S2 Table. Relations among mass-specific metabolic rate, ATP amount, and relative testes size in eutherian mammals.

Dependent variable	Independent variable	Slope	R^2	<i>p</i> - value	t-value	λ value	Effect size	CL(-)	CL(+)	n
Mass-specific metabolic rate	Body mass	-0.3201	0.93	< 0.0001	-8.8406	<0.001 ^{ns,*}	-0.8462	-1.5945	-0.8905	34
	Testes mass	0.0744		0.1416	1.5082		0.2615	-0.0844	0.6197	
ATP amount per sperm	Body mass	-0.2928	0.43	0.0495	-2.0984	0.025 ^{ns,*}	-0.4338	-0.9142	-0.0149	22
	Testes mass	0.2538		0.1928	1.3503		0.2959	-0.1446	0.7547	
Length-adjusted ATP concentration	Body mass	-0.1396	0.18	0.1600	-1.4624	<0.001 ^{ns,*}	-0.3181	-0.7792	0.1202	22
	Testes mass	0.1424		0.2821	1.1069		0.2461	-0.1984	0.7009	

Phylogenetically controlled multiple regression analyses (PGLS). Superscripts following the λ value indicate significance levels (n.s. p > 0.05; *p < 0.05) in likelihood ratio tests against models with $\lambda = 0$ (first position) and $\lambda = 1$ (second position). Effect size r calculated from the t values and the non-central 95% confidence limits (CLs) for the z- transformed value of r are presented. Confidence intervals excluding 0 indicate statistically significant relationships. P-values and CL that indicate statistical significance are shown in bold. All variables were \log_{10} transformed. n: number of species.