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SUPPORTING INFORMATION 

 
Additive curvature:  Our analysis requires an expression for the variation of curvature, 𝑐, in 
response to changes in the concentration of total added protein, 𝑆𝑃𝑡.  Based on studies with 
different lipids,  

   𝑐 = ∑ 𝑐𝑖 ⋅ 𝑋𝑖𝑖  

where the 𝑐𝑖 are the intrinsic curvatures for each component of a mixture, and 𝑋𝑖 are their mol 
fractions.  For the binary mixture of lipids combined with the proteins, because the tetradecane 
fits between the cylindrical monolayers and has no effect on curvature (48), 

    𝑐 = 𝑐𝑃𝐸 ⋅ 𝑋𝑃𝐸 + 𝑐𝑃𝐶 ⋅ 𝑋𝑃𝐶 + 𝑐𝑠𝑝 ⋅ 𝑋𝑠𝑝𝑏 . 

The sub- and superscripts 𝑏,𝑓 and 𝑡 refer to bound, free and total moieties, respectively. 

For the lipids alone,  

   𝑐0 ≡ 𝑐𝑃𝐸 ⋅ 𝑋𝑃𝐸 + 𝑐𝑃𝐶 ⋅ 𝑋𝑃𝐶 

For the small 𝑋𝑠𝑝 used here, the 𝑋𝑖 for the lipids are approximately the same with and without 
the proteins.  The change in curvature induced by the proteins, 𝛥𝑐, is given by  

   𝛥𝑐 ≡ 𝑐 − 𝑐0 ≈ 𝑐𝑠𝑝 ⋅ 𝑋𝑠𝑝𝑏 .   

   𝑋𝑠𝑝𝑏 = 𝑆𝑃𝑏
𝑆𝑃𝑏+𝑃𝐿𝑡

  for concentrations of bound protein, 𝑆𝑃𝑏, and 
total phospholipid, 𝑃𝐿𝑡.  

Particularly for molar concentrations, 𝑆𝑃𝑏 ≪ 𝑃𝐿𝑡. 

   ∴ 𝑋𝑠𝑝𝑏 ≈ 𝑆𝑃𝑏
𝑃𝐿𝑡

  

and    𝛥𝑐 = 𝑐𝑠𝑝 ⋅
𝑆𝑃𝑏
𝑃𝐿𝑡

 

 

Langmuir model:  The Langmuir model of binding by the proteins to a limited concentration of 
discrete sites, 𝑆, provides access to 𝑆𝑃𝑏.  Because 𝑆𝑃𝑏 = 𝑆𝑏, 𝛥𝑐 can be expressed in terms of the 
fraction of occupied sites, 𝜃 ≡ 𝑆𝑏

𝑆𝑡
 : 

   𝛥𝑐 = 𝑐𝑠𝑝 ⋅
𝑆𝑃𝑏
𝑆𝑡
⋅ 𝑆𝑡
𝑃𝐿𝑡

= 𝑐𝑠𝑝 ⋅ 𝜃 ⋅
𝑆𝑃𝑏

𝑚

𝑃𝐿𝑡
 [1] 

where 𝑆𝑃𝑏𝑚 is the maximum possible concentration of bound protein.  The association constant, 
𝐾𝑎, is given by 



 

   𝐾𝑎 = 𝑆𝑃𝑏
𝑆𝑃𝑓⋅𝑆𝑓

 = 𝑆𝑏
(𝑆𝑃𝑡−𝑆𝑏)⋅(𝑆𝑡−𝑆𝑏)
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𝐾𝑎
�+ 𝑆𝑃𝑡 ⋅ 𝑆𝑡 = 0 

Solving the quadratic, 
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2
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A series expansion for (1 − 𝑥)
1
2 provides the square root.  If the ratio, 𝑥 = 4⋅𝑆𝑃𝑡⋅𝑆𝑡

�𝑆𝑡+𝑆𝑃𝑡+
1
𝐾𝑎
�
2, is small, 

the first term of the expansion reasonably approximates the full expression.  For 𝑥 to be small, 

�𝑆𝑡 + 𝑆𝑃𝑡 + 1
𝐾𝑎
�
2

> 4 ⋅ 𝑆𝑃𝑡 ⋅ 𝑆𝑡, which requires that the difference between the two terms must 
be positive.   
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�
2
− 4 ⋅ 𝑆𝑃𝑡 ⋅ 𝑆𝑡 = (𝑆𝑡 + 𝑆𝑃𝑡)2 + 2(𝑆𝑡+𝑆𝑃𝑡)
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2
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    = (𝑆𝑡 − 𝑆𝑃𝑡)2 + 2(𝑆𝑡−𝑆𝑃𝑡)
𝐾𝑎

+ 4 𝑆𝑃𝑡
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+ 1
𝐾𝑎

 

     = �𝑆𝑡 − 𝑆𝑃𝑡 + 1
𝐾𝑎
�
2

+ 4 𝑆𝑃𝑡
𝐾𝑎

 

Because both �𝑆𝑡 − 𝑆𝑃𝑡 + 1
𝐾𝑎
�
2
and 4 𝑆𝑃𝑡

𝐾𝑎
 are positive,  

   �𝑆𝑡 + 𝑆𝑃𝑡 + 1
𝐾𝑎
�
2
−  (4 ⋅ 𝑆𝑃𝑡 ⋅ 𝑆𝑡) > 0 

   �𝑆𝑡 + 𝑆𝑃𝑡 + 1
𝐾𝑎
�
2

>  (4 ⋅ 𝑆𝑃𝑡 ⋅ 𝑆𝑡) 

   ∴ 𝑥 = 4⋅𝑆𝑃𝑡⋅𝑆𝑡
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1
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2 < 1.   

For 𝑆𝑡 ≫ 𝑆𝑃𝑡,   𝑥 ≪ 1.  

Using the expansion (1 − 𝑥)
1
2 = 1 − 𝑥

2
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        = 𝑆𝑃𝑡⋅𝑆𝑡
𝑆𝑡+𝑆𝑃𝑡+

1
𝐾𝑎

  for the root with the negative sign 

       = 𝜖⋅𝑆𝑃𝑡
1+𝜖⋅𝑆𝑃𝑡

⋅ 𝑆𝑡   for  𝜖 = 𝐾𝑎
1+𝐾𝑎𝑆𝑡

 

   𝜃 = 𝑆𝑏
𝑆𝑡

=  𝜖⋅𝑆𝑃𝑡
1+𝜖⋅𝑆𝑃𝑡

  

For the conditions of our experiments, where 𝑆𝑡 ≫ 𝑆𝑃𝑡, the expression for 𝜃 has the same form 
as the exact expression of the Langmuir equation, 𝜃 = 𝐾𝑎⋅𝑆𝑃𝑓

1+𝐾𝑎⋅𝑆𝑃𝑓
 , but in terms of the 

concentration of total protein, 𝑆𝑃𝑡, rather than free, unbound protein, 𝑆𝑃𝑓, and with 𝜖 replacing 
𝐾𝑎.  Note that because 𝜖 depends on 𝑆𝑃𝑏𝑚 as well as 𝐾𝑎, changes in the binding capacity as well 
as the binding affinity would affect how 𝜃 depends on 𝑆𝑃𝑡. 

From equation [1], these relationships indicate that  

  𝛥𝑐 = 𝑐𝑠𝑝 ⋅
𝜖⋅𝑆𝑃𝑡

1+𝜖⋅𝑆𝑃𝑡
⋅ 𝑆𝑃𝑏

𝑚

𝑃𝐿𝑡
 

For our data, 𝛥𝑐 = 𝛼1 ⋅ 𝑆𝑃𝑡 ⋅ 𝑋𝑃𝐶 . 

  ∴ 𝛥𝑐 = 𝑎1⋅𝑆𝑃𝑡
1+𝑎2⋅𝑆𝑃𝑡

⋅ 𝑋𝑃𝐶 

 where  𝑎1 ⋅ 𝑋𝑃𝐶 = 𝑐𝑠𝑝 ⋅ 𝜖 ⋅
𝑆𝑃𝑏

𝑚

𝑃𝐿𝑡
,  

  𝑎2 = 𝜖,   

 and  𝑎1⋅𝑋𝑃𝐶
𝑎2

= 𝑐𝑠𝑝 ⋅
𝑆𝑃𝑏

𝑚

𝑃𝐿𝑡
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