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ABSTRACT Protein signaling occurs in crowded intracellular environments, and while high concentrations of macromolecules
are postulated to modulate protein-protein interactions, analysis of their impact at each step of the reaction pathway has not
been systematically addressed. Potential cosolute-induced alterations in target association are particularly important for a
signaling molecule like calmodulin (CaM), where competition among >300 targets governs which pathways are selectively acti-
vated. To explore how high concentrations of cosolutes influence CaM-target affinity and kinetics, we methodically investigated
each step of the CaM-target binding mechanism under crowded or osmolyte-rich environments mimicked by ficoll-70, dextran-
10, and sucrose. All cosolutes stabilized compact conformers of CaM and modulated association kinetics by affecting diffusion
and rates of conformational change; however, the results showed that differently sized molecules had variable effects to
enhance or impede unique steps of the association pathway. On- and off-rates were modulated by all cosolutes in a compen-
satory fashion, producing little change in steady-state affinity. From this work insights were gained on how high concentrations of
inert crowding agents and osmolytes fit into a kinetic framework to describe protein-protein interactions relevant for cellular
signaling.
INTRODUCTION
Cellular functions are carried out through networks of
signaling proteins, relaying information at different fre-
quencies with precise timing in specific subcellular loca-
tions. Cells have evolved to organize molecules into
various organelles as well as non-membrane-bound phases
(1), each containing optimal compositions of molecules
to enhance signaling efficiency for specific functions.
Describing the kinetics of protein-protein interactions in
these settings presents a nontrivial challenge, as we must
begin to account for the effects of the surrounding environ-
ment. Although many variables could be considered, the
physical constraints imposed by neighboring molecules
are universal and have acknowledged impacts on protein-
protein interactions (for reviews, see Ellis and Minton (2),
Zhou et al. (3), and Schreiber et al. (4)). Two such con-
straints are the excluded-volume effect, where cosolutes
limit the space any given molecule can occupy; and small-
scale viscosity, which creates barriers to diffusion and pro-
tein dynamics (2–5). Excluded volume is generally thought
to stabilize proteins through steric effects and soft interac-
tions with the solvent (6–8), but how this influences pro-
tein-protein association and affinity remains incompletely
understood. However, it is generally accepted that
describing the cytosol in the so-called ‘‘bag of proteins’’
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paradigm (9) fails to acknowledge that specialized intracel-
lular compartmentalization may actually intensify the ef-
fects of crowding and confinement.

In this work, we investigated how these nonspecific ef-
fects influence the specific interaction of the ubiquitous
signaling messenger calmodulin (CaM) with a target,
focusing on how the size and concentration of surrounding
molecules (cosolutes) influence each step of the target asso-
ciation mechanism. CaM is highly flexible and its confor-
mational plasticity is essential for accommodating binding
to >300 diverse targets (see Fig. 1 A) (10–12). Its two glob-
ular domains are connected by a flexible linker, each con-
taining a pair of EF-hand motifs to accommodate the
reversible binding of four total Ca2þ ions (13). CaM exists
as an ensemble of conformers (14–16) fluctuating around
a large flat energy minimum, where conformational
sampling permits a continuum of structures with similar en-
ergies (17–20). CaM function depends on dynamics occur-
ring on various spatial scales, where backbone dynamics
have been shown to drive Ca2þ affinity (13) and accommo-
dation of a target requires large rearrangements of its do-
mains (21). Flexibility and disorder are particularly
susceptible to the volume exclusion effect of crowded envi-
ronments, making CaM an ideal choice as a model protein.

In addition to macromolecular crowders, the cellular inte-
rior also contains high concentrations of small hydrophilic
molecules (osmolytes), which have a significant potential
to influence protein-protein interactions. These highly
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abundant osmolytes make up ~25% of solutes inside cells
(3,22), play vital roles in maintaining protein function
through stabilizing protein structure (23–25), and may exert
frictional effects at smaller spatial scales than macromole-
cules. Unlike macromolecules, osmolytes are not tradition-
ally considered to contribute to the excluded volume effect,
but rather minimize protein surface area (26) to favor more
compact states (27,28). We therefore utilized purified poly-
mer systems to investigate volume exclusion (29,30) and su-
crose to mimic osmolytes in our analysis of association.

We determined that crowders and osmolytes stabilize
compact conformers of CaM, reduce translational and rota-
tional diffusion, and modulate association and dissociation
kinetics. Importantly, these effects are dependent on the
size of the reagent used to create each environment and
we show that differently sized molecules can selectively
enhance or impede distinct steps of the association pathway.
We show that diffusion limited models were insufficient to
describe the results and that it was necessary to include con-
tributions from conformational transitions. We additionally
demonstrate that both on-rates and off-rates are reduced, re-
sulting in little change in steady-state affinity. This indicates
that steady-state measurements may not reveal important ef-
fects of crowed environments (2–4).
MATERIALS AND METHODS

Protein and peptide preparation

Wild-type mammalian calmodulin (CaM) (31–33), T34C/T110C CaM (17),

K75C CaM (34), D2C CaM (35,36), and 15N-isotope-labeled CaM

(31,37,38) were expressed and purified as previously described in the cited

works. The target peptide representing the CaM recognition motif for

CaMKI (AKSKWKQAFNATAVVRHMRKLQ) was purchased from Life-

Tein (Somerset, NJ). The peptide was additionally purified with a Sep-

Pak C18 resin (Waters, Milford, MA). The University of Texas Medical

Branch Biomolecular Resource Facility (Galveston, TX) completed quan-

titative analysis of purified proteins and peptide.
Förster resonance energy transfer

Labeling and purification of CaM engineered with two cysteine substitu-

tions at residues 34 and 110 with Alexa 488 (donor) and QSY9 (quencher;

Invitrogen Molecular Probes, Carlsbad, CA) was accomplished exactly as

described in Homouz et al. (17). Förster resonance energy transfer

(FRET) experiments were accomplished in the presence or absence of

1 mM CaCl2, and/or ficoll-70 (GE Healthcare, Piscataway, NJ), dextran-

10 (GE Healthcare), or sucrose (Sigma-Aldrich, St. Louis, MO) in

25 mM MOPS, 150 mM KCl, 0.1 mg/mL BSA, 0.1 mM EGTA, pH 7.2.

Fluorescent CaM was excited at 494 nm and emitted fluorescence was

collected at 517 nm on a PTI fluorimeter. Intensities were recorded for

30 s at a sampling rate of 10 points/s and average intensities were deter-

mined for each condition. FRET efficiencies were calculated using E ¼
1�(F0

D/FD), where E is the quantum yield of the energy transfer transition,

F0
D is the fluorescence intensity of the Alexa488 donor in the presence of

the QSY9 acceptor, and FD is the fluorescence intensity of donor in the

absence of acceptor. The interprobe distance was then calculated using

E¼ 1/(1þ(r/R0)
6), where r is the donor-acceptor distance and R0 is the För-

ster distance of the Alexa488/QSY9 FRET pair (R0 ¼ 64 Å). Isotropic re-

orientation of fluorophores was assumed (k2 ¼ 2/3).
Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) experiments were carried out with a

model No. DRX 600-MHz spectrometer (Bruker, Billerica, MA) equip-

ped with a 5 mm triple-resonance cryoprobe or broadband probe at

298 K. The 1H-heteronuclear single quantum coherence spectra for

0.5 mM 15N-isotope-labeled CaM were collected in buffer consisting

of 10 mM imidazole pH 6.3, 100 mM KCl, and 5% D2O in the presence

or absence of 5 mM CaCl2 or 5 mM EDTA and/or 20% w/v polymer or

sucrose. All NMR spectra were processed and analyzed using the soft-

ware TOPSPIN 3.2 (Bruker). 1H chemical shifts were referenced to

DSS (2,2-dimethyl-2-silapentane-5-sulfonate) and residue assignments

for amide chemical shifts were made as described in Kleerekoper and

Putkey (39). Changes in chemical shifts comparing conditions with and

without volume exclusion were determined using the formula

Dd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDdHÞ2 þ ðDdN=5Þ2

q
=2. Changes in peak intensities of individual

residues in CaM were determined by dividing the intensities under con-

ditions of volume exclusion by the intensities in the absence of volume

exclusion, I/I0.
Steady-state Ca2D affinity measurements

Ca2þ binding to CaM was monitored at steady state under conditions that

ensured significant populations of Ca2þ-bound and Ca2þ-free forms at

each Ca2þ titration point. Experiments were carried out in a chelator system

consisting of EGTA, NTA, and HEDTA so that the free Ca2þ concentration

(i.e., Ca2þ available to bind CaM) was controlled by the buffering capacity

of the chelators. Ca2þ titrations were carried out in a 1-mL reaction volume

consisting of 50 mM MOPS, 100 mM KCl, 1 mM EGTA, 1 mM HEDTA,

1 mM NTA, and 5 mM CaM at pH 7.2 in the absence or presence of ficoll-

70, dextran-10, or sucrose. For each tested concentration, a solution of the

same reagents including 25 mM CaCl2, was added to produce from 0 to

1000 mM free Ca2þ. To maintain a 1 mL reaction volume throughout the

experiment, a volume equivalent to the titrated volume was first removed

from the reaction for each titration point. Values for [free Ca2þ] were deter-
mined with the MAXCHELATOR program (Webmaxc extended version

2012; www.maxchelator.stanford.edu) assuming an ionic strength of

0.133 M and temperature of 24�C. Native Tyr fluorescence of CaM, shown

to be sensitive to Ca2þ binding to the C-lobe, was monitored on a PTI fluo-

rimeter (Photon Technology International, Edison, NJ) with 276 nm excita-

tion and 304 nm emission wavelengths with 1 and 10 nm slit widths,

respectively. Fluorescence was monitored for 30 s at 10 points/s after

each addition and the average intensities at each point were plotted as a

function of [free Ca2þ]. Data was fit with the Hill equation

y ¼ STARTþ ðEND-STARTÞ � xn=ðkn þ xnÞ, where y is the fluorescence
intensity average, x is [free Ca2þ], k is the rate constant, n is the Hill coef-

ficient, and kn is the dissociation constant, Kd. For interexperiment compar-

isons, data was normalized.
Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) measurements were performed in a

MICROCAL VP-ITC instrument (Malvern Instruments, Malvern, UK) in

a buffer consisting of 25 mM MOPS, 150 mM KCl, and 2 mM CaCl2 in

the presence or absence of 20% w/v ficoll-70, dextran-10, or sucrose. All

samples were degassed and brought to 25�C before starting experiments.

Titrations were carried out by injecting 5 mL of 150 mM CaMKI peptide

into the cell containing 5 mM CaM at 25�C with constant stirring.

Each experiment consisted of 28 injections with a 20 s injection duration

and 210 s spacing between injections. The raw data were baseline-corrected

and integrated peak areas were calculated using the MICROCAL software

(Malvern Instruments) then plotted as a function of mole ratio. Data were fit

with single binding-site models to determine the binding stoichiometry, N;

association constant, Ka; enthalpy, DH; and entropy, DS.
Biophysical Journal 109(3) 510–520
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Fluorescence correlation spectroscopy

A D2C mutant CaM was labeled with Alexa 488 dye (Invitrogen Molecular

Probes) and purified on a reverse-phase C18 Vydac column (W. R. Grace,

Columbia, MD). Protein was lyophilized, resuspended, and stored as ali-

quots at �80�C. Spectroscopy was accomplished in buffer (1 mM CaCl2,

25 mM MOPS, 150 mM KCl, 0.1 mg/mL BSA, and 0.1 mM EGTA at

pH 7.2) at the indicated concentrations of ficoll-70, dextran-10, or sucrose.

Diffusion coefficients were determined using multiphoton fluorescence

correlation spectroscopy (FCS) in an instrumental setup previously

described in Sanabria et al. (30) with a mode-locked Ti:S laser (Mira

900F; Coherent, Santa Clara, CA) pumped by a 5 W frequency-doubled

Nd:YVO4 laser (Verdi-5; Coherent). A quantity of 50 nM samples,

yielding ~5 molecules in the observation volume on average, was prepared

in a chambered No. 1 cover-glass dish (model No. 155411; Nalge Nunc,

Rochester, NY). Changes in refractive index of the samples at increasing

concentrations of crowders or sucrose were compensated for by adjust-

ments in the objective lens correction collar (40). Samples were excited

at 780 nm with ~6 mW of power at the specimen plane and emission

was detected with a photon-counting avalanche photodiode module

(SPCM-AQR-W4; PerkinElmer, Wellesley, MA) by an optical fiber over

a 60 s recording period. A commercial autocorrelator board (model No.

Flex01-D; Correlator.com, Bridgewater, NJ) was used to compute the cor-

relation curves from fluorescence intensity fluctuations recorded in real-

time. Data was analyzed by a custom-written GUI (FCSSeriesGUI) in

the software MATLAB (The MathWorks, Natick, MA). Diffusion coeffi-

cients, D, were determined for each recording from a single component-

fitting algorithm and average diffusion coefficients were calculated from

three consecutive recordings on the same experimental sample as previ-

ously described in Sanabria et al. (30). The D values are reported as the

average of duplicate samples.
Rate determination

K75C CaM was labeled with acrylodan (Acr; Invitrogen, Grand Island,

NY) to make CaM-Acr and purified as described previously in Putkey

and Waxham (37). Association and dissociation rates were measured

using a model No. SV7.1 stopped-flow fluorimeter (Applied Photophy-

sics, Surrey, UK) with an instrument dead-time of ~1.7 ms. For associa-

tion rates, reactions were carried out by rapidly mixing solutions from

two syringes in equal volumes at 4�C unless otherwise indicated. One sy-

ringe contained 200 nM CaM-Acr in a standard buffer (1 mM CaCl2,

25 mM MOPS, 150 mM KCl, 0.1 mg/mL BSA, and 0.1 mM EGTA

at pH 7.2) and the other contained increasing amounts of peptide in

the standard buffer to achieve pseudo first-order reaction conditions.

For on-rate determination, data were collected for six injections and

the average was fit to a single exponential equation to determine

kobs; F ¼ðFinitial � e�kobs tÞ þ Ffinal, where F is the observed fluorescence

intensity at time t and kobs is the observed rate. On-rates were then calcu-

lated for each condition by plotting kobs as a function of peptide concen-

tration and determining the slope of the linear fit. For off-rates, CaM-Acr

was preincubated with CaMKI peptide in standard buffer, then rapidly

mixed with 50fold excess unlabeled CaM and fluorescence decay was

monitored over time at 4�C. Five-to-six injections were made for each

condition, the results averaged, and the fluorescence decay was fit with

a double-exponential equation, F ¼ F1e
�k1xþF2e

�k2x þ Ffinal. The value

k1 accounts for ~90% of the amplitude and was used to calculate an

estimated dissociation constant at equilibrium from the relationship

Kd ¼ k1/kon.
Diffusion-limited and diffusion-influenced
reactions

In a bimolecular reaction (41,42), we have
Biophysical Journal 109(3) 510–520
Aþ B#
kD

k0
D

AB#
kR

k0
R

P;

Aþ B#
kon

koff
P;

(1)

where P is the formed complex and AB is the collisional complex with re-

action rate constants kD, k
0
D, kR, and k0R. The on-rate (kon) (or measured

complex formation), and off-rate (koff), can be obtained by relating a set

of kinetic equations, given as

d½A�½B�
dt

;
d½P�
dt

; and
d½AB�
dt

;

to derive

kon ¼ kR � kD
kR þ k0D

and koff ¼ k0R � k0D
kR þ k0D

; (2)

where kR and k0R make up a distinct process that takes the collisional com-

plex into the final product state. The value k is controlled by diffusion and
D

can be written as

kD ¼ 4pRABNAD: (3)

In this equation, NA is Avogadro’s number, and RAB is the reacting distance,

which to first approximation is the sum of the hydrodynamic radii of A and
B. The value D is the sum of the diffusion of the reactants, D ¼ DA þDB.

When k0D << kR, the reaction is said to be a diffusion-limited one and

Eq. 2 reaches the limit of

konxkD ¼ 4pRABNAD: (4)

However, when kR is comparable to k0D, it is possible to write kon in Eq. 2 as
konx
K4pRABNAkRD

4pRABNA

�
KkR

4pRABNA

þ D

�; (5)

where K ¼ ðkD=k0DÞ is the equilibrium constant for the part of the reaction

that reads as Aþ B#
kD

k0D
AB. For simplicity, we can present Eq. 5 in terms of

the variables a ¼ KkR and b ¼ ðKkR=4pRABNAÞ to satisfy

kon ¼ a � D

bþ D
: (6)

Finally, in a more general form, considering an offset on the diffusion, D0,

that accounts for the fact that the assumption D ¼ DA þ DB fails to include

changes in the radii of gyration of the reactants upon binding, it is then

possible to rewrite Eq. 6 as

kon ¼ a � ðD� D0Þ
bþ ðD� D0Þ : (7)

RESULTS

Description of experimental system

Differences in CaM structure and target association were
quantified under conditions of increasing concentrations of
cosolutes. We found it necessary to use inert uncharged

http://Correlator.com
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polymers rather than proteins to crowd the environment
because the proteins bovine serum albumin and lysozyme
stick nonspecifically to CaM at the high concentrations
required, confounding interpretation of diffusion and reac-
tion rates. This is likely due to weak nonspecific chemical
interactions (43–45), which attenuate diffusion rates
(46,47). We focused instead on ficoll-70 and dextran-10,
which are uncharged, branched polysaccharides predicted
to have generally spherical shapes, where ficoll-70
(70 kDa) is larger than the 17 kDa CaM molecule and
dextran-10 (10 kDa) is of similar size (Fig. 1 B). Volume
exclusion by these polymers creates barriers to CaM diffu-
sion and confines the space in which conformational
changes take place. We also evaluated CaM in the presence
of the osmolyte sucrose (340 Da), which minimizes the sol-
vent-exposed surface area of proteins (27,28,48) through an
osmophobicity effect, where burial of the backbone is
favored (49,50). Osmolytes are also preferentially excluded
from protein surfaces and have the potential to create a cag-
ing effect where water molecules trapped on protein sur-
FIGURE 1 CaM plasticity and experimental system. (A) The structural

ensemble from NMR experiments (PDB:1DMO (15)) are aligned to the

N-lobe (red) and overlaid to illustrate the flexibility and conformational

sampling of CaM. In contrast, CaMKI peptide-bound Ca2þ/CaM (green)

adopts a compact conformation (PDB:1MXE (12)). (B) Reagents used in

the experimental system are of varying sizes, with approximate radii of

51, 24, and 4 Å for ficoll-70, dextran-10, and sucrose, respectively. CaM,

illustrated in cartoon form with C-lobes (blue circles) and N- lobes (red cir-

cles), connected by a flexible linker, is most similar in size to dextran-10. To

see this figure in color, go online.
faces have decreased ability to exchange with the bulk
solvent (22). Sucrose has been shown to stabilize compact
conformers of protein ensembles, and has been suggested
to reduce structural fluctuations significantly when proteins
are in loose extended conformations with high internal hy-
dration (26,51,52).
Polymers and sucrose decrease CaM interlobe
distance and slow rotational diffusion

To investigate structural consequences, cysteine residues
were engineered into sites 34 and 110 of the N- and C-lobes
of CaM, respectively, and labeled with Alexa488 donor flu-
orophore and QSY9 quencher acceptor to produce the FRET
pair. FRET efficiencies were determined from fluorescence
intensities and used to calculate interprobe distances (Ta-
ble 1) as done in Homouz et al. (17). In the absence of co-
solutes, interprobe distances were reduced in the presence
of Ca2þ (from 61 to 54 Å), and a further reduction was
observed when bound to the CaMKI target peptide (to
41 Å). In the presence of cosolutes, the interprobe distances
in apo CaM or Ca2þ/CaM were decreased ~10 Å (Table 1).
Interestingly, in the presence of CaMKI target, inclusion of
cosolutes does not greatly change interprobe distance, likely
due to the already highly compact nature of the target-bound
conformation. The absence of cosolute-induced FRET
change of the Ca2þ/CaM/CaMKI complex also serves as
an important control showing that these agents, even at
high concentrations, do not produce detectable effects on
either the probe orientation or photophysics that could
have influenced the reduced distances measured for apo-
CaM and Ca2þ/CaM. These trends are largely consistent
for ficoll-70, dextran-10, and sucrose, with decreases in in-
terlobe distances saturating at ~10% because no further
decrease was detected at 20% (Table 1). These results indi-
cate that each reagent causes a compacting of apo CaM and
Ca2þ/CaM, increasing the probability of sampling confor-
mations with decreased interlobe distances.

We next assessed whether significant reorganization of
secondary structural elements accompanied the interlobe
TABLE 1 Average interprobe distances determined from

FRET

Experimental

Condition Apo CaM Ca2þ/CaM Ca2þ/CaM/CaMKI

None 61.46 5 0.93 53.81 5 1.4 41.05 5 0.02

10% ficoll-70 49.11 5 0.02 46.00 5 0.70 42.07 5 0.45

20% ficoll-70 46.29 5 0.21 47.95 5 0.43 41.34 5 0.60

10% dextran-10 48.88 5 0.26 45.05 5 0.23 41.96 5 0.43

20% dextran-10 51.15 5 0.23 47.53 5 0.27 41.96 5 0.47

10% sucrose 52.38 5 0.01 46.02 5 0.69 42.09 5 0.21

20% sucrose 50.81 5 0.05 48.18 5 0.13 41.70 5 0.30

Interprobe distances determined from fluorescence measurements are

shown for apo CaM, Ca2þ/CaM, and CaMKI peptide-bound CaM in the

presence of sucrose, dextran-10, and ficoll-70. Average values and standard

deviations calculated from two separate experiments are reported in Å.

Biophysical Journal 109(3) 510–520
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decrease detected by FRET measurements. For residue-
level assessments, 1H-heteronuclear single quantum coher-
ence experiments were carried out for 15N-labeled apo
CaM and Ca2þ/CaM in the presence and absence of 20%
polymer or sucrose. Compared to the condition lacking
these reagents, there were virtually no changes in amide
chemical shifts, Dd, in the presence of ficoll-70, dextran-
10, or sucrose with almost all residues demonstrating signif-
icant peak overlap (see Fig. S1 in the Supporting Material).
These experiments are interpreted assuming an experi-
mental error value of ~0.02 for Dd, a quantity twice that
of observed experimental values. The lack of significant
chemical-shift changes indicates that reorientation of sec-
ondary structural elements does not occur for apo or
Ca2þ-saturated CaM under the conditions examined.
Together, our results suggest that although the distance be-
tween CaM lobes decreases, secondary structural elements
are not detectably changed. Additionally, evaluation of the
change in amide peak intensities, I/I0, revealed that inten-
sities were significantly reduced overall, indicating a reduc-
tion in rotational correlation time for CaM in the presence of
the reagents. The I/I0 values averaged across all residues
were determined to be 0.50, 0.26, and 0.76 for sucrose,
dextran-10, and ficoll-70, respectively, indicating that
dextran-10 causes the most significant reduction of rota-
tional correlation time. Generally, loop regions were
observed to have slightly higher I/I0 values than a-helical re-
gions, suggesting conformational exchange dynamics may
also contribute to peak intensity, as described in Wang
et al. (38). Taken together, our steady-state FRET and
NMR analyses indicate that volume exclusion and osmolyte
stabilization are largely perturbing the rotational tumbling
and interlobe dynamics, while secondary structural ele-
ments within CaM lobes are not significantly affected. In
terms of the spatial scale of impacts, our results demonstrate
that the similarly sized dextran-10 had the largest conse-
quence on CaM rotational tumbling. All reagents affected
interlobe orientation to a comparable degree, but little evi-
dence was detected for the reagents impacting the protein
on the scale of secondary structure.
FIGURE 2 Steady-state Ca2þ binding affinity for CaM. (A) Ca2þ

affinities were determined by titrating Ca2þ into CaM in the absence of

polymers (black) and in the presence of 20% ficoll-70 (blue) or 20%

dextran-10 (green). (B) Ca2þ affinities were also determined in the presence

(red) or absence (black) of 20% sucrose. Representative fluorescence inten-

sities for each condition are plotted as a function of [free Ca2þ], fit with a

Hill function (solid lines), and normalized such that the fits spanned inten-

sities from 0 to 1. To see this figure in color, go online.
Volume exclusion conditions do not modulate
Ca2D affinity for CaM

CaM’s Ca2þ-binding affinity is dependent on electrostatic
interactions as well as the conformational dynamics within
each lobe (reviewed in Gifford et al. (13)). While fast back-
bone dynamics contribute principally to Ca2þ affinity, inter-
actions also exist between lobes that influence Ca2þ-binding
properties (53–55). This raises the possibility that although
ficoll-70, dextran-10, and sucrose are uncharged and pro-
duce no detectable effects on secondary structure, modula-
tion of interlobe dynamics may influence Ca2þ affinity.
Steady-state Ca2þ binding affinities were quantified in the
presence of polymers or sucrose by monitoring native tyro-
Biophysical Journal 109(3) 510–520
sine fluorescence, a measure of Ca2þ binding specific to the
C-lobe of CaM (56). Fluorescence intensity was measured
as a function of free Ca2þ concentration and the data were
fit with a Hill equation to determine Kd values (Fig. 2). Fi-
coll-70 and dextran-10 had little effect on Ca2þ affinity
(Fig. 2 A). The Kd values were determined to be 2.2 mM
in the absence of polymer and 2.6 mM in the presence of
20% ficoll-70 or dextran-10 (see Table S1 in the Supporting
Material). There was also no significant difference apparent
in the Hill coefficient (Table S1). In the case of sucrose, a Kd

of 3.8 mM was determined, indicating a modest, but repro-
ducible, decrease in affinity for Ca2þ with no significant
change in the Hill coefficient (Fig. 2 B and Table S1). Osmo-
lytes, like sucrose, are predicted to be preferentially
excluded from protein surfaces as well as macromolecular
interfaces (28). Because water is a better solvent for the pep-
tide backbone than osmolytes, the burial of the backbone is
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favored through an apparent repulsion between protein and
osmolyte via an osmophobicity effect (23,26,49,50). This is
an entropic effect where osmolytes enhance water organiza-
tion around proteins to promote reduction of protein surface
area and burying of protein interfaces (23,49). Conse-
quently, when a binding mechanism involves exposing an
interface, the osmolyte will destabilize the binding reaction
(49). Ca2þ binding to CaM exposes a new surface area to
create interfaces for recognition of protein targets (57,58),
and we speculate that sucrose destabilizes Ca2þ binding
due to unfavorable exposure of protein surfaces. Addition-
ally, it is possible that displacement of water molecules
from the coordination sphere of the binding site by Ca2þ

is inhibited in the presence of sucrose.
Polymers and sucrose reduce CaM diffusion

In its simplest form, target association can be described in
two steps: 1) the initial encounter and 2) subsequent confor-
mational changes needed to arrive at the stable bound state.
Potential effects of environmental factors on association
rates will depend on which of these two processes is the
rate-limiting step (59). If the association is a diffusion-
limited one, i.e., it is principally dependent on encounter
rates, rates will be slowed because of barriers to diffusion.
If the rate is a transition-limited one, i.e., it is primarily
dependent on overcoming conformational barriers after
the initial encounter, crowding increases rates through stabi-
lization of transition state intermediates (59). We showed
previously that Ca2þ/CaM association with CaMKI-peptide
is considered to be in the diffusion-limited regime (19)
(defined by Schreiber et al. (4) theoretically as 105–1010

M�1 s�1), indicating that cosolute-mediated changes in
diffusion will likely dominate any changes observed in asso-
ciation rates. However, structural information showed that
large domain rearrangements in CaM are necessary to
accommodate target binding (see Fig. 1 A) (12). This raises
the possibility that the association rate may additionally be
modulated through stabilization of transition-state interme-
diates. We therefore investigated how the polymers and su-
crose modulate the diffusion and transition steps of CaM
target association and determined their dependence on the
relative size and concentration of each reagent.

We employed FCS to extract diffusion coefficients for
CaM labeled with Alexa 488 in varying concentrations of
polymer or sucrose. All data was best fit with a single-
component model to determine the diffusion coefficient, D
(Fig. 3 A) indicating that D of the measured species was ho-
mogeneous through the illuminated volume under all exper-
imental conditions evaluated here (30). All reagents
decreased diffusion in a concentration-dependent manner
to varying degrees, with the largest molecule, ficoll-70, hav-
ing the most robust effect and the smallest, sucrose, having
the least (Fig. 3, B–D). For comparison, Dwas reduced from
148 mm2/s in buffer to 34 and 59 mm2/s in 20% ficoll-70 and
sucrose, respectively. Overall, diffusion coefficients were
reduced in roughly linear fashions, consistent with an antic-
ipated consequence of increased viscosities.
Diffusion-limited models fail to describe
association rates

In a diffusion-limited reaction, encounter probability domi-
nates the association rate and association is proportional to
reactant diffusion rates. Our results indicate CaM diffusion
is decreased in the presence of polymers and sucrose, and
we would expect a proportional decrease in association
rate if reactions follow a diffusion-limited model. Deviation
from this linear relationship would indicate that rates of
conformational change are contributing significantly to the
association rate. To measure association rates, target binding
to CaM labeled with Acr was monitored in a stopped-flow
fluorescence experiment as previously described inWaxham
et al. (34). Acrylodan reports changes in local environment,
and CaM-Acr is sensitive to conformational changes and
binding of target. On-rates were determined by monitoring
time-dependent changes in fluorescence as CaMwas rapidly
mixed with excess peptide under pseudo first-order binding
conditions. Fig. 4 A depicts a representative experiment
completed in the absence of polymers or sucrose. Binding
reactions were carried out with varying concentrations of
target (red through black scatter plots) and data were fit
with a single-exponential model to determine the rate,
kobs. The value kobs was plotted as a function of peptide con-
centration (inset) and a kon value was determined from the fit
of the slope. This procedure was then completed with vary-
ing concentrations of ficoll-70, dextran-10, and sucrose
(Fig. 4, B–D). In general, on-rates were decreased as a func-
tion of polymer or sucrose concentration (data summarized
in Table 2), with higher concentrations producing slower as-
sociation rates. While all cosolutes influenced diffusion in
roughly linear fashions, each reagent produced a unique
trend in on-rates. For ficoll-70, on-rates decreased in a linear
fashion (Fig. 4 B). However, on-rates in dextran-10 and su-
crose were reduced in nonlinear ways and the trends require
a more complicated description (Fig. 4, C and D). Dextran-
10 produces, at most, a modest impact on the kon at 5–10%;
however, from 10 to 20% there is a major decrease in kon
that appears to follow a near-linear trend. In contrast, su-
crose produces a significant slowing of kon at 5% and then
follows a complicated pattern of continuously slowed kon
at increasing concentrations. These distinct patterns suggest
that each cosolute is impacting the process of association in
unique ways. Importantly, cosolute-dependent changes in
diffusion alone appear insufficient to describe changes
in on-rates, and implies that cosolutes may also play a
role in the transition between the initial encounter and
bound complex.

To begin to assess these trends, we produced a plot of kon
versus D for each reagent (Fig. 5). In a diffusion-limited
Biophysical Journal 109(3) 510–520
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FIGURE 3 CaM diffusion coefficients. (A) Representative FCS data of CaM diffusion in buffer to illustrate data collection methodology. Autocorrelation

functions were calculated in real-time from photon counts, then the averages of five experiments (shaded data points) were fit with single-component fits

(solid trace) to determine diffusion coefficients. (Bottom inset) Residuals from the fit are shown. Diffusion coefficients were determined in various concen-

trations of ficoll-70 (B), dextran-10 (C), and sucrose (D). Experiments were completed in triplicate. Error bars represent mean 5 SE.
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model, the association rate is directly proportional to the
diffusion-rate constant, kD, and therefore proportional to
the diffusion constant, D (see Eq. 4 in Materials and
Methods). This relationship produces a linear trend
(Fig. 5, gray dotted lines) that relates the zero data point
collected in the absence of polymer or sucrose and the
origin, where lack of diffusion results in no association.
Plots of kon versus D for the data collected in Ficoll-70
(Fig. 5 A), dextran-10 (Fig. 5 B), and sucrose (Fig. 5 C)
all deviate, to a greater or lesser extent, from the simple
diffusion-limited model. As a next step, we evaluated a
model that includes a transition state to fit the data (Eq. 7;
see Materials and Methods) (3). Interestingly, this model
fit the relationship of kon versus D for ficoll (Fig. 5 A) and
sucrose (Fig. 5 C) reasonably well, consistent with the
idea that these two cosolutes impose a significant effect
on the rate of conformational transition during the associa-
tion process. The fit of this model to the dextran-10 data was
poor, indicating that the reaction-influenced model also
failed to produce a trend line that falls within the error of
the data. This finding highlights the complexities presented
to diffusion and binding in crowded environments, and that
k

BA

k

FIGURE 4 Measurement of CaM-CaMKI peptide association rates and determ

tide is shown to illustrate data collection and fitting. CaM association rates wer

represent averages spanning a range of peptide concentrations (black to red scatte

single-exponential rates to determine observed rates, kobs. Observed rates for eac

tration (inset) and the kon value was determined from the slope of the linear fit. T

70 (B), dextran-10 (C), and sucrose (D) to determine rates. Experiments were co

color, go online.
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across the concentration of dextran-10 evaluated, neither a
diffusion-limited nor reaction-influenced model is sufficient
to fully describe the reaction. It is of interest that the coso-
lute most similar in size to CaM (dextran-10) produces the
most multipart reaction kinetics. Despite these complexities,
in all cases, the association rates are decreased relative to
buffer alone, indicating that while conformational transi-
tions are stabilized to increase the rate of association,
slowed diffusion still plays a significant factor in deter-
mining the overall rate.
Polymers and sucrose modulate both association
and dissociation rates, resulting in little change in
steady-state binding constants

When CaM dissociates from the target, it transitions from a
compact conformation to a more extended conformation
(12,15). We predicted ficoll-70, dextran-10, and sucrose
would favor the more-compact bound state and investigated
if the Ca2þ/CaM-target complex would be stabilized by
these reagents and lead to slowed dissociation rates. We
measured peptide off-rates using stopped-flow fluorescence
C D

ination of kon. (A) A representative association experiment for CaMKI pep-

e measured under pseudo first-order binding conditions and the data shown

r plots), with only every 20th data point plotted for clarity. Data was fit with

h concentration were then plotted as a function of CaMKI peptide concen-

his experimental procedure was repeated in varying concentrations of ficoll-

mpleted in duplicate. Error bars represent mean 5 SE. To see this figure in



TABLE 2 Summary of association and dissociation rates for Ca2D/CaM-CaMKI peptide

Condition kon (M
�1 s�1) koff (k1) (s

�1) koff (k2) (s
�1) Kd (M)a

None 6.3 � 108 5 9.5 � 106 1.05 5 0.13 0.11 5 0.012 1.7 � 10�9

5% ficoll-70 4.7 � 108 5 2.0 � 106 0.79 5 0.10 0.09 5 0.008 1.69 � 10�9

10% ficoll-70 4.3 � 108 5 3.3 � 107 0.75 5 0.05 0.08 5 0.01 1.75 � 10�9

15% ficoll-70 3.4 � 108 5 1.0 � 106 0.67 5 0.07 0.08 5 0.01 2.00 � 10�9

5% dextran-10 6.19 � 108 5 1.8 � 107 0.72 5 0.095 0.07 5 0.02 1.16 � 10�9

10% dextran-10 5.77 � 108 5 1.1 � 107 0.69 5 0.078 0.06 5 0.01 1.20 � 10�9

15% dextran-10 3.74 � 108 5 1.7 � 107 0.62 5 0.072 0.06 5 0.01 1.65 � 10�9

20% dextran-10 2.87 � 108 5 1.6 � 107 0.49 5 0.067 0.02 5 0.002 1.72 � 10�9

5% sucrose 4.52 � 108 5 4.0 � 106 0.77 5 0.11 0.10 5 0.02 1.69 � 10�9

10% sucrose 4.19 � 108 5 9.5 � 106 0.80 5 0.10 0.12 5 0.01 1.90 � 10�9

15% sucrose 3.81 � 108 5 8.0 � 106 0.64 5 0.07 0.08 5 0.004 1.69 � 10�9

20% sucrose 2.63 � 108 5 5.0 � 105 0.43 5 0.03 0.05 5 0.003 1.62 � 10�9

Averages of measured on-rates and off-rates are reported for volume exclusion (n¼ 2). Double-exponential equations were required to fit dissociation curves,

where k1 rates account for ~90% of the change in amplitude and k2 rates represent the remaining ~10%.
aEstimates of dissociation constants were calculated using the relationship Kd ¼ k1/kon.
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as described in Materials and Methods. In these experi-
ments, CaM-Acr dissociation from the peptide is quantified
by rapid mixing with an excess of unlabeled CaM that com-
petes with fluorescently labeled CaM for rebinding to the
peptide after dissociation occurs. The resultant fluorescent
decay represents the rate of dissociation of the peptide.
We found that indeed off-rates (Table 2) were decreased
in the presence of increasing concentrations of sucrose,
dextran-10, or ficoll-70, indicating these reagents stabilize
the Ca2þ/CaM-CaMKI peptide complex likely due to its
smaller volume occupancy. Our experiment cannot resolve
the difference between a slow molecule dissociation event
primarily dependent on conformational changes, and one
where dissociation is limited because of quick rebinding
of partners due to reduced diffusion. Changes to protein dy-
namics and diffusion can potentially contribute to reducing
the dissociation rate and/or increasing the probability of
CaM and target rebinding. For example, reduction in confor-
mational dynamics of CaM lobes can inhibit the molecule
A BFicoll-70 Dex

FIGURE 5 The fit of kon versusDwith diffusion-limited- or reaction-rate-influ

10, and (C) sucrose, i.e., kon, were plotted, respectively, as a function of diffusi

models, hypothetical diffusion-limited relationships (dashed lines) and fits of da

kon ¼ (a(D�D0))/(bþ(D�D0)) (Eq. 7; see Materials and Methods). The relatio

following values: a ¼ 494, b¼ 2.26, and D0 ¼ 59.8 mm2/s. Fits of dextran-10 da

data are a ¼ 531, b ¼ 12.7, and D0 ¼ 47.1 mm2/s.
from sampling the extended conformations required for
forming the extended, unbound conformation. If molecules
overcome this barrier and begin to dissociate, their rota-
tional tumbling and translational diffusion is also inhibited.
This presumably keeps reactive interfaces of binding part-
ners in the right orientation and close proximity for a longer
time, thereby decreasing the probability of completely sepa-
rating in space and increasing the probability of quick re-
binding. The experimental rate in this case is a
concentration-independent one, indicating that total dissoci-
ation of partners and rebinding to different partners is not
part of the measurement.

Having experimentally determined the association and
dissociation rates under the various conditions, we were
able to calculate an estimated dissociation constant from
the relationship Kd ¼ koff/kon. In all cases, these cosolutes
decreased both on-rates and off-rates, resulting in little
change in calculated dissociation constants (see Kd esti-
mates in Table 2). This indicates that steady-state affinity
Ctran-10 Sucrose

enced models. Association rates in the presence of (A) ficoll-70, (B) dextran-

on coefficient, D. To illustrate how data converge or deviate from the two

ta (solid lines) are given. Data were fit to the reaction-rate-influenced model

nship for data collected in the presence of ficoll-70 was estimated with the

ta reveal that a ¼ 1100, b ¼ 59.5, and D0 ¼ 24.5 mm2/s, and fits for sucrose
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does not seem to be substantially influenced by volume-
exclusion or sucrose-mediated effects. To confirm these
findings, we experimentally measured equilibrium constants
of CaMKI peptide binding to Ca2þ-saturated CaM using
ITC in the presence or absence of 20% polymers or sucrose.
Data was fit with a single binding-site model to determine
Ka (Fig. S2 and Table S2). Consistent with the estimated
Kd from koff and kon, no significant changes in measured af-
finity were observed in the presence of polymers or sucrose
as compared to control.
DISCUSSION

We discovered that ficoll-70, dextran-10, and sucrose each
produce unique effects on the diffusion and association
and dissociation rates of CaM with a target, processes
that take place on distinct time- and spatial scales (for
summary, see Table 3). Overall, these results show that
differently sized molecules enhance or impede steps of
the association process in distinctive ways. Our analysis
of on-rates showing reduction of diffusional rate and in-
crease in rate of conformational transition overall are
consistent with the proposal that crowding will decrease
rates when reactions are diffusion-limited and increase
rates when they are reaction-limited (59). We further pre-
dict that in cases where conformational transitions are
affected, rates are enhanced with formation of compactly
bound structures and impeded when sampling of extended
conformations is necessary or when molecules dissociate.
Of the three differently sized cosolutes evaluated, we
found that the smallest, sucrose, had the least impact on
diffusion while the largest, ficoll-70, had the greatest.
Interestingly, the reagent most similarly sized to CaM,
dextran-10, had the most significant impact on rates of
conformational change associated with on-rates. These
size-dependent effects illustrate how the spatial scale of
TABLE 3 Summary of results

Property Ficoll-70 Dextran-10 Sucrose

Structure

Interdomain distance Y Y Y
Residue conformation NC NC NC

Diffusion

Rotational tumbling Y Y Y
Translational diffusion Y Y Y

Steady-state affinity

Ca2þ affinity NC NC Y
CaMKI peptide affinity NC NC NC

Kinetic rates

CaMKI association Y Y Y
Conformational rearrangements

for binding

[ [ [

CaMKI dissociation Y Y Y

The effects of ficoll-70, dextran-10, and sucrose are summarized for each

property of CaM investigated. (Arrows, increases and decreases; NC, no

change.)
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each step in a reaction pathway can be differentially influ-
enced by environmental factors.

We discovered that reduction of both association and
dissociation rates serve to counteract each other, resulting
in little change in Kd in the presence of ficoll-70, dextran-
10, and sucrose. We show that conformational dynamics
are dampened as well as rotational tumbling and transla-
tional diffusion, the combination of which is likely respon-
sible for this compensatory effect, complementary to the
prediction proposed by Ellis (59). They propose that for as-
sociation of molecules, crowding will reduce the diffusion
component of the rate and increase the rate of conforma-
tional changes through the transition state. Correspondingly
for molecule dissociation, the rate of conformational
changes to dissociate is decreased and the rate of rebinding
is increased due to favorable conformational transitions as
well as reduction of molecule dissociation. Our steady-state
measurements were insufficient to detect the impacts of
crowders and osmolytes and instead nonequilibrium kinetic
analyses were required. This finding may in part explain
why crowding has shown variable impacts across different
experimental systems (60,61). We assert that steady-state
measurements are less informative to describe conditions
in vivo where biochemical processes are at nonequilibrium
(62). The modulation of kinetic reaction rates has poten-
tially great consequences for controlling protein-protein in-
teractions. In this case, the rate of association of proteins is
functionally a more relevant kinetic parameter, where rapid
association can enhance binding affinity. While slow disso-
ciation also enhances binding affinity, long-lasting associa-
tion is not ideal for temporal encoding by signaling
molecules. Even with a fast off-rate, a protein can achieve
short-lived high affinity at nonequilibrium because of rapid
association. For a signaling molecule like CaM that has
many potential intracellular targets, differences in associa-
tion rates may be responsible for which target gets selected
among the hundreds of potential possibilities. Because
encounter of molecules is often the rate-limiting step of as-
sociation, rapid binding may be more important than high
steady-state affinity to determine how targets get chosen.
With reaction rates occurring on several timescales, the
composition of the cellular environment has the potential
to differentially tune signaling processes occurring on
different frequencies.

While cellular osmolyte concentration is dynamically
regulated (49), the bulk concentration of macromolecules
is believed to remain largely constant. However, the cyto-
plasm is organized in a nonrandom fashion, where organ-
elles, non-membrane-bound phases, and large protein
complexes serve to assemble variable and dynamic compo-
sitions of molecules (63–65). Interestingly, maintenance of
bulk cellular concentration of molecules may be a necessary
step to keep concentrations close to the threshold for liquid
phase transitions (1). These phases can undergo dynamic
reorganization where molecules selectively partition into
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or out of the phase, producing substantial kinetic conse-
quences (66). Therefore, small changes in available volume
within the phase, mediated by changes in cosolute concen-
tration and composition, could potentially stimulate
signaling responses that would otherwise not occur. This
would seem to be an extremely efficient mechanism to
tune localized signals without the need to alter the bulk-
cellular concentration of cosolutes, and is particularly
relevant for a molecule like CaM that depends on conforma-
tional plasticity for its function. This evolving appreciation
for the dynamic organization of cell cytoplasm underscores
the need to quantitatively assess the impacts of crowding
and osmolytes in the regulation of protein function.
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Figure S1: NMR analysis of CaM under conditions of volume exclusion.  1H-heteronuclear 
single quantum coherence (HSQC) experiments were carried out for 15N-labeled apo CaM (left 
column) and Ca2+/CaM (right column) in the presence and absence of 20% ficoll-70 (A), 
dextran-10 (B), and sucrose (C).  Values for chemical shifts and peak intensities were determined 
and compared with the condition of no added polymer or sucrose to determine changes in 
chemical shifts and changes in peak intensities. 



 

 

Figure S2:  CaM-CaMKI peptide binding affinities.  Representative ITC experiments of 
CaMKI peptide titrated into CaM in the absence (A) or presence of 20% ficoll-70 (B), dextran-
10 (C), or sucrose (D).  Upper panels show raw thermogram data plotted as a function of 
experimental time and lower panels show integrated peak intensities as a function of [CaMKI 
peptide]/[CaM] molar ratio.  Data have been fit to single site binding models to determine Kd 
values (fitting parameters delineated in Table S2). 

  



 

Experimental  
Condition 

KA n Kd= KA
n (μM)  

None 1. 56 ±0.04 1.59 ±0.06 2.2 

20% ficoll-70 1.83 ±0.08 1.60 ±0.02 2.6 

20% dextran-10 1.85 ±0.06 1.61 ±0.09 2.6 

20% sucrose 2.19 ±0.06 1.69 ±0.003 3.8 

Table S1. Fitting parameters and dissociation constants for Ca2+ affinity for 
CaM (n=2). The macroscopic association constant, KA, and the Hill coefficient, 
n, were determined by monitoring Tyr fluorescence during titration with Ca2+ and 
fitting the data to the Hill equation as described in the Materials and methods.  
Average values from two independent experiments are reported and errors were 
determined for each condition.  A macroscopic dissociation constant for the CaM 
C-lobe, Kd was calculated from the relationship Kd= KA

n. 

  



 

Experimental  
Condition 

N Ka (M-1) ΔH (cal/mol) ΔS (cal/mol/deg) 

None 0.99 ±0.02 1.61×108 ±4.8×107 -9812 ±368 4.54 ±0.63 

20% ficoll-70 1.01 ±0.15 1.40×108 ±1.8×107 * -10745 ±205 1.22 ±0.44 

20% dextran-10 0.81 ±0.11 9.75×107 ±1.7×107 * -10375 ±866 8.00 ±8.30 

20% sucrose 1.05 ±0.09 3.24×108 ±1.4×108 * -12805 ±845 4.21 ±3.73 

Table S2. Summary of ITC data for CaM +CaMKI peptide affinity measurements.  For 
ITC measurements values of N (stoichiometry of binding), Ka, ΔH, and ΔS were obtained by 
fitting the heat signature of a series of injections of CaMKI peptide into solutions of CaM with a 
single site binding model in the Microcal software.  All parameters are reported as averages 
(n=2) with standard deviations. Asterisk (*) denotes that the standard deviation for each volume 
exclusion experiment overlaps with the range determined in the absence of reagent; signifying 
affinities are not statistically different in the absence of polymer or sucrose.   
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