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S1. Derivation of equilibrium equation of cell layer 

 
Consider the equilibrium of an infinitesimal element of the ring-like cell layer shown in Fig. S1A. 
The free-body diagram of the infinitesimal element is illustrated in Fig. S1 B (top view) and S1 C 
(side view). 
 

 

Figure S1. Free body diagram of the element in cell layer 
 
 
Because of symmetry of the cell layer, we only need to consider the equilibrium of the element in 
radial direction. According to the illustration in the side view of the element, the equilibrium of 
the element in radial direction should satisfy 
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where effT k uρ= −  is the cell-matrix interaction, i.e., the traction stress. Because dθ  is 

infinitesimal, ( )sin 2 2d dθ θ= . Neglecting the higher order infinitesimal terms of dθ  and 

dr , Eq. (s1.1) is simplified into 

 0rr

c

d T
dr r h

θσ σσ −
+ + = 	
      (3) 

  



	
   s3	
  

 

 
 
Figure S2. Cell polarization and alignment on a ring pattern of different stiffnesses. (A) Phase 
contrast images of cell morphology and alignment, and associated fluorescence images of actin 
on the ring pattern of five different stiffnesses, i.e. 60kPa, 40kPa, 30kPa, 18kPa and 10kPa; Scale 
bars =200µm; (B) The mean aspect ratio of cells versus the distance of cell to the center of the 
ring pattern; (C) The mean cell angle as function of the distance of cell to the center of ring; (D) 
The alignment of actin as function of the distance of cell to the center of ring. (E) The mean cell 
area as function of the distance of cell to the ring center. 
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Figure S3. The distribution of deformation in cell layer changing with the stiffness of substrate 
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Figure S4. The effect of the imperfections of pattern edge on the reconstructions of the in-plane 
stresses. A) Cell layer with perfect boundary; (B) Cell layer with multiple small imperfections at 
the boundary; (C) Cell layer with one large imperfection; Vectorial representation of the in-plane 
maximum principal stress on the perfect cell layer (A), and its comparison with the direction of 
the maximum principal stress on the cell layer having several small imperfections (B) and that 
having one large imperfection (C). (D) and (E) show the comparison of magnitude of the 
principal stresses (maximum & minimum) and the maximum shear stress between the perfect cell 
layer and that with imperfections of the two kinds, respectively. 
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Figure S5. The perturbation of adhesions and contractility of cells impaired the biphasic 
dependence of polarization and alignment of cells on stiffness of substrate. (A) Phase contrast 
images of the cell layer on the ring pattern for the cases of control, treatment by Anti-N-cadherin 
and treatment by cytochalasin-D for three typical stiffness of substrate, 10kPa, 40kPa and 60kPa. 
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(B) Anti-N-cadherin treatment significantly weakened the biphasic dependence of aspect ratio, 
and caused the biphasic behaviors of cell angle to disappear with no statistical significance. C) 
Cytochalasin-D treatment brought more severe perturbation and thus destroyed the biphasic 
behaviors of aspect ratio and cell angle completely. 
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Figure S6.  Time evolution of cell arrangement and polarization on ring pattern (inner radius 
100µm) during the period of 24-hour of cell seeding/culture. (A) The evolution of aspect ratio of 
cell. (B) The evolution of cell orientation denoted by the cell angle with respect to the direction 
of the maximum principle stress. 
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Figure S7. The snapshots of evolution of arrangement and polarization of osteoblasts on the ring 
pattern with inner radius of 100 µm over a period of 24 h.   
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S2. Coefficients C1 and C2 in Eq. 7 in the text 

With boundary conditions Eq. 6, 1C  and 2C  can be determined as 

 ( ) ( )11 22
1 0 2 0

10 12 10 12

1 , 1C CC C
C C C C

ε υ ε υ= − + = +
+ +

. (s2.1) 

where 

 

  

C10 = υ −1( )K11 −αR1K01( )αR0I00 + αR0K00 + 1−υ( )K10( )αR1I01

C12 = 1−υ( ) αR1K01+ 1−υ( )K11( ) I10 − αR0K00 + 1−υ( )K10( ) I11
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%

&
'

C11 =αR0R1 K00 −K01( )+ R1 1−υ( )K10 + R0 υ −1( )K11

C22 =αR0R1 I01 − I00( )+ R1 1−υ( ) I10 + R0 υ −1( ) I11

, (s2.2) 

in which 
  
I00 =BesslI 0,αR0( ) , I10 =BesslI 1,αR0( ) , I01=BesslI 0,αR1( ) , I11=BesslI 1,αR1( ) , and 

  
K00 =BesslK 0,αR0( ) , K10 =BesslK 1,αR0( ) , K01=BesslK 0,αR1( ) , K11=BesslK 1,αR1( ) . 
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S3. Orthotropic model of cell layer 

Considering the effect of cell polarization along the circumferential direction, the cell layer is 

modeled as an orthotropic membrane with Young’s modulus in radial direction Er  and that in 

circumferential direction Eθ . The plane stress constitutive relation for an axial symmetric 

problem of the orthotropic membrane in polar coordinate is written as 
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Considering Eq. s3.1, 2 and 3, the equilibrium equation is obtained as 
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where ra E Eθ= ,	
  and	
  
 
b= ρkeff Errhc .	
  Solving Eq. s3.3, we obtain 	
  

 ( ) ( ) ( )3 4BesslI , BesslK ,u C a br C a br f r= + +  (s3.4) 

where f(r) is a particular solution. The constants 3C  and 4C  can be determined using the 

boundary conditions Eq. 6 in the main text, i.e. 0rσ =  at 0r R=  and 1r R= . Substituting Eq. 

s3.4 into Eq. 2 and then Eq. s3.1, we obtain the radial and circumferential normal stresses rσ  

and θσ , i.e., the in-plane minimum and maximum principle stresses as,  
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and 
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thus, we obtain the in-plane maximum shear stress as  
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   Similarly, 3C  and 4C  can be determined as 
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where   
Ia

0 =BesslI a,bR0( )，  
Ia+1

0 =BesslI a+1,bR0( )，   
Ia

1 =BesslI a,bR1( )，   
Ia+1

1 =BesslI a+1,bR1( ) , 

  
Ka

0 =BesslK a,bR0( )，   
Ka+1

0 =BesslK a+1,bR0( )，   
Ka

1 =BesslK a,bR1( )，   
Ka+1

1 =BesslK a+1,bR1( )
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   The expression of the particular solution is 
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where the functions “hypergeom” and “ Γ ” can calculated through commercial software 

MAPPLE. In the calculation, we set   Eθ =10kPa and µθr = 0.45 , 30.00125effk nN umρ = in Fig. 

S8, and chose three value for rE Eθ  as 1, 2 and 10/3 in our model (Fig. S8).  
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Figure S8. Predictions of the radial distribution of maximum shear stress using the orthotropic 
model. The numerical solutions are obtained through commercial software ABAQUS. 
 


