2

+ λn

( |G1|
∑

j=1

∣

∣αj

∣

∣

)

, (C.11)

where aTi and cTi are the ith row vectors of A and C, respectively. Let ρ̂ =
(

α̂T , η̂T
)T

and

ρ̂K =
(

α̂T
K, η̂

T
K

)T
be the solutions to the SPACE and SCPG models, respectively. Similar to the
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above method, using Knight and Fu (2000),

√
np

(

ρ̂(λn)− ρ
)

→ argmin
u

(

V (u)
)

(C.12)

in distribution, where, for u = (uT
α , u

T
η )

T and W =
(

WT
α ,WT

η

)T ∼ N
(

0,V
)

,

V
(

u
)

= −uTW +
1

2
uTS[α,η]u+ λ0

( |G1|
∑

j=1

uα,jsign
(

αj

)

+

|K|
∑

k=1

uη,ksign(ηk)

)

. (C.13)

In the above, S[α,η] is the limit of

1

np

(

ATA ATC
CTA CTC

)

and V is again defined as in (B.4). Both matrices, S[α,η] and V, are partitioned into

S[α,η] =

(

Sαα Sαη

Sηα Sηη

)

and V =

(

Vαα Vαη

Vηα Vηη

)

.

Let u∗ =
(

(u∗
α)

T , (u∗
γ)

T
)T

be the solution to the minimum of (C.13). Since V (u) is differ-

entiable with respect to u, the asymptotic distribution of
√
np

(

ρ̂(λn) − ρ
)

can be explicitly

described as

u∗ = S−1
[α,η]

((

Wα

Wη

)

− λ0

(

sign(α)
sign(η)

))

(C.14)

In comparison, for the SCPG model with pre-information η 6= 0,

√
np

(

ρ̂K(λn)− ρ
)

→ argmin
u

(

VK(u)
)

(C.15)

in distribution, where for u =
(

uT
α , u

T
η

)

and W ∼ N
(

0,V
)

,

VK

(

u
)

= −uTW +
1

2
uTS[α,η]u+ λ0

|G1|
∑

j=1

uα,jsign
(

αj

)

.

Let the solution to the minimum of (C.6) be u∗
K =

(

(u∗
K,α)

T , (u∗
K,γ)

T
)T

. Since VK(u) is also

differentiable with respect to u, the asymptotic distribution of
√
np

(

ρ̂K(λn)−ρ
)

can be explicitly

described as

u∗
K = S−1

[α,η]

((

Wα

Wη

)

− λ0

(

sign(α)
0

))

(C.16)
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To describe the events {α̂ 6= 0}, let u(n)
α =

√
np(α̂(λn)−α). The event {α̂ = 0} is equivalent to

the event {u(n)
α = −√

npα}. From the previous result that u
(n)
α converges with u∗

α in distribution,

which follows a Gaussian distribution, and the assumption that α is a non-zero vector, the false

negative probability P(u
(n)
α = −√

npα) for α of the SPACE model converges to zero as n → ∞.

This implies the asymptotic true positive probability P({α̂ 6= 0}) for α of the SPACE model

converges to one as n → ∞. Using the same step in the SPACE model, can show that the

asymptotic true positive probability P({α̂K 6= 0}) for α of the SCPG model also converges to one

as n → ∞.

D. Simulated networks in Numerical study

Let p denote the number of nodes in graphs.

• (N1) AR(1) network: The AR(1) network is also known as a chain graph having an edge

set E = {(j − 1, j) | j = 2, 3, . . . , p}. We define a concentration matrix as

Ω = (σij)16i,j6p =







1 if i = j
0.45 if |i− j| = 1
0 otherwise

• (N2) AR(2) network: The AR(2) network contains the AR(1) network and additionally has

edges between the jth node and (j−2)th node for j = 3, 4, . . . , p. We define a concentration

matrix as

Ω = (σij)16i,j6p =















1 if i = j
0.5 if |i− j| = 1
0.4 if |i− j| = 2
0 otherwise

• (N3) Hub network: We consider a hub network as described in Peng et al. (2009). For

p = 100, a hub network consists of three hub nodes whose degrees are each around 15,

and 97 non-hub nodes whose degrees lie between 1 and 3. Edges in a hub network are

randomly selected according to the above conditions. We generate a concentration matrix

corresponding to a given edge set E by the following steps. At step 1, element σij of a
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concentration matrix is defined as

Ω = (σij)16i,j6p =







1 if i = j
∼ U([−1,−0.5] ∪ [0.5, 1]) if (i, j) ∈ E
0 otherwise

,

where U(A) denotes a uniform distribution over a set A. To assure the positive definiteness

of the concentration matrix, the off-diagonal elements σij are divided by 1.5
∑

k 6=i |σik| at

step 2. Finally, the concentration matrix Ω is replaced into (Ω + ΩT )/2 to be symmetric.

• (N4) Scale-free network: In the scale-free network, degrees of nodes follow the power law

distribution having a form

P (k) ∝ k−α,

where P (k) is a fraction of nodes having k connections and α is a preferential attachment

parameter. The preferential attachment parameter generally lies between 2 and 3. We set

α = 2.3 and generate a scale-free network using the Barabasi and Albert (BA) model

(Barabasi and Albert, 1999). This model is also implemented in the R package “igraph”.

With a given edge set E from the BA model, we generate a concentration matrix using the

procedure described in (N3).

E. Details of identification of survival-related genes

We used univariate Cox regression to identify the probe sets that are significantly correlated

with a patient’s overall survival time after adjusting for clinical sites, age, gender, and stages.

In order to deal with the multiple comparison issue, we calculated the FDR, proposed by

Benjamini and Hochberg (1995), by fitting p-values using a Beta-Uniformmodel (Pounds and Morris,

2003). We identified a subgroup of 983 probes whose expression levels had been shown to be

strongly associated with patients’ overall survival time (p-value < 0.00655, with estimated FDR

<0.10). In total, there were 794 annotated genes from this probe set, and their expression val-
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ues were calculated using the average values of related probe sets. Each array was normalized

by subtracting its mean and dividing its median absolute deviation (MAD) before applying the

estimation procedure.

F. Details of lung cancer genes identified by both the SPACE and SCPG

methods

Weir et al. (2007) studied the cancer genome in lung adenocarcinoma and characterized copy-

number alterations in a large collection of primary tumors (n = 371) using single nucleotide

polymorphism (SNP) arrays. The study identified NKX2-1 as the driver gene of lung adenocarci-

noma. The homeobox containing gene HOP (Homeodomain Only Protein) is a downstream gene

of NKX2-1 in the regulation of pulmonary gene expression (Chen et al., 2007) and is a tumor

suppressor gene in lung cancer (Yin et al., 2006). In addition, the plasma pro-surfactant protein

B (pro-SFTPB) was identified as an independent predictor of lung cancer risk using baseline

plasma samples in the large Pan-Canadian Early Detection of Lung Cancer Study (n = 2, 485)

(Sin et al., 2013).

G. Details of lung cancer genes only identified by the SCPG method

In comparing the two methods, we noted that the SCPG method identified nine genes that were

missed by the SPACE method, including CTNNB1, CSNK2A1, ESR1, NEDD9, FYN, BRCA1,

PTPN13, PIK3R1 and SLC34A2. Seven of these nine genes (except PTPN13 and SLC34A2 )

had been reported to play important roles in lung cancer. For example, the beta-catenin gene

(CTNNB1) has been known to be genetically mutated in non-small-cell lung cancer (NSCLC)

(Shigemitsu et al., 2001), and recent studies show its mRNA expression is significantly associated

with the clinical outcome of NSCLC patients (Woenckhaus et al., 2008). The CSNK2A1 (some-

times referred to as CK2A1), Casein kinase 2, alpha 1 polypeptide, is overexpressed in many
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cancer types (such as lung cancer) (Ruzzene and Pinna, 2010), and CK2 inhibitors are currently

being studied as promising treatments of lung cancer (Lin et al., 2011). ESR1 (EStrogen Receptor

1), is well known to be associated with risk, progression and treatment response in breast cancer

(Holst et al., 2007), as well as in lung cancer (Stabile and Siegfried , 2004). The NEDD9 gene

has been reportedly associated with lung cancer metastasis (Jin et al., 2014) and progression

(Feng et al., 2012). The FYN gene (Semba et al., 1986) encodes the Proto-oncogene tyrosine-

protein kinase Fyn and plays an important role in formation and treatment response in lung

cancer (Kim et al., 2011). BRCA1 is the most important biomarker for the early onset of breast

cancer, and recently many studies have shown that BRCA1 gene expression is a biomarker for the

progression (Kang et al., 2010; Reguart et al., 2008) and response to chemotherapy (Kim et al.,

2008) in lung cancer. Finally, the PIK3R1 gene encodes p85α, which is the inhibitory subunit

of PI3K, while the Akt/PI3K signaling pathway is one of the most important pathways in lung

cancer development, progression and treatment (Gadgeel and Wozniak, 2013; Gustafson et al.,

2010).

In addition, the SCPG method identified the PTPN13 gene, which had not been previously

reported as a lung cancer related gene. To further study this gene, we have downloaded the mRNA

expression together with the clinical annotation from four public lung cancer datasets, including 1.

Tomida et al. (2009) (n = 117), 2. Bhattacharjee et al. (2001) (n = 203), 3. Raponi et al. (2006)

(n = 129), 4. Jones et al. (2004) (n = 80). These four datasets were selected because they were

published in high-profile journals, contained relatively large sample sizes (at least 80 samples),

and were measured from different microarray platforms. Interestingly, the under-expression of

the PTPN13 gene is consistently associated with the poor prognosis of lung cancer patients in

the four independent datasets, which were measured using different platforms (see Fig. G.1). The

results show that the mRNA expression of the PTPN13 gene is a novel and robust prognostic

biomarker of potential clinical importance.
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H. Comparison of the SCPG and Naive method

One heuristic way to use the pre-identified information would be to directly add (or delete) the

pre-identified edges to (or from) the estimated network by the SPACE method. We denote this

procedure as the “naive method” and, in this section, we compare the performances of SCPG

(and also SPACE) to the naive method. We compare the SCPG and naive methods in all the

numerical studies used in Section 4 of the main paper: four network structures (AR1, AR2, hub

network and scale-free network), three network sizes (100, 250, 500) and two sets of pre-identified

edges (10% and 30%). For each numerical study, we simulated 50 datasets. For both SCPG and

naive methods, the FDRs averaged across 50 datasets for each study are summarized in Table

H.1 . This shows that the SCPG method clearly performs better than the naive method.

I. Sensitivity analysis on false positives in the pre-identified edges

In this paper, we assume that all pre-identified edges are truly connected and nomisspecification

occurs in the pre-identified information. However, as we remark in the Conclusion, this assumption

may not always be true. In this section, we numerically investigate how the SCPG method is

sensitive to the false positives in the pre-identified information.

In the study, the same four networks with two sets of pre-identified edges (10% and 30%)

from Section 4 are considered. In the two sets of the pre-identified edges (10% and 30%), we

assume 0%, 10%, 15%, 20%, and 30% of the pre-identified edges are falsely identified (they are

not connected in truth). We refer to these rates as the misspecification rates. Tables I.1 and I.2

report the averages of |Ê|, TPR, TNR, FDR, MISR, and MCC for the four networks for the case

p = 500 and n = 250.

It is not surprising that all performance measures become worse as the misspecification rate

increases. However, the tables show that the SCPG method still performs well (performs better

than SPACE) if the misspecification rate is not very high. In comparison with SPACE, the findings
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for the 0% misspecification rate are still true unless the percentage of false positives is not larger

than 15%.

J. Application to the construction of a larger network

The proposed SCPG method is a modification of the SPACE method and does not have any

difficulty in estimating networks with a couple of thousands of nodes, like the SPACE method

(Peng et al., 2009). In this section, to show the scalability of the SCPG, we additionally conduct

a numerical study for hub and scale-free networks with a thousand nodes (p = 1000) and samples

sizes n = 200, 300, 500 as in Peng et al. (2009). Here, the hub and scale-free networks are the two

most popular large-scale networks used in many other applications. Again, the averages of |Ê|,

TPR, TNR, FDR, MISR, and MCC are reported in Table J.1. The findings apparent in the table

are very similar to what we have in Section 4 for p = 500.
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Table H.1. The FDRs of the SCPG and naive methods for AR(1), AR(2), hub network and scale-free
network under various network sizes (100, 250, 500) and percentages of pre-identified edges (10% and
30%). The sample size n =250. Each performance was averaged over 50 simulated datasets. “Info.”
stands for a percentage of pre-identified information and “Naive(k%)” denotes the naive method that
incorporates the pre-identified edges whose percentage of total connected edges is k% into the estimated
network from the SPACE. The numbers in parentheses denote the standard errors of measures.

p Info.
Network

AR(1) AR(2) Hub Scale-free

100

None
20.45 47.59 12.15 16.58
(0.32) (0.14) (0.49) (0.42)

Naive(10%)
20.45 46.87 11.08 15.85
(0.32) (0.15) (0.46) (0.41)

10%
18.7 42.29 10.56 14.04
(0.29) (0.20) (0.44) (0.45)

Naive(30%)
20.45 45.28 9.68 14.84
(0.32) (0.18) (0.42) (0.40)

30%
14.68 32.56 5.61 9.72
(0.36) (0.25) (0.35) (0.38)

250

None
18.09 46.75 15.43 15.87
(0.30) (0.19) (0.37) (0.42)

Naive(10%)
18.09 46.75 15.26 15.73
(0.30) (0.19) (0.37) (0.42)

10%
16.30 42.14 13.39 14.31
(0.33) (0.21) (0.31) (0.41)

Naive(30%)
18.09 46.75 14.94 15.48
(0.30) (0.19) (0.37) (0.42)

30%
12.52 31.49 10.68 10.37
(0.28) (0.19) (0.29) (0.39)

500

None
16.90 44.61 15.57 14.61
(0.30) (0.23) (0.33) (0.34)

Naive(10%)
16.90 44.61 15.55 14.60
(0.30) (0.23) (0.33) (0.34)

10%
14.61 40.09 14.31 13.18
(0.26) (0.23) (0.28) (0.34)

Naive(30%)
16.90 44.61 15.49 14.51
(0.30) (0.23) (0.32) (0.34)

30%
11.83 29.69 10.92 10.33
(0.25) (0.18) (0.29) (0.33)
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Table I.1. The averages of |Ê|, TPR, TNR, FDR, MISR, and MCC for AR(1) and AR(2) networks over
50 datasets (p = 500, n = 250). “Info.” and “FP(Info.)” stand for the percentage of pre-identified edges
and the percentage of false positives in the pre-identified edges, respectively. |Ê| denotes the number of
estimated edges. All values except for |Ê| are multiplied by 100. The numbers in parentheses denote the
standard errors of measures.

Network Info. FP(Info.) |Ê| TPR TNR FDR MISR MCC

AR(1)
(|E| = 499)

None
609.58 100 99.91 18.09 0.09 90.46
(2.24) (0.00) (0.00) (0.30) (0.00) (0.17)

10%

0%
596.62 100 99.92 16.3 0.08 91.44
(2.40) (0.00) (0.00) (0.33) (0.00) (0.18)

10%
599.46 100 99.92 16.71 0.08 91.22
(2.09) (0.00) (0.00) (0.29) (0.00) (0.16)

15%
605.10 100 99.91 17.49 0.09 90.79
(2.13) (0.00) (0.00) (0.28) (0.00) (0.16)

20%
608.64 100 99.91 17.97 0.09 90.52
(2.00) (0.00) (0.00) (0.27) (0.00) (0.15)

30%
613.92 100 99.91 18.67 0.09 90.13
(2.12) (0.00) (0.00) (0.28) (0.00) (0.16)

30%

0%
570.74 100 99.94 12.52 0.06 93.5
(1.87) (0.00) (0.00) (0.28) (0.00) (0.15)

10%
590.46 100 99.93 15.43 0.07 91.92
(2.17) (0.00) (0.00) (0.31) (0.00) (0.17)

15%
599.26 100 99.92 16.68 0.08 91.24
(2.20) (0.00) (0.00) (0.30) (0.00) (0.17)

20%
607.30 100 99.91 17.77 0.09 90.63
(2.50) (0.00) (0.00) (0.33) (0.00) (0.18)

30%
627.58 100 99.90 20.44 0.10 89.14
(2.13) (0.00) (0.00) (0.27) (0.00) (0.15)

AR(2)
(|E| = 997)

None
1873.38 100 99.29 46.75 0.7 72.71
(6.57) (0.00) (0.01) (0.19) (0.01) (0.13)

10%

0%
1724.14 100 99.41 42.14 0.58 75.84
(6.22) (0.00) (0.01) (0.21) (0.00) (0.14)

10%
1746.64 100 99.39 42.89 0.60 75.34
(5.89) (0.00) (0.00) (0.19) (0.00) (0.13)

15%
1757.10 100 99.39 43.23 0.61 75.11
(5.73) (0.00) (0.00) (0.18) (0.00) (0.12)

20%
1770.48 100 99.37 43.66 0.62 74.82
(5.29) (0.00) (0.00) (0.17) (0.00) (0.11)

30%
1811.62 100 99.34 44.94 0.65 73.95
(5.22) (0.00) (0.00) (0.16) (0.00) (0.11)

30%

0%
1455.84 100 99.63 31.49 0.37 82.61
(4.00) (0.00) (0.00) (0.19) (0.00) (0.11)

10%
1534.22 100 99.57 34.97 0.43 80.46
(5.92) (0.00) (0.00) (0.25) (0.00) (0.16)

15%
1556.14 100 99.55 35.90 0.45 79.88
(5.28) (0.00) (0.00) (0.22) (0.00) (0.14)

20%
1603.54 100 99.51 37.79 0.49 78.67
(5.17) (0.00) (0.00) (0.20) (0.00) (0.13)

30%
1668.40 100 99.46 40.22 0.54 77.11
(4.81) (0.00) (0.00) (0.17) (0.00) (0.11)
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Table I.2. The averages of |Ê|, TPR, TNR, FDR, MISR, and MCC for hub and scale-free networks over
50 datasets (p = 500, n = 250). “Info.” and “FP(Info.)” stand for the percentage of pre-identified edges
and the percentage of false positives in the pre-identified edges, respectively. |Ê| denotes the number of
estimated edges. All values except for |Ê| are multiplied by 100. The numbers in parentheses denote the
standard errors of measures.

Network Info. FP(Info.) |Ê| TPR TNR FDR MISR MCC

Hub
(|E| = 569)

None
586.38 87.05 99.93 15.43 0.13 85.71
(3.34) (0.18) (0.00) (0.37) (0.00) (0.17)

10%

0%
574.96 87.45 99.94 13.39 0.12 86.96
(2.74) (0.18) (0.00) (0.31) (0.00) (0.14)

10%
584.94 87.57 99.93 14.73 0.13 86.34
(3.12) (0.18) (0.00) (0.33) (0.00) (0.14)

15%
591.66 87.72 99.93 15.55 0.13 85.99
(3.30) (0.19) (0.00) (0.35) (0.00) (0.15)

20%
594.20 87.54 99.92 16.10 0.13 85.62
(2.99) (0.18) (0.00) (0.31) (0.00) (0.13)

30%
599.06 87.27 99.92 17.05 0.14 85.00
(2.80) (0.17) (0.00) (0.29) (0.00) (0.14)

30%

0%
564.5 88.56 99.95 10.68 0.1 88.88
(2.54) (0.17) (0.00) (0.29) (0.00) (0.13)

10%
582.18 88.34 99.94 13.59 0.12 87.30
(2.81) (0.19) (0.00) (0.28) (0.00) (0.11)

15%
585.70 87.74 99.93 14.71 0.13 86.43
(2.76) (0.19) (0.00) (0.26) (0.00) (0.11)

20%
597.48 87.85 99.92 16.28 0.13 85.68
(2.71) (0.18) (0.00) (0.28) (0.00) (0.13)

30%
617.58 87.83 99.91 19.04 0.15 84.24
(2.46) (0.18) (0.00) (0.22) (0.00) (0.11)

Scale− free
(|E| = 495)

None
526.1 89.28 99.93 15.87 0.11 86.59
(3.30) (0.18) (0.00) (0.42) (0.00) (0.20)

10%

0%
518.12 89.57 99.94 14.31 0.1 87.54
(3.12) (0.17) (0.00) (0.41) (0.00) (0.19)

10%
524.40 89.68 99.94 15.25 0.11 87.11
(2.99) (0.16) (0.00) (0.39) (0.00) (0.18)

15%
528.24 89.79 99.93 15.77 0.11 86.90
(2.87) (0.16) (0.00) (0.37) (0.00) (0.17)

20%
532.54 89.79 99.93 16.44 0.11 86.54
(2.99) (0.17) (0.00) (0.38) (0.00) (0.18)

30%
537.84 89.75 99.92 17.29 0.12 86.08
(3.15) (0.16) (0.00) (0.39) (0.00) (0.18)

30%

0%
500.22 90.47 99.96 10.37 0.08 89.99
(2.90) (0.18) (0.00) (0.39) (0.00) (0.17)

10%
516.78 90.45 99.94 13.27 0.09 88.51
(2.92) (0.19) (0.00) (0.36) (0.00) (0.15)

15%
526.12 90.39 99.94 14.86 0.10 87.66
(3.02) (0.19) (0.00) (0.36) (0.00) (0.16)

20%
532.84 89.89 99.93 16.40 0.11 86.62
(2.90) (0.18) (0.00) (0.35) (0.00) (0.17)

30%
547.14 89.63 99.92 18.82 0.12 85.22
(3.09) (0.19) (0.00) (0.34) (0.00) (0.16)
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Table J.1. The averages of |Ê|, TPR, TNR, FDR, MISR, and MCC for hub and scale-free networks over

50 datasets. |Ê| denotes the number of estimated edges. All values except for |Ê| are multiplied by 100.
The numbers in parentheses denote the standard errors of measures.

Network n Info. |Ê| TPR TNR FDR MISR MCC

Hub
(|E| = 1167)

200

None
988.70 74.60 99.98 11.87 0.08 81.03
(5.63) (0.21) (0.00) (0.30) (0.00) (0.10)

10%
975.18 75.29 99.98 9.82 0.08 82.34
(5.69) (0.21) (0.00) (0.31) (0.00) (0.10)

30%
993.24 79.14 99.99 6.96 0.06 85.77
(5.05) (0.23) (0.00) (0.24) (0.00) (0.09)

300

None
1199.18 88.55 99.97 13.77 0.06 87.34
(5.41) (0.13) (0.00) (0.30) (0.00) (0.12)

10%
1182.06 88.89 99.97 12.19 0.05 88.31
(4.92) (0.14) (0.00) (0.27) (0.00) (0.11)

30%
1162.38 90.42 99.98 9.19 0.04 90.59
(3.77) (0.12) (0.00) (0.20) (0.00) (0.08)

500

None
1311.30 96.80 99.96 13.80 0.04 91.32
(4.91) (0.07) (0.00) (0.31) (0.00) (0.16)

10%
1288.88 96.76 99.97 12.34 0.04 92.07
(4.76) (0.08) (0.00) (0.29) (0.00) (0.15)

30%
1262.20 97.24 99.97 10.05 0.03 93.50
(4.20) (0.07) (0.00) (0.28) (0.00) (0.15)

Scale-free
(|E| = 990)

200

None
947.78 81.92 99.97 14.37 0.06 83.71
(4.54) (0.15) (0.00) (0.30) (0.00) (0.12)

10%
955.48 83.45 99.97 13.50 0.06 84.92
(3.30) (0.12) (0.00) (0.23) (0.00) (0.11)

30%
935.04 85.12 99.98 9.84 0.05 87.58
(3.22) (0.11) (0.00) (0.23) (0.00) (0.10)

300

None
1033.74 89.73 99.97 14.03 0.05 87.80
(3.62) (0.12) (0.00) (0.24) (0.00) (0.12)

10%
1026.56 90.29 99.97 12.89 0.05 88.65
(3.37) (0.11) (0.00) (0.24) (0.00) (0.12)

30%
999.42 91.08 99.98 9.74 0.04 90.65
(3.36) (0.11) (0.00) (0.23) (0.00) (0.10)

500

None
1103.76 96.41 99.97 13.47 0.04 91.31
(4.02) (0.07) (0.00) (0.29) (0.00) (0.14)

10%
1092.44 96.50 99.97 12.52 0.03 91.86
(3.18) (0.07) (0.00) (0.21) (0.00) (0.10)

30%
1055.60 96.57 99.98 9.40 0.03 93.52
(2.99) (0.07) (0.00) (0.23) (0.00) (0.11)
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(a) Tomida et al. (2009), n=117
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(b) Bhattacharjee et al. (2001) n=203
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(c) Raponi et al. (2006), n=129
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(d) Jones et al. (2004), n=80

Fig. G.1. Kaplan-Meier curves for the PTPN13 gene from four datasets (Bhattacharjee et al., 2001;
Jones et al., 2004; Raponi et al., 2006; Tomida et al., 2009). For each dataset, we divide patients into
two groups, “High” and “Low”, by their PTPN13 gene expression levels. We consider a patient to have a
high expression level of PTPN13 if the expression level is greater than or equal to a median of expression
levels. Red solid lines ( ) denote the “Low” group and black dashed lines ( ) denote the “High” group.
The p-values in the figures are from the log-rank test to compare two survival distributions.
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