

Supplemental Table for:

Implementation of a Molecular Tumor Board: The Impact on Treatment Decisions for 35 Patients Evaluated at Dartmouth-Hitchcock Medical Center Laura J. Tafe et al.

 Table S2.
 Summary of 35 cases evaluated by MTB.

Patient #	Diagnosis	Primary (P), Recurrent (R), or Metastatic (M)	<i>n</i> lines of prior therapy	archived (A, yrs) or recently sampled (R, <1 vr) tumor	Mutated gene(s)	Amino acid change(s) (p)	DNA mutation(s) (c)	MTB interpretation and recommendation	Level of evidence supporting recommende dtargeted therapy [Ref.]	Followed MTB- recommended treatment? yes or no (reason)	Subsequent treatment
1	Rhabdo- myosarcoma	Μ	3	R	TP53	R141H	421_422delinsCA	Recommend treatment with standard therapy; referral for genetic counseling to rule out germline mutation.	NA	NA	SOC chemotherapy
2	NSCLC, adeno. (<i>ALK</i> -normal)	Μ	0	А (З у)	EGFR PIK3CA	709_710del -insD E545K	2126_2129delinsA 1633g>A	EGFR mutation may result in decreased activation. <i>PIK3CA</i> mutation may confer sensitivity to PI3K inhibitor. Recommend treatment with standard first-line chemotherapy.	NA	NA	SOC chemotherapy
3	NSCLC, adeno. (<i>ALK</i> -normal)	Μ	2	R	BRAF MET	V600E T992I	1799T>A 2975C>T	BRAF mutation may confer resistance to EGFR inhibitor and sensitivity to BRAF inhibitor. Recommend treatment with BRAF inhibitor.	2 [1-3]	Yes	BRAF inhibitor (Phase II trial)
5	NSCLC, adeno. (<i>ALK</i> -normal)	Μ	1	R	KRAS SMO	G12R C193Y	34G>C 578G>A	<i>KRAS</i> mutation confers resistance to EGFR-targeted therapy. Recommend treatment with standard second-line therapy, followed by clinical trial with Hedgehog inhibitor or CDK4/6 inhibitor (in- house clinical trial).	3 [4]	NA	SOC chemotherapy
6	NSCLC, adeno (<i>ALK</i> -normal)	Μ	1	R	KIT MET TP53 JAK3	M541L N375S Y88C V722I	1621A>G 1124A>G 263A>G 2164G>A	Recommend treatment with standard second-line therapy; pt. has poor PS, trial not recommended.	NA	NA	SOC chemotherapy and RT
8	Leiomyo- sarcoma	Μ	6	A (4 y)	ND			Re-biopsy and analyze with larger gene panel; consider Phase I trials; referral for germline genetic testing.	NA	No (responding to SOC)	NA
9	CRC	Μ	7	А (З у)	KDR APC TP53	Q1149E E1291fs R43H	3445C>G 3867_3871del AAAAG 128G>A	<i>KDR</i> mutation lies in kinase domain, may be associated with sensitivity or resistance to VEGF inhibitor; recommend re-biopsy and sequencing of current tumor; recommend Phase I trials.	NA	No (pt. declined trial options)	SOC chemotherapy
10	Melanoma	М	2	R	BRAF PIK3CA	V600E Y1021*	1799T>A 3063C>G	BRAF mutation sensitizes to BRAF inhibitor. Recommend treatment with	1 [5, 6]	Yes	BRAF + MEK inhib.

Patient #	Diagnosis	Primary (P), Recurrent (R), or Metastatic (M)	<i>n</i> lines of prior therapy	UNA-seq or archived (A, yrs) or recently sampled (R, <1 vr) trimor	Mutated gene(s)	Amino acid change(s) (p)	DNA mutation(s) (c)	MTB interpretation and recommendation	Level of evidence supporting recommende dtargeted therapy [Ref.]	Followed MTB- recommended treatment? yes or no (reason)	Subsequent treatment
					MET	E355K	1063G>A	BRAF inhibitor (+/- MEK inhibitor). <i>PIK3CA</i> mutation of unknown significance; upon disease progression, consider trial with PI3K inhibitor.			[Dabrafenib + Trametinib (approved)]
11	CRC	Μ	1	A (4 y)	KRAS APC TP53	G12V P1440fs R141C	35G>T 4318delC 421C>T	KRAS mutation associated with resistance to EGFR inhibitors. Recommend treatment with MEK (+/- PI3K) inhibitor.	3 [7]	No (pt. declined therapy)	herbal, alternative medicine
12	CRC	Μ	2	A (3 y)	BRAF PIK3CA KIT APC ERBB2	V600E H1047Y G51K R858* V842I	1799T>A 3139C>T 152G>A 2572C>T 2524G>A	BRAF mutation confers resistance to EGFR inhibition. <i>PIK3CA</i> mutation may confer resistance to BRAF inhibition. <i>ERBB2</i> mutation induces kinase activation and possibly confers sensitivity to HER2 kinase inhibitors. Recommend treatment with PI3K inhibitor, PI3K and BRAF inhibitors, or BRAF and EGFR inhibitors.	3 [8-10]	No (pt. declined trial options)	None
13	Naso- pharyngeal CA	М	2	R	ND			Consider Phase I trials.	NA	No (pt. declined trial options)	SOC chemotherapy
14	Pilocytic astrocytoma	Ρ	0	R	PIK3CA	Q546E	1636C>G	Tumor type is associated with neurofibromatosis type 1 (NF1), and suggestive of germline mutations; recommend referral for genetic counseling. <i>PIK3CA</i> mutation is likely activating; consider treatment with PI3K inhibitor upon disease progression.	NA	NA	Surgery as SOC, then observation
15	CRC	Ρ	0	R	PIK3CA TP53	E542K R196*	1624G>A 586C>T	<i>PIK3CA</i> mutation is activating; consider treatment with PI3K inhibitor upon recurrence. Recommend treatment with standard first-line therapy.	3 [11-13]	NA	SOC chemotherapy
16	Salivary gland CA	Μ	2	R	PIK3CA HRAS	E545K Q61R	1633G>A 182A>G	<i>PIK3CA</i> mutation is activating and may confer sensitivity to PI3K inhibitor. <i>HRAS</i> mutation may be associated with resistance to standard therapies. Evaluate amplification of EGFR and ERBB2 status, as clinical studies suggest potential correlation with response to receptor- targeted therapy. Consider treatment with PI3K inhibitor.	3 [11-13]	No (disease is stable on SOC)	SOC chemotherapy
17	CRC	М	7	A (4 y)	KRAS TP53	G13D R43H	38G>A 128G>A	Re-biopsy a current tumor and perform genetic analysis with larger gene panel.	NA	No (pt. not interested in traveling for treatment)	SOC chemotherapy

Patient #	Diagnosis	Primary (P), Recurrent (R), or Metastatic (M)	<i>n</i> lines of prior therapy	UNASeq or archived (A, yrs) or recently sampled (R, <1 vr) tumor	Mutated gene(s)	Amino acid change(s) (p)	DNA mutation(s) (c)	MTB interpretation and recommendation	Level of evidence supporting recommende dtargeted therapy [Ref.]	Followed MTB- recommended treatment? yes or no (reason)	Subsequent treatment
18	Melanoma	Μ	0	R	FGFR3 CDKN2A TP53	G691R P81L S241F	2071G>A 242C>T 722C>T	FGFR3 mutation lies in kinase domain, may alter kinase activity. CDKN2A mutation may predict sensitivity to CDK4/6 inhibitor. Consider treatment with FGFR3/multi-kinase inhibitor Dovitinib, or CDK4/6 + MEK inhibitors in ongoing trial.	3 [14-19]	No (pt. requested care closer to home)	SOC Ipilimumab
19	Epithelioid	Μ	2	R	ND			Consider Phase I trials.	NA	No (progressive disease)	None (pt. died)
20	NSCLC adeno. (<i>ALK</i> -normal)	Μ	1	R	MET TP53	P814L G134E	2441C>T 401G>A	MET mutation does not lie in kinase domain; unknown effect on sensitivity to MET inhibitor. Consider MET inhibitor trial upon disease progression.	3 [20]	NA	SOC Pemetrexed
21	Unknown primary	М	2	R	PIK3CA	E542K	1624G>A	PIK3CA mutation is activating, may confer sensitivity to PI3K inhibitor. Recommend treatment with PI3K inhibitor in ongoing Phase II clinical trial.	3 [11-13]	No (pt. has declining PS)	None (pt. died)
22	Breast CA (ER+, HER2-)	Μ	6	R	PIK3CA	H1047R	3140A>G	<i>PIK3CA</i> mutation is activating and may confer sensitivity to PI3K pathway inhibitor. Recommend SOC treatment with Everolimus (mTORC1 inhibitor) + Exemestane.	1 [21, 22]	Yes	SOC Everolimus + Exemestane
23	Anaplastic ependy- moma ¹ (seq by Foundation Medicine)	Μ	2	А (З у)	NF1 PIK3R1 PTPN11 CDKN2A TP53 MSH2 MSH6 BRIP1 MLL2 SETD2	N1465fs*2 R301* V428M R80* R248Q null F1088fs*5 S624L A2169T R2510H	4332+2T»C NR NR NR exons 1-3 NR NR NR NR NR T1652fs*i4	 PTPN11 (Shp-2) and NF1 mutations may confer sensitivity to MEK and PI3K pathway inhibitors. PIK3R1 mutation may activate JNK and ERK pathways. Recommend treatment with MEK inhibitor. Loss of MSH2 function may confer synthetic lethality with methotrexate; consider treatment. 	4 [23-36]	Yes	Methotrexate (approved); upon subsequent disease progression, switched to Trametinib (MEK inhibitor), off-label
24	Glioblastoma multiforme (1p/19q- normal; <i>MGMT</i> - methylated)	R	1	R	PIK3CA	Y1021C	3062A>G	<i>PIK3CA</i> mutation may be activating and confer sensitivity to PI3K/mTOR pathway inhibitors. Recommend treatment with PI3K inhibitor in clinical trial upon disease progression.	3 [11-13]	No (pt. has declining PS)	SOC Bevacizumab
25	Cholangio- carcinoma	М	1	R	MET TP53	N375S R148K	1124A>G 443G>A	<i>MET</i> mutation may be benign polymorphism. Consider clinical trials with MET- or P53-directed therapies.	3 [37, 38]	No (pt. has declining PS)	SOC

Patient #	Diagnosis	Primary (P), Recurrent (R), or Metastatic (M)	<i>n</i> lines of prior therapy	DNA-seq or archived (A, yrs) or recently sampled (R, <1 vr) tumor	Mutated gene(s)	Amino acid change(s) (p)	DNA mutation(s) (c)	MTB interpretation and recommendation	Level of evidence supporting recommende dtargeted therapy [Ref.]	Followed MTB- recommended treatment? yes or no (reason)	Subsequent treatment
26	CRC	М	2	А (2 у)	KRAS APC	G12C T1420fs	38G>A 4255delinsAA	KRAS mutation suggests proteasome addiction and synthetic lethality to topoisomerase inhibitors in preclinical studies, but clinical evidence is lacking. Recommend clinical trials.	4 [39]	No (stable disease on SOC)	SOC Yttrium-90 (Y-90)
27	CRC	Μ	5	A (7 y)	TP53 JAK3	splice site V722I	376-1G>A 2164G>A	Re-biopsy a current tumor and perform genetic analysis with larger gene panel. Recommend clinical trials.	NA	No	NR
28	Basal cell CA & Gorlin's Syndrome	Μ	5	R	MET SMO TP53	E168D G529V R248W	504G>T 1586G>T 742C>T	Impact of <i>MET</i> mutation is unknown, could confer sensitivity to MET inhibitor. Impact of <i>SMO</i> mutation is unknown, could confer sensitivity to SMO inhibitor. Recommend treatment with SMO inhibitor (Vismodegib is approved).	1 [37, 40, 41]	No (progressive disease, hospice referral)	None
29	NSCLC adeno. (<i>ALK</i> -normal)	Μ	0	R	MET TP53	N375S G134E	1124A>G 401G>A	MET mutation may be polymorphism. Consider clinical trials with MET inhibitor.	3 [20]	No (pt. declined treatment)	None
30	Breast CA (ER-, PR-, HER2+)	Μ	2	R	FLT3	S684P	2050T>C	<i>FLT3</i> mutations are common in AML, but rare in breast cancer. Treatment with a multi-kinase inhibitor that inhibits FLT3 (such as Dovitinib or Sorafenib) may have activity.	2 [42-45]	No (pt. died)	None (pt. died)
31	Melanoma	R	1	R	NRAS	Q61K	181C>A	NRAS mutation may be associated with sensitivity to MEK inhibitor. Use of adjuvant therapy is an option in the context of a clinical trial.	3 [46, 47]	NA	SOC surveillance
32	Breast CA (ER+, HER2-)	Μ	1	R	PIK3CA APC TP53 SRC	H1047R A1340T R273H E527K	3140A>G 4018G>A 818G>A 1579G>A	<i>PIK3CA</i> mutation is activating. <i>SRC</i> is rarely mutated in breast cancer, but preclinical evidence indicates that <i>SRC</i> mutation is activating. Recommend treatment with SOC first-line anti-estrogen therapy. Upon disease progression, recommend treatment with SRC inhibitor.	3 [11-13, 48- 51]	NA (stable disease on SOC)	SOC fulvestrant
33	NSCLC adeno. (<i>ALK</i> -normal)	Μ	2	R	RET TP53	S653C L111R	1958C>G 332T>G	Evaluate tumor for <i>KIF5B-RET</i> fusion. Consider treatment with RET inhibitor.	2 [52-54]	No (declining PS; hospice care)	SOC
34	CRC	Ρ	0	R	ALK PIK3CA PIK3CA APC PTEN PTEN	R1181C E81K R88Q E1526 R130Q E299	3541C>T 241G>A 263G>A 4576G>T 389G>A 895G>T	ALK mutation lies in kinase domain; patient has history of mental retardation, and family history of colon cancer; consider germline testing for ALK mutation, as similar lesions are associated with increased risk of neuroblastoma.	NA	Yes (pursuing germline testing; stable disease on SOC)	SOC chemotherapy

Patient #	Diagnosis	Primary (P), Recurrent (R), or Metastatic (M)	<i>n</i> lines of prior therapy UNA-seq or	archived (A, yrs) or recently sampled (R, <1 vr) tumor	Mutated gene(s)	Amino acid change(s) (p)	DNA mutation(s) (c)	MTB interpretation and recommendation	Level of evidence supporting recommende dtargeted therapy [Ref.]	Followed MTB- recommended treatment? yes or no (reason)	Subsequent treatment
					RB1 TP53	E137* splice site	409G>T 163+2T>G	PTEN mutation(s) is inactivating, and R130Q is a germline mutation associated with Cowden's Syndrome, which would confer high risk for other malignancies. Recommend germline testing for PTEN mutation.			
35	Breast CA (ER+, HER2+)	М	4	R	APC	E1317Q	3949G>C	Recommend SOC, and tumor genetic profiling with larger gene panel.	NA	NA	SOC
36	NSCLC adeno. (<i>ALK</i> -normal)	М	0	R	KRAS RET	G12C E884V	34G>T 2651A>T	Recommend treatment with first-line SOC; upon disease progression, treat with RET/multi-kinase inhibitor Dovitinib.	2 [52-54]	NA (stable disease on SOC)	SOC chemotherapy
37	Breast CA (ER+, HER2-)	М	1	R	APC	E1299Q	3895G>C	Recommend continuation of SOC anti- estrogen therapy	NA	NA (stable disease on SOC)	SOC

Fluorescence in situ hybridization (FISH) analysis was performed on tumor types for relevant gene amplifications and rearrangements, including *ERBB*2 (HER2) amplification in breast cancers (PathVysion HER2 kit, Abbott Molecular), *ALK* rearrangements in lung adenocarcinomas (*ALK* break-apart FISH kit, Abbott Molecular), and 1p/19q deletions in gliomas (mail-out test). MGMT promoter methylation testing was also performed on gliomas (mail-out test). Findings are indicated in second column as appropriate.

Abbreviations: ND- None detected; NR- not reported; NA- not applicable; pt.- patient; PS- performance status; SOC- standard of care; RT- radiation therapy; inh.- inhibitor; NSCLCnon-small cell lung cancer; CA- carcinoma; CRC – colorectal carcinoma; adeno.- adenocarcinoma; ER+/- indicates estrogen receptor alpha status; HER2+/- indicates HER2 protooncogene status; epithelioid hemangio.- epithelioid hemangioendothelioma.

Levels of evidence supporting targeted therapies recommended by Molecular Tumor Board:

Level 1: FDA-approved; demonstration that patients with tumors bearing specific genetic alterations are more likely to respond than those without such alterations.

Level 2: Agent met a clinical endpoint (objective response, PFS, or OS) with evidence of target inhibition; plausible evidence that tumors bearing a specific genetic alteration are predicted to respond.

Level 3: Agent demonstrated evidence of clinical activity with evidence of target inhibition; some evidence that tumors bearing a specific genetic alteration are predicted to respond. Level 4: Preclinical evidence of anti-tumor activity and evidence of target inhibition; hypothesis that tumors bearing a specific alteration will respond.

¹Additional mutations of unknown significance detected in tumor from Patient 23 include *APC*: C451R, R2525C; *EPHA3*: K365fs*6; *GNA11*: R60C; *MAP3K1*: R288Q; *PRKAR1A*: S155L; *TSHR*: N406fs*6; *ARID2*: A61V; *FANCA*: L1143V; *HGF*: E248D; *MED12*: Q2120_Q2121>HQQQQQ; *SMARCB1*: A359T; *BCL6*: R640Q; *FANCE*: S266L; *KDM5C*: R1445H, R787Q; *MTOR*: L1453P; *TET2*: A277P; *DOTL1*: P1470L; *FGFR4*: R83M; *KIT*: R686C; *NTRK2*: T748M; *TGFBR2*: R479W.

References supporting recommendations of targeted therapies

1. Schmid S, Siano M, Joerger M et al. Response to dabrafenib after progression on vemurafenib in a patient with advanced BRAF V600Emutant bronchial adenocarcinoma. Lung Cancer 2015; 87: 85-87. 2. Robinson SD, O'Shaughnessy JA, Cowey CL, Konduri K. BRAF V600E-mutated lung adenocarcinoma with metastases to the brain responding to treatment with vemurafenib. Lung Cancer 2014; 85: 326-330.

3. Planchard D, Mazieres, J., Riely, G.J., Rudin, C.M., Barlesi, F., Quoix, E.A., Souquet, P.J., Socinski, M.A., Switzky, J., Ma, B., Goodman, V.L., Carson, S.W., Curtis, C.M., Streit, M.R.W., Johnson, B.E. Interim results of phase II study BRF 113928 of dabrafenib in BRAF V600E mutation-positive non-small cell lung cancer (NSCLC) patients. J. Clin. Oncol. 2013; 31: Abstract 8009.

4. Tsao A, Byers, L.A., Diao, L., Wang, J., Weinstein, J.N., Meric-Bernstam, F., Aldape, K., Heymach, J.V. SMO mutations occur in non-small cell lung cancer (NSCLC) and may respond to hedgehog inhibitors. Presented at the 15th World Conference on Lung Cancer 2013; Abstract P2.06-032.

5. Robert C, Karaszewska B, Schachter J et al. Improved Overall Survival in Melanoma with Combined Dabrafenib and Trametinib. New England Journal of Medicine 2015; 372: 30-39.

6. Long GV, Stroyakovskiy D, Gogas H et al. Combined BRAF and MEK Inhibition versus BRAF Inhibition Alone in Melanoma. New England Journal of Medicine 2014; 371: 1877-1888.

7. Suk Heist R, Gandhi, L., Shapiro, G., Rizvi, N.A., Burris, H.A., Bendell, J.C., Baselga, J., Yerganian, S.B., Hsu, K., Ogden, J., Vincent, L., von Richter, O., Locatelli, G., Asatiani, E., Infante, J.R. Combination of a MEK inhibitor, pimasertib (MSC1936369B), and a PI3K/mTOR inhibitor, SAR245409, in patients with advanced solid tumors: Results of a phase Ib dose-escalation trial. J. Clin. Oncol. 2013; 31: abstr 2530.

8. Van Geel R, Elez, E., Bendell, J.C., Faris, J.E., Lolkema, M., Eskens, F., Spreafico, A., Kavan, P., Delord, J.-P., Schuler, M.H., Wainberg, Z.A., Yamada, Y., Yoshino, T., Demuth, T., Avsar, E., Chatterjee, A., Zhu, P., Bernards, R., Tabernero, J., Schellens, J.H.M. Phase I study of the selective BRAFV600 inhibitor encorafenib (LGX818) combined with cetuximab and with or without the α-specific PI3K inhibitor BYL719 in patients with advanced BRAF-mutant colorectal cancer. J. Clin. Oncol. 2014; 32: abstr 3514.

9. Connolly K, Brungs D, Szeto E, Epstein RJ. Anticancer activity of combination targeted therapy using cetuximab plus vemurafenib for refractory BRAF(V600E)-mutant metastatic colorectal carcinoma. Curr Oncol 2014; 21: E151-E154.

10. Al-Marrawi MY, Saroya BS, Brennan MC et al. Off-label use of cetuximab plus sorafenib and panitumumab plus regorafenib to personalize therapy for a patient with V600E BRAF-mutant metastatic colon cancer. Cancer Biology & Therapy 2013; 14: 703-710.

11. Bendell JC, Rodon J, Burris HA et al. Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. J Clin Oncol 2012; 30: 282-290.

12. Rodon J, Brana I, Siu LL et al. Phase I dose-escalation and -expansion study of buparlisib (BKM120), an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. Invest New Drugs 2014; 32: 670-681.

13. Mayer IA, Abramson VG, Isakoff SJ et al. Stand up to cancer phase Ib study of pan-phosphoinositide-3-kinase inhibitor buparlisib with letrozole in estrogen receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 2014; 32: 1202-1209.

14. Nakanishi Y, Akiyama N, Tsukaguchi T et al. The Fibroblast Growth Factor Receptor Genetic Status as a Potential Predictor of the Sensitivity to CH5183284/Debio 1347, a Novel Selective FGFR Inhibitor. Molecular Cancer Therapeutics 2014; 13: 2547-2558.

15. Milowsky MI, Dittrich C, Duran I et al. Phase 2 trial of dovitinib in patients with progressive FGFR3-mutated or FGFR3 wild-type advanced urothelial carcinoma. European Journal of Cancer 2014; 50: 3145-3152.

16. Xin XH, Abrams TJ, Hollenbach PW et al. CHIR-258 is efficacious in a newly developed fibroblast growth factor receptor 3-expressing orthotopic multiple myeloma model in mice. Clinical Cancer Research 2006; 12: 4908-4915.

17. Wiedemeyer WR, Dunn IF, Quayle SN et al. Pattern of retinoblastoma pathway inactivation dictates response to CDK4/6 inhibition in GBM. Proc Natl Acad Sci U S A 2010; 107: 11501-11506.

18. Konecny GE, Winterhoff B, Kolarova T et al. Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer. Clin Cancer Res 2011; 17: 1591-1602.

19. Finn RS, Crown JP, Lang I et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 2014.

20. Agwa ES, Ma PC. Targeting the MET receptor tyrosine kinase in non-small cell lung cancer: emerging role of tivantinib. Cancer Manag Res 2014; 6: 397-404.

21. Baselga J, Campone M, Piccart M et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 2012; 366: 520-529.

22. Hortobagyi GN, Piccart-Gebhart, M.J., Rugo, H.S., Burris, H.A., Campone, M., Noguchi, S., Perez, A.T., Deleu, I., Baselga, J. Correlation of molecular alterations with efficacy of everolimus in hormone receptor–positive, HER2-negative advanced breast cancer: Results from BOLERO-2. J. Clin. Oncol. 2013; 31: Abstr LBA509.

23. Wang SY, Yu WM, Zhang WM et al. Noonan Syndrome/Leukemia-associated Gain-of-function Mutations in SHP-2 Phosphatase (PTPN11) Enhance Cell Migration and Angiogenesis. Journal of Biological Chemistry 2009; 284: 913-920.

24. Zhou XD, Agazie YM. Inhibition of SHP2 leads to mesenchymal to epithelial transition in breast cancer cells. Cell Death Differ 2008; 15: 988-996.

25. Cheung LW, Yu S, Zhang D et al. Naturally Occurring Neomorphic PIK3R1 Mutations Activate the MAPK Pathway, Dictating Therapeutic Response to MAPK Pathway Inhibitors. Cancer Cell 2014; 26: 479-494.

26. Lassman AB, Abrey LE, Shah GD et al. Systemic high-dose intravenous methotrexate for central nervous system metastases. J Neurooncol 2006; 78: 255-260.

27. Tetef ML, Margolin KA, Doroshow JH et al. Pharmacokinetics and toxicity of high-dose intravenous methotrexate in the treatment of leptomeningeal carcinomatosis. Cancer Chemother Pharmacol 2000; 46: 19-26.

28. Tavakkol Z, Keller JJ, Furmanczyk PS et al. Germline mutation in MSH6 associated with multiple malignant neoplasms in a patient With Muir-Torre syndrome. J Clin Oncol 2012; 30: e195-198.

29. Nystrom-Lahti M, Parsons R, Sistonen P et al. Mismatch repair genes on chromosomes 2p and 3p account for a major share of hereditary nonpolyposis colorectal cancer families evaluable by linkage. Am J Hum Genet 1994; 55: 659-665.

30. Martin SA, McCarthy A, Barber LJ et al. Methotrexate induces oxidative DNA damage and is selectively lethal to tumour cells with defects in the DNA mismatch repair gene MSH2. EMBO Mol Med 2009; 1: 323-337.

31. Liu KW, Feng HZ, Bachoo R et al. Shp-2/Ptpn11 Mediates Gliomagenesis Driven by Pdgfra and Ink4a/Arf Aberrations in Mice and Humans. Neuro Oncol 2011; 13: 14-14.

32. Feng H, Liu KW, Guo P et al. Dynamin 2 mediates PDGFR alpha-SHP-2-promoted glioblastoma growth and invasion. Oncogene 2012; 31: 2691-2702.

33. Li Y, Bollag G, Clark R et al. Somatic Mutations in the Neurofibromatosis-1 Gene in Human Tumors. Cell 1992; 69: 275-281.

34. Morcos P, Thapar N, Tusneem N et al. Identification of neurofibromin mutants that exhibit allele specificity or increased ras affinity resulting in suppression of activated ras alleles. Molecular and Cellular Biology 1996; 16: 2496-2503.

35. Lodish MB, Stratakis CA. Endocrine tumours in neurofibromatosis type 1, tuberous sclerosis and related syndromes. Best Practice & Research Clinical Endocrinology & Metabolism 2010; 24: 439-449.

36. Yao JC, Shah MH, Ito T et al. Everolimus for Advanced Pancreatic Neuroendocrine Tumors. New England Journal of Medicine 2011; 364: 514-523.

37. Pant S, Saleh M, Bendell J et al. A phase I dose escalation study of oral c-MET inhibitor tivantinib (ARQ 197) in combination with gemcitabine in patients with solid tumors. Annals of Oncology 2014; 25: 1416-1421.

38. Dai RY, Li JJ, Fu J et al. The Tyrosine Kinase c-Met Contributes to the Pro-tumorigenic Function of the p38 Kinase in Human Bile Duct Cholangiocarcinoma Cells. Journal of Biological Chemistry 2012; 287.

39. Steckel M, Molina-Arcas M, Weigelt B et al. Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting strategies. Cell Res 2012; 22: 1227-1245.

40. Sekulic A, Migden MR, Basset-Seguin N et al. Long-term safety and efficacy of vismodegib in patients with advanced basal cell carcinoma (aBCC): 18-month update of the pivotal ERIVANCE BCC study. Journal of Clinical Oncology 2013; 31.

41. Sekulic A, Migden MR, Oro AE et al. Efficacy and Safety of Vismodegib in Advanced Basal-Cell Carcinoma. New England Journal of Medicine 2012; 366: 2171-2179.

42. Andre F, Bachelot T, Campone M et al. Targeting FGFR with Dovitinib (TKI258): Preclinical and Clinical Data in Breast Cancer. Clinical Cancer Research 2013; 19: 3693-3702.

43. Tan QX, Qin QH, Lian B et al. Sorafenib-based therapy in HER2-negative advanced breast cancer: Results from a retrospective pooled analysis of randomized controlled trials. Exp Ther Med 2014; 7: 1420-1426.

44. Massarweh S, Moss J, Wang C et al. Impact of adding the multikinase inhibitor sorafenib to endocrine therapy in metastatic estrogen receptor-positive breast cancer. Future Oncol 2014; 10: 2435-2448.

45. Wang ZX, Wang MQ, Yang F et al. Multitargeted antiangiogenic tyrosine kinase inhibitors combined to chemotherapy in metastatic breast cancer: a systematic review and meta-analysis. European Journal of Clinical Pharmacology 2014; 70: 531-538.

46. Gupta A, Love S, Schuh A et al. DOC-MEK: a double-blind randomized phase II trial of docetaxel with or without selumetinib in wild-type BRAF advanced melanoma. Annals of Oncology 2014; 25: 968-974.

47. Grimaldi AM, Simeone E, Ascierto PA. The role of MEK inhibitors in the treatment of metastatic melanoma. Current Opinion in Oncology 2014; 26: 196-203.

48. Bjorge JD, Bellagamba C, Cheng HC et al. Characterization of 2 Activated Mutants of Human Pp60(C-Src) That Escape C-Src Kinase Regulation by Distinct Mechanisms. Journal of Biological Chemistry 1995; 270: 24222-24228.

49. Mayer EL, Baurain JF, Sparano J et al. A Phase 2 Trial of Dasatinib in Patients with Advanced HER2-Positive and/or Hormone Receptor-Positive Breast Cancer. Clinical Cancer Research 2011; 17: 6897-6904.

50. Herold CI, Chadaram V, Peterson BL et al. Phase II Trial of Dasatinib in Patients with Metastatic Breast Cancer Using Real-Time Pharmacodynamic Tissue Biomarkers of Src Inhibition to Escalate Dosing. Clinical Cancer Research 2011; 17: 6061-6070.

51. Campone M, Bondarenko I, Brincat S et al. Phase II study of single-agent bosutinib, a Src/Abl tyrosine kinase inhibitor, in patients with locally advanced or metastatic breast cancer pretreated with chemotherapy. Annals of Oncology 2012; 23: 610-617.

52. Hellerstedt BA, Edelman, G., Vogelzang, N.J., Kluger, H.M., Yasenchak, C.A., Shen, X., Ramies, D.A., Gordon, M.S., Lara, P. Activity of cabozantinib (XL184) in metastatic NSCLC: Results from a phase II randomized discontinuation trial (RDT). J. Clin. Oncol. 2012; 30: abstr 7514.

53. Lee JS, Hirsh V, Park K et al. Vandetanib Versus Placebo in Patients With Advanced Non-Small-Cell Lung Cancer After Prior Therapy With an Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor: A Randomized, Double-Blind Phase III Trial (ZEPHYR). Journal of Clinical Oncology 2012; 30: 1114-1121.

54. Herbst RS, Sun Y, Eberhardt WEE et al. Vandetanib plus docetaxel versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer (ZODIAC): a double-blind, randomised, phase 3 trial. Lancet Oncology 2010; 11: 619-626.