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ABSTRACT Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrhea worldwide, and infection of children in
under-developed countries often leads to high mortality rates. Isolated ETEC expresses a plethora of colonization factors
(fimbriae/pili), of which CFA/I and CFA/II, which are assembled via the alternate chaperone pathway (ACP), are among the
most common. Fimbriae are filamentous structures whose shafts are primarily composed of helically arranged single pilin-pro-
tein subunits, with a unique biomechanical ability to unwind and rewind. A sustained ETEC infection, under adverse conditions of
dynamic shear forces, is primarily attributed to this biomechanical feature of ETEC fimbriae. Recent understanding about the
role of fimbriae as virulence factors points to an evolutionary adaptation of their structural and biomechanical features. In this
work, we investigated the biophysical properties of CS2 fimbriae from the CFA/II group. Homology modeling of its major struc-
tural subunit, CotA, reveals structural clues related to the niche in which they are expressed. Using optical-tweezers force spec-
troscopy, we found that CS2 fimbriae unwind at a constant force of 10 pN and have a corner velocity (i.e., the velocity at which
the force required for unwinding rises exponentially with increased speed) of 1300 nm/s. The biophysical properties of CS2
fimbriae assessed in this work classify them into a low-force unwinding group of fimbriae together with the CFA/I and CS20
fimbriae expressed by ETEC strains. The three fimbriae are expressed by ETEC, colonize in similar gut environments, and
exhibit similar biophysical features, but differ in their biogenesis. Our observation suggests that the environment has a strong
impact on the biophysical characteristics of fimbriae expressed by ETEC.
INTRODUCTION
Enterotoxigenic Escherichia coli (ETEC) diarrheal infec-
tion is considered a prevailing health problem in developing
countries, since it is one of the major causes of death among
infants and children. Additionally, ETEC infection is the
leading cause of traveler’s diarrhea with >60% of visitors
to these countries experiencing diarrhea, which in some
cases can even trigger an irritable bowel syndrome (1,2).
Pathogenesis of ETEC infections relies on bacterial attach-
ment, via specialized fimbriae organelles, to the host intes-
tine leading to subsequent release of either heat-labile (LT)
or heat-stable (ST) enterotoxins (3–6).

Various strains of human ETEC express numerous sero-
logically distinct fimbriae that are assembled either via the
alternate chaperone (ACP) or classical chaperone usher
pathway (CUP) (11). Colonization factor antigens (CFA)/I
and CFA/II fimbriae belong to the ACP family or class 5
group, of which CFA/I fimbriae is an archetype and the
most extensively studied member (7–9). The CFA/II group,
which comprises three different coli surface antigens—CS1,
CS2, and CS3—shares a common assembly pathway but
differs from that of CFA/I fimbriae in hemagglutination
properties (3,10,12,13). The CFA/II group fimbriae have
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been known for their role in causing diarrhea for almost
50 years, although little is known about their structural
and biomechanical features (14–16). For example, micro-
graphs of the three fimbriae indicate that CS1 and CS2 are
wider and more rigid than CS3, and that CS1 is a helical fila-
ment (17–20). However, whether or not CS2 and CS3 are
helix-like structures is unknown.

Sustained adhesion of both bacteria and eukaryotic cells
canbe facilitated bya reduction in force on their tethers.Mem-
brane tethers are formed by some cell types to maintain
cellular adhesion by reducing the load on receptor-ligand
complexes. For example, a neutrophil that is attached to an in-
flamed endothelium cell is exposed to a drag force. The cell
extends long membrane tethers, partially reducing the load
experienced by the P-selection and PSGL-1 bond, thereby
increasing the lifetime of the complex (21). Similarly, un-
winding is believed to be an important biomechanical prop-
erty of fimbriae, facilitating sustained adhesion of bacteria
to their target cell (22,23). Fimbria unwinding lowers the force
on the adhesin and receptor bond, thereby reducing the prob-
ability of bacteria detachment. Previous data have shown that
CFA/I pilins assemble into helix-like fimbriae that are easy to
unwind in comparison to, e.g., the uropathogenic E. coli
(UPEC)-expressed P and Type 1 fimbriae (24). Further simi-
larities between fimbrial unwinding and tether formation by
other cell types are explained in more detail by Thomas (25).
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FIGURE 1 AFM image of a C91F ETEC bacterium expressing CS2

fimbriae. The AFM micrograph shows a single C91F bacterium expressing

CS2 fimbriae. The black arrow points to a fimbria in its helical state,

whereas the double yellow arrow points to unwound fimbriae. Scale bar,

1.0 mm. To see this figure in color, go online.
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Interestingly, fimbriae expressed in a specific microenvi-
ronment exhibit similar properties; for example, the un-
winding force of CS20 is more similar to that of CFA/I
than to that of P fimbriae, even though CS20 antigens share
higher amino acid identity with the pilins of P fimbriae (26).
Thus, the structural and biomechanical characteristics of
fimbriae appear to play a determinant role in E. coli coloni-
zation and pathogenesis in a specific organ, i.e., E. coli
strains sharing a common niche express fimbriae with
similar biophysical properties (26). ETEC-expressing CS2
fimbriae are known to localize to the small intestine, an
environment similar to that of ETEC-expressing CFA/I
fimbriae of the ACP family and CS20 fimbriae of the
CUP. We therefore hypothesized that CS2 fimbriae would
exhibit structural and biophysical similarities to those of
CFA/I and CS20.

In this work, we examined this hypothesis by investi-
gating the biophysical strength of the CS2 fimbriae of the
CFA/II group using sub-piconewton resolution force-spec-
troscopy instrumentation. Since a crystal structure of the
major pilin subunit is lacking, we elucidated the structure
of the major pilin, CotA, using homology modeling. Our
data show that the CS2 fimbriae unwind at a constant force
of 10 pN, demonstrating that the macromolecular structure
of CS2 is helical, with weak layer-to-layer interactions.
Although a three-dimensional structure of the CS2 shaft is
not available, we have used a homology model of CotA
and force spectroscopy results to reveal interesting biophys-
ical features of CS2 fimbriae. Our data demonstrate similar-
ities between these CFA/II group fimbriae and those from
the CFA/I group. The results in this work, together with pre-
vious data from the literature, place ACP and CUP ETEC-
expressed adhesion organelles into a low-force unwinding
group.
MATERIALS AND METHODS

Bacterial strains and growth condition

The C91F strain of ETEC-expressing CS2 fimbriae was used in this study.

For expression of CS2 fimbriae, C91F strain was grown on CFA plates at

37�C overnight, restreaked on CFA plates, and again grown overnight at

37�C before analysis. Expression of CS2 fimbriae was confirmed by atomic

force microscopy (AFM) (see Fig. 1).
Sample preparation and force spectroscopy
measurement

Force spectroscopy experiments were performed using optical tweezers

with subpiconewton sensitivity. The setup of the instrumentation and assay

is described in detail elsewhere (27,28). Briefly, the OT setup was con-

structed around an inverted microscope (Olympus IX71, Olympus, Center

Valley, PA) with a high-NA oil immersion objective (UplanFl 100�, NA

1.35, Olympus). An Nd:YVO4 laser (Millennia IR, Spectra Physics, Santa

Clara, CA) that operates at 1064 nm in CW mode and runs with an output

power of 1.0 W was used for trapping. The position of a trapped bead, and

thereby the force, was monitored by projecting the beam of a low-power
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fiber-coupled HeNe laser (operating at 632.8 nm) onto a position-sensitive

detector (L20 SU9, Sitek Electro Optics, Partille, Sweden).

Bacteria expressing CS2 fimbriae were resuspended in phosphate-buff-

ered saline (PBS; 1�, pH 7.4) and diluted in PBS to a suitable concentration

(maximum of 10 bacteria in the field of view) for experiments. Before

making the flow chamber, a 1:500 suspension of 9.5 mm carboxylate-modi-

fied latex beads (product no.2-10000, Interfacial Dynamics, Portland, OR)

in Milli-Q water was prepared. These larger-sized beads were used to

mount bacteria away from the coverslips to avoid any interactions with

the surface. Ten microliters of the bead-water suspension was dropped

onto 24� 60 mm coverslips (no.1, Knittel Glass, Braunschweig, Germany)

and put into the oven for 60 min at 60�C to immobilize the beads to the

surface (28). To facilitate adhesion of the bacteria to the beads, a solution

of 20 mL of 0.01% poly-L-lysine (catalog no. P4832, Sigma-Aldrich, St.

Louis, MO) was added to the coverslips, which, after 45 min incubation

at 60�C, were stored in a dust-free box until use. A ring of vacuum grease

(Dow Corning, Midland, MI) was added around the area containing the

poly-L-lysine-coated beads on one of the coverslips. Gently, a 3 mL suspen-

sion of bacteria and a 3 mL suspension of probe beads (surfactant-free 2.5

mm white amidine polystyrene latex beads, product no. 3-2600, Invitrogen,

Carlsbad, CA) was dropped onto the area, which was then sealed by placing

a 20 � 20 mm coverslip (no.1, Knittel Glass) on top.

An experiment was performed by trapping a single bacterium, at low

laser power to make sure that the bacterium was not harmed, and firmly

mounting it onto a poly-L-lysine-coated 10 mm latex bead, as described

in Axner et al. (29). Subsequently, a 2 mm amidine bead was trapped and

the stiffness of the trap was calibrated using the power spectrum method

(30). The stability of the setup, as well as the optimal calibration time,

was measured using the Allan variance method for optical tweezers (31).

The trapped bead was thereafter attached to a fimbria by moving the

bead in proximity to the mounted bacterium, but making sure that the

bead was sufficiently far away from the bacterium to prevent a multitude

of fimbriae attaching. With a fimbria attached to the bead (sometimes
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two to five fimbriae) the piezo-stage (PI-P5613CD, Physik Instruments,

Auburn, MA) was translated using an in-house designed LabView program.
AFM

Bacteria expressing CS2 were resuspended in 50 mL of filtered Milli-Q wa-

ter. Of that suspension, 10 mL was then placed onto a freshly cleaved ruby

red mica sheet (Goodfellow Cambridge, Cambridge, United Kingdom). The

cells were incubated for 5 min at room temperature before being placed into

a desiccator for ~2 h. Images were then collected with a Nanoscope V

Multimode8 AFM setup (Bruker, Billerica, MA) using Bruker ScanAsyst

mode with Bruker ScanAsyst-air probe oscillated at a resonant frequency

of 50–90 kHz (32).
The Sticky-chain model for helix-like biopolymers

The unwinding velocity, _L, of helix-like biopolymer under tensile force, F,

can be described using the opening and closing rates of the layer-to-layer

interactions, kABðFÞ and kBAðFÞ, and the opening length,DxAB, of a subunit,
_L ¼ ½kABðFÞ � kBAðFÞ�DxAB; (1)

where A and B represent the open and closed states, respectively (33,34).

Using the nomenclature defined by Zakrisson et al. (22), the unwinding ve-
locity can be rewritten as

_L ¼ DxABk
th
AB

�
eFDxATb � eðV0�FDxTBÞb�; (2)

where kthAB is the thermal bond opening rate, b ¼ 1=kT, where k is the Boltz-

mann constant, T is the temperature, V is the energy difference between the
0

ground and transition state, and DxTB is the distance between the transition

state and the open state. From this expression, it is possible to denote the

corner velocity, _L
�
, as the highest extension velocity that can be used

without the need to include the dynamic behavior of the polymer, i.e., for

low extension velocities, the opening and closing rates are in balance,

whereas for high extension velocities, the closing rate can be neglected.

This gives the expression

_L
� ¼ DxABk

th
ABe

V0DxATb=DxAB : (3)

By combining Eqs. 2 and 3, the unwinding velocity can finally be expressed

using the corner velocity,
_L ¼ _L
�
eðF�FSSÞDxATb�1� e�ðF�FSSÞDxABb�: (4)

RESULTS

Atomic force imaging of CS2 fimbriae

We used AFM to image CS2 fimbriae at high magnification.
A representative micrograph of a single cell grown under
normal conditions is shown in Fig. 1. The average length
of fimbriae was measured from AFM micrographs, such
as that shown in Fig. S1, using ImageJ software. CS2
fimbriae were arranged peritrichously on the bacterial cell
surface and had a length of 0.88 5 0.34 mm (n ¼ 270 sam-
ples). These fimbriae were found in two morphologies, with
most fimbriae attached to the cell being wider structures
(black arrow) and only a few being narrower structures
(yellow arrow). This suggested that the wider structures
had intact quaternary structure, indicating that layer-to-layer
interactions of CS2 fimbriae are strong enough to be main-
tained during sample preparation. However, the few nar-
rower structures identified in the micrographs suggested
that CS2 fimbriae can be unwound. Thus, these findings
called for an investigation of the properties of the major
pilin subunit.
Homology modeling of the major structural
subunit, CotA, using CfaB as a template

CS2 fimbriae share a close genetic and pathological rela-
tionship with CFA/I fimbriae of the class 5 family. Each
CS2 fimbria consists of continuously repeating major pilin
subunits (CotA) and a tip-localized minor subunit (CotD).
The mature CotA protein is composed of 147 amino acids
and shows significant homology to CfaB, the major pilin
subunit of CFA/I fimbriae (PDB ID 3F84) (23). The
sequence alignment presented in Fig. S2 was performed us-
ing the Clustal Omega algorithm (35); these two homolo-
gous pilin subunits share 51% identity and 80% similarity.
Utilizing this high similarity, the CotA structure was homol-
ogy-modeled using MODELER software (36). Fig. 2 shows
a model of the outer (upper) and inner (lower) representa-
tion of the CotA subunit as a ribbon structure and as surface
views of the hydrophobicity and charge distribution, respec-
tively. The homology model of CotA was superimposed on
the CfaB template and the root mean-square difference be-
tween the backbone C-a atoms was assessed to 0.37 Å.
Moreover, the surface properties of CotA and CfaB, the hy-
drophobicity and the electrostatic potential, were thereafter
examined using University of California San Francisco
Chimera software (37). To investigate the surface potential
of the model and the template, we colored the negative
and positive residues red and blue, respectively, as seen in
the surface views of the charge distributions of two faces
for both CfaB and CotA, presented side by side in
Fig. S3. In the upper row, the inner surface of the hydropho-
bic groove (tan) is visible running approximately vertically,
in the center of the subunit. According to the charge
distribution, CotA is slightly more negatively charged than
CfaB.

Residues in both the model and the template were also
selected and shown according to their hydrophobicity and
hydrophilicity, as shown in Fig. S4. Since the structural
model of a pilus filament has not yet been determined, we
are not able to make an optimal fit of a subunit’s position
and exactly determine the inner and outer surfaces. How-
ever, by assuming that CotA and CfaB subunits have similar
orientations, it is possible to estimate the inner and outer
surfaces. Using this assumption, the model indicates that
the majority of the area of the outer surfaces is hydrophilic,
whereas the inner surfaces are hydrophobic, which is in
accordance with other helix-like adhesion fimbriae. Finally,
the deep hydrophobic groove of the subunit is clearly visible
in the center of the two structures.
Biophysical Journal 109(1) 49–56



FIGURE 2 Homology modeling of the major

structural subunit CotA, showing the model with

its outer (upper) and inner surfaces (lower). The

model is represented as a ribbon structure (A), a

surface hydrophobicity map (B), and a surface-

charge map (C). The hydrophobic groove is clearly

visible (green arrow) in the central part of (B)

(lower). Scale bar (for all), 10 Å. To see this figure

in color, go online.
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With information from both the CS2 macromolecular
structure, assessed from static AFM images, and the major
pilin subunit, using homology modeling, the next step was
to gain information regarding the dynamic properties via
force spectroscopy measurements.
FIGURE 3 Force spectroscopy measurement of a CS2 fimbria. The black

curve represents the unwinding force response of a CS2 fimbria at a velocity

of 0.1 mm/s. The unwinding force response shows three distinct regions:

region I, a linear increase of the force; region II, a constant-force plateau

(region between the blue dashed lines); and region III. Initially, the curve

shows force peaks that originate from weakly attached fimbriae that de-

tached with extension. To see this figure in color, go online.
CS2 fimbrial response to tensile force

Mechanical response of the CS2 fimbriae to force was
measured using optical-tweezers force spectroscopy under
steady-state conditions (38). According to our homology
modeling data, CotA showed a negative charge distribution
on the outer surface, suggesting the possibility of a strong
nonspecific interaction with positively charged amidine mi-
crospheres. Our test run confirmed a strong enough interac-
tion between the two, and therefore, we used amidine
microspheres for our force spectroscopy measurements. A
representative force curve of a CS2 fimbria with three
clearly distinct regions is presented in Fig. 3. CS2 first re-
sponds to tensile stress by a linearly increasing force, i.e.,
stretching layers gives a response similar to that of a Hoo-
kean spring, and we denote this as region I. After reaching
a threshold in the structural resistance of the layers, a tran-
Biophysical Journal 109(1) 49–56
sient change to a constant force response at ~10 pN can be
seen; this is denoted as region II, and it originates from
unwinding of the individual shaft subunits. We marked
this region by two dashed blue lines in the representative
data shown in Fig. 3. The average unwinding force was
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calculated from 90 independent measurements and assessed
to 10 5 1.5 pN. After complete unwinding, the force in-
creases linearly with fimbria extension to ~7.8 mm, shown
as region III. As seen in the rewinding curve in Fig. 4
(blue curve), a drop in force at ~6.9–6.8 mm is required to
nucleate recoiling of the helical filament. The need for
nucleation to begin helical rewinding supports a model in
which the helical region is fully unwound before entering
region III, and this region can be attributed to stretching
of subunits already aligned in an open coil.

We observed that the force response of multiple fimbriae
was additive, as seen for other helix-like fimbriae (39).
Fig. 4 shows the extension of three fimbriae of different
lengths. Similar to that of a single fimbria, the force
response first increases linearly with extension, but with
an increased stiffness, since three fimbriae are attached to
the bead and the force is equally shared between these
fimbriae. The transition to the constant-force plateaus
throughout the measurement took place for even multiples
of a single fimbria. That is, first all three fimbriae unwound,
giving rise to a plateau force of 30 pN; at an extension of
~4.5 mm, the shortest fimbria was fully unwound and
entered region III before it detached from the bead. The
two remaining fimbriae continued to unwind at ~20 pN
for ~1 mm until the second fimbria reached region III and de-
tached. Eventually, the longest fimbria unwound an addi-
tional ~0.5 mm until it entered region III. At this point, we
reversed the motion of the stage and allowed the fimbria
to rewind (Fig. 4, blue curve). The rewinding force curve
continued along the unwinding curve except for a 5 pN force
drop that occurred between 6.8 and 6.6 mm and originated
from the lack of the nucleation kernel that is required for
regenerating the helical form of the fimbrial shaft after
complete unwinding. An additional force measurement
that showed multiple fimbrial binding in the first sequence
FIGURE 4 Force spectroscopy measurement of multiple CS2 fimbriae.

The unwinding (black) and rewinding (blue) responses of three simulta-

neously attached fimbriae, where (a) all three fimbriae are simultaneously

extended until the shortest fimbria detaches at ~4.3 mm, resulting in a force

drop to 20 pN; (b) the two remaining fimbriae are further extended until the

shorter detaches at ~6 mm, with a corresponding drop in force to 10 pN; and

(c) a single fimbria remains. The blue curve shows the corresponding

rewinding response of the single fimbria. To see this figure in color, go

online.
with four consecutive unwinding and rewinding sequences
is presented in Fig. S5.
Dynamic force responses of CS2

To investigate the dynamic response of CS2 fimbriae, we
applied dynamic force spectroscopy (DFS) using optical
tweezers (28). Before a DFS measurement, a fimbria was
slowly unwound to measure the total length of the unwind-
ing region (region II) and to remove any possibility of multi-
fimbrial binding to the bead. With the known length of
region II, the fimbria was allowed to partially rewind to
make sure that a 2-mm-long region could be unwound
without reaching region III. The 2-mm-long region was
thereafter unwound at five different velocities, i.e., 0.1,
0.4, 1.6, 6.4, and 25.6 mm/s, and the corresponding position
and force response were sampled at 5 kHz. Between each
pull, the fimbria was allowed to rewind under steady-state
conditions (0.1 mm/s) and a short pause of 2 s was intro-
duced before the next pull. An example of a DFS measure-
ment of a CS2 fimbria is shown in Fig. S6, with raw data
represented by the gray curves and the corresponding
mean values of the plateau force for each measured velocity
represented by the dashed black lines. The data were crop-
ped in the x-scale at 1.0 mm for better visualization.

In Fig. 5, the mean unwinding force versus extension
velocity for all analyzed CS2 fimbriae (n ¼ 30) is summa-
rized. In the graph, two distinct regions of structural
response to extension velocity can be identified. For low
velocities, <~1.0 mm/s, the force response is independent
of extension velocity and the unwinding force is ~10 pN.
For extension velocities >~1.0 mm/s, the unwinding force
increases logarithmically with increasing velocity. This
particular transition point is denoted the corner velocity,
_L
�
(28). Thus, for velocities below the corner velocity,
FIGURE 5 Dynamic force spectroscopy measurement of CS2 fimbria.

The quaternary structure of an individual CS2 fimbria was unwound at ve-

locities of 0.1, 0.4, 1.6, 6.4, and 25.6 mm/s for a distance of ~2 mm and the

corresponding force responses were sampled at 5 kHz. Each data point

(black dots) shows the average unwinding force of fimbriae at five distinct

velocities. For low velocities, i.e., velocities below the corner velocity, the

unwinding force is independent of speed and amounts to 10 pN. The red

dashed line shows a fit of the helix-like polymer model to the data, yielding

the corner velocity, _L
� ¼ 1300 nm/s, and the bond length, DxAT ¼ 0:86 nm,

respectively. To see this figure in color, go online.

Biophysical Journal 109(1) 49–56



54 Mortezaei et al.
fimbria extension occurs independent of speed and the
experiment is performed under steady-state conditions,
whereas for velocities above the corner velocity ( _L

�
< _L)

fimbriae enter a dynamic response region (39).
To find the bond length, the distance from the ground

state to the transition barrier, DxAT, and the corner velocity,
_L
�
, of CS2 fimbriae, and to see whether the sticky-chain

model (33), which describes the behavior of a helix-like
polymer under force, could be fitted to the force-versus-
extension velocity data, we numerically fitted the full set
of rate equations, i.e., Eq. 4. The fit is shown by the red
dashed line in Fig. 5, with T set to 293 K. The corresponding
model parameters were set according to the best fit of the
model to our experimental data: _L

� ¼ 13005200 nm/s,
DxAT ¼ 0:8650:10 nm, and DxAB ¼ 5:050:5 nm.
DISCUSSION

Adhesion of pathogenic bacteria to host cells is the initial
step of colonization. Adhesion fimbriae are thus key viru-
lence factors, and a detailed understanding of their structural
and functional role in bacterial adhesion is essential for
elucidating the mechanism of infection. Many fimbriae
have the ability to extend and contract when the bacteria
are exposed to external forces, and it has been shown that
unwinding of fimbriae help the bacteria to withstand shear
forces by reducing the load on the adhesin protein at the
fimbrial tip (22,40,41). CFA/I and CS20 fimbriae expressed
by ETEC that colonize the small intestine, are helical and
can be unwound to several times their native length.
Whether or not CS2 fimbriae exhibit structural and biophys-
ical similarities to CFA/I and CS20 fimbriae, i.e., whether
CS2 should be classified as helix-like fimbriae that can be
unwound and thereby be significantly elongated, was to
our knowledge not known before this study.

Fimbriae are stabilized by layer-to-layer interactions,
implying that the unwinding force of a fimbria is related
to the number of layer-to-layer interactions (24). Since
neither the macromolecular structure of the CS2 fimbriae
nor the crystal structure of the major pilin subunit, CotA,
has been solved, we first looked at AFM micrographs to
elucidate the macromolecular structure and to identify any
possible morphologies. The expressed CS2 fimbriae were
found to be ~1 mm in length and were, primarily, in a wider
state, thus suggesting that they are in a wound state. How-
ever, the presence of a few observed narrow-width segments
suggested that CS2 could make a morphological change
from a wide to a narrow structure by breaking layer-to-layer
interactions formed by subunits in adjacent layers.

To investigate the properties of individual subunits, we
aligned the major protein, CotA, using the CFA/I major pro-
tein, CfaB, as a template. Comparison of amino acid compo-
sition of the two structures showed 51% identity and 80%
similarity. Our subsequent homology model revealed a
slightly higher negative surface potential of CotA compared
Biophysical Journal 109(1) 49–56
with that of CfaB (23). The negative surface was thereafter
confirmed by force spectroscopy measurements with posi-
tively charged amidine beads.

Since it has been shown earlier that for some fimbriae,
niche identity, rather than amino acid composition of the
major subunit, conveys the physical properties of adhesion
fimbriae, e.g., the unwinding force of CS20 (15 pN) is
more similar to that of CFA/I (7.5 pN) than to that of P
fimbriae (28 pN) even though CS20 fimbriae share a higher
amino acid identity with P fimbriae (22.8% identity) than
with CFA/I fimbriae (19.7% identity) (26), we investigated
this correlation using the force spectroscopy technique.
Force spectroscopy measurements on single fimbriae at
steady state revealed that CS2 is highly flexible and unwinds
at a constant force of 10 pN. First, unwinding and rewinding
at a constant force suggests that CS2 has a helix-like macro-
molecular structure, similar to both CFA/I and CS20 (33). In
addition, the CS2 force response, with a pattern of linear in-
crease, constant-force plateau, linear increase, is in line with
what has been observed for other helix-like fimbriae, such as
P, Type 1, and Type 3 fimbriae (42,43). This specific force
response was also modeled, in a recent work, using a
rigid-body model assembled into a helical structure exposed
to tensile force (44). Second, the unwinding force level,
which is slightly higher than that for CFA/I and slightly
lower than that for CS20, places CS2 interestingly between
these other two ETEC-expressed fimbriae colonizing the
small intestine.

To analyze whether the dynamic properties of CS2 were
similar to those of CFA/I, we carried out DFS measure-
ments. The unwinding velocity was increased in steps to
measure the unwinding force required for a given velocity.
A physical model describing the force response of a helix-
like polymer was fitted to the mean unwinding force for
each velocity to assess the corner velocity as well as the
bond length. The corner velocity provides information
regarding the dynamics of the fimbriae, i.e., fimbriae with
a high corner velocity can be unwound at high velocities
without responding to an increase in resistance. This implies
that a bacterium will go with the flow up to the corner veloc-
ity of a fimbria, with the unwinding force as the only resist-
ing force. A high corner velocity thereby provides a higher
force-buffering capability than a low corner velocity, which
suggests that fast fluctuating forces are more easily damped
out. The model fitted the DFS data well, as can be seen in
Fig. 5. The corner velocity of CS2 (1300 5 200 nm/s) is
similar to that of CFA/I (1400 5 200 nm/s). Also, the
bond length of CS2, derived from DFS measurements,
yielded a value of DxAT ¼ 0.86 5 0.1 nm, which is similar
to the bond length of CFA/I,DxAT¼ 1.15 0.1 nm. From the
data presented above, we can thus conclude that the similar-
ity of pilin subunits, unwinding forces, corner velocities,
and bond lengths strongly indicates that CFA/I and CS2
that are expressed in the same niche are structurally and bio-
physically similar fimbriae.
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This study, together with data from the literature, suggests
that helix-like fimbriae expressed by, e.g., pathogenic E. coli
and Klebsiella pneumonia, where the latter is associated
with respiratory tract infections, could be categorized into
three fimbrial mechanical groups: the low- (~15 pN), me-
dium- (~30 pN), and high-force (~60 pN) unwinding
fimbriae. ETEC fimbriae such as CS2, CFA/I, and CS20
require<15 pN unwinding force, despite differences in their
assembly mechanism (see Table S1 and our previous work
(24,26)); UPEC and meningitis-associated strains of
E. coli express fimbriae requiring 21–30 pN of unwinding
force (33,39,42); however, Type 3 fimbriae expressed by
K. pneumonia in the respiratory tract require 66 pN of
unwinding force (43). One should also note that the T4
fimbriae expressed by Streptococcus pneumonia, which
also colonize the respiratory tract, are significantly stiffer
than UPEC- and ETEC-expressed fimbriae (45). The anal-
ogy between the niche and the biomechanical features of
fimbriae has been suggested in earlier studies, and the re-
sults in this study support that hypothesis by placing CS2
in the low-force unwinding group of fimbriae, where other
ETEC-expressed fimbriae are also found.
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Mean length of CS2 fimbriae using AFM micrograph data 
 

 
 

Figure S1. Atomic Force Microscopy of C91F cell expressing CS2 fimbriae. The mean length of CS2 
fimbriae expressed by C91F cells was assessed by spline fitting to wound sections of fimbriae in AFM 
micrographs. The mean length was found to be ~ 0.88 ± 0.34 µm (n =270). Scale bar is 1.0 µm. 
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Sequence alignment of CotA and CfaB 

 

Figure S2. Sequence alignment of the CotA and CfaB, the major subunits of the CS2 and CFA/I fimbriae, 
respectively. Numbering corresponds to the CotA sequence. 
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Side-by-side comparison of the surface properties of CfaB and CotA 
 

 

Figure S3. Surface views of the charge distribution of CfaB (left) and CotA (right) subunits. The upper 
panel represent the inner surface, whereas the lower panel represents the outer surface of the subunits. 
Scale bar is 10 Å. 
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Figure S4. Surface views of the hydrophobicty and hydrophilicity of CfaB (left) and CotA (right) 
subunits. The upper panel represents the inner surface, whereas the lower panel represents the outer 
surface of the subunits. Scale bar is 10 Å. 
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Consecutive force spectroscopy measurement of CS2 fimbriae 

 

Figure S5. Consecutive force measurement of a CS2 fimbria. Panels A to E shows sequential unwinding 
(black) and rewinding (blue) of a fimbria. In panel A, several fimbriae are initially attached to the probe 
bead giving rise to a higher unwinding force. During extension the shortest fimbriae detached and only 
one fimbria remained attached. The fimbria were then rewinded, blue curve in panel A, and thereafter 
several consecutive unwinding/rewinding cycles were performed, see panels B-D. In panel E the fimbria 
detaches from probe bead, allowing us to measure any offset drifts that occurred during the measurements.  
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Figure S6. A DFS measurement of a CS2 fimbria at five given velocities. The grey curves show the force 
vs. extension data of a CS2 fimbria at the given velocities (0.1, 0.4, 1.6, 6.4, 25.6 µm/s). The black dashed 
lines represent the corresponding mean value of the force plateaus at the given velocities. For better 
visualization the force data are shown up to 1.0 µm. Detailed description of dynamic force spectroscopy 
theory on bacterial fimbriae can be found in the following references (1–3). 
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Supplementary Tables 
 

Table S1. Parameter values of CS2, CFA/I, and CS20 fimbriae. A comparison of the 
unwinding force, the bond length, and the corner velocity for CS2, CFA/I and CS20 fimbriae. 

 

Strain/plasmid 
 
Fimbriae 

C91F 
 
CS2 (this work) 
 

HMG11/pNTP119(4) 

 
CFA/I 
 

WS7179A2/pRA101(5) 

 
 CS20  

𝐅𝐮𝐮 (𝒑𝒑) 10 ± 1.5 7.5 ± 1.5 
 

15 ± 1 

 ∆𝒙𝐀𝐀 (𝒏𝒏) 0.86 ± 0.10 1.1 ± 0.1 0.4 ± 0.09 

𝑳∗ ̇ (𝒏𝒏/𝒔) 1300 ± 200 1400  877 
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