Biophysical Journal Volume 109 July 2015 85-94 85

Cholesterol Modulates CFTR Confinement in the Plasma Membrane
of Primary Epithelial Cells
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ABSTRACT The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that,
when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction
prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts),
its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is
unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to
examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of
primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete mem-
brane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell
surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more
abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused
the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite
effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment
into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale micro-
domains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical
evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function.

INTRODUCTION

The cystic fibrosis transmembrane conductance regulator
(CFTR) is a tightly regulated anion channel expressed at
the apical surface of epithelial cells (1,2). Anion flux
through the CFTR drives transepithelial fluid secretion
and is required for efficient mucociliary clearance of inhaled
bacteria and other particles from the lung (reviewed by Friz-
zell and Hanrahan (3)). Mutations in the cftr gene cause
cystic fibrosis (CF), an autosomal recessive disease charac-
terized by diminished salt and fluid secretion, accumulation
of viscid mucus, and recurring cycles of airway infection by
Staphylococcus aureus, Pseudomonas aeruginosa, and
other pathogens. Most morbidity and mortality in CF results
from chronic inflammation of the airways and the resulting
gradual decline in lung function.

The CFTR associates with other proteins in a macromo-
lecular complex, and its channel activity and surface expres-
sion are regulated by local signaling and recycling through
endosomal compartments, respectively. These processes
are expected to depend on the compartmentalization and
lateral mobility of CFTR and its interactome, although
CFTR dynamics at the cell surface are not well understood.
Most studies have focused on protein-protein interactions,
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but lipids may also play a role in compartmentalizing
CFTR. About half of the CFTR in Calu-3, an airway epithe-
lial cell line, is found in a detergent-resistant membrane
(DRM) fraction hypothesized to include lipid rafts (4). Rafts
are hypothesized nanoscale microdomains in the plasma
membrane that are enriched in cholesterol and glycosphin-
golipids (5,6) and are thought to cluster receptors and intra-
cellular signaling molecules including G protein coupled
receptors (7), tumor necrosis factor receptor (8), and ki-
nases, notably Src (8,9) and protein kinase C (10,11).
Activation of the tumor necrosis factor receptor and inhi-
bition of Src kinase increases the association of these
signaling molecules with lipid raft components and is
accompanied by recruitment of the CFTR to the DRM frac-
tion (8), suggesting that the CFTR may partition into micro-
domains during inflammation. This partitioning may be due
to lipid interactions with CFTR itself or with the scaffold
protein NHERF1, which links the CFTR to the actin cyto-
skeleton (12) and also binds to cholesterol at the plasma
membrane (13). Colocalization of fluorescently labeled
CFTR with the lipid raft markers cholera toxin B or caveo-
lin-1 has also been observed during infection by Pseudo-
monas aeruginosa (14-16), and the CFTR has been
proposed to bind and internalize bacteria to help clear
them from the lumen and to initiate lipid-raft-dependent
epithelial cytokine and chemokine release (8,14—17). The
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presence of a CFTR population in the DRM fraction implies
heterogeneity among CFTR molecules. Only one homoge-
neous population of CFTR channels was detected based
on single-particle tracking (18), so it remains uncertain
whether some CFTR channels are present in lipid rafts un-
der resting conditions and whether this distribution influ-
ences their lateral mobility.

In this work, we quantified the distribution of CFTR in
primary human bronchial epithelial cells using spatial image
correlation spectroscopy (ICS (19)) and studied CFTR dy-
namics using a modified version of k-space ICS (kICS
(20,21)). To identify the CFTR population that is in choles-
terol-rich membrane microdomains, transport and partition-
ing dynamics were compared under control conditions and
after treatment with cholesterol oxidase or cholesterol
esterase to deplete or augment cholesterol, respectively.
kICS analysis revealed two dynamically distinct popula-
tions of CFTR on the plasma membrane, one of which
had large (relative to the focal-spot dimensions)-spatial-
scale transport dynamics indicative of CFTR mobility
outside of microdomains. The other population exhibited
small-spatial-scale dynamics and displayed confinement
consistent with nanoscale membrane domains. Cholesterol
depletion reduced CFTR confinement and the fraction of
CFTR in the confined population, whereas these were both
increased by cholesterol insertion. The results show a clear
dependence of CFTR distribution and dynamics on choles-
terol and suggest that a fraction of CFTR exists in lipid rafts
under physiological conditions. Lipid-raft fusion into large
platforms during infection may enhance the regulation of
CFTR channel activity or modulate stability of the channel
at the cell surface.

MATERIALS AND METHODS
Cell culture and adenovirus infection

Primary human bronchial epithelial (HBE) cells were obtained at first pas-
sage from the Cystic Fibrosis Canada Primary Airway Cell Bank at McGill
University (see the Supporting Material for details). Cells were seeded on
vitrogen-coated (PureCol, Advanced BioMatrix, San Diego, CA), glass-
bottom FluoroDishes (World Precision Instruments, Sarasota, FL) and
maintained in bronchial epithelial cell growth medium (22) at 37°C.
When they reached 80% confluence, they were infected with adenovirus
particles directing the expression of green-fluorescent-protein (GFP)-
labeled CFTR (GFP-CFTR) (23) at a multiplicity of infection of 100 col-
ony-forming units per cell in OptiMEM medium supplemented with
100 nM vitamin D3 (Calbiochem, Billerica, MA) for 2 days. The cells
were rinsed with phosphate-buffered saline and kept in fresh OptiMEM
for 2 days, then imaged in OptiMEM with 5% CO, at 37°C.

Treatments

All treatments were performed acutely at 37°C. To reduce cholesterol and
disrupt lipid rafts, cells were incubated with 1 unit/mL cholesterol oxidase
(COase, Sigma, St. Louis, MO) for 30 min before and during imaging.
COase was used because in preliminary experiments it was found to cause
less cell damage during extended imaging periods compared to methyl-(-
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cyclodextrin (MBCD). To increase cholesterol production and raft stability,
cells were treated with 0.1 unit/mL cholesterol esterase (CEase, Sigma) for
30 min before and during imaging. To examine the acute effects of adeno-
viral infection on CFTR distribution and dynamics, HBE cells that had
already been transduced with GFP-CFTR were exposed to GFP-CFTR
adenovirus particles at a multiplicity of infection of 100 for 30 min and
then imaged.

Confocal microscopy

Live cell imaging was performed in the Advanced Biolmaging Facility of
the McGill Life Sciences Complex using an LSM-710 confocal microscope
(Zeiss, Jena, Germany), which was equipped with a multiline argon laser
(488 nm, 25 mW) and a 561 nm line laser (15 mW). Time-series images
were collected from flat regions of the plasma membrane near the coverslip
using 0.5% laser power to minimize fluorescence photobleaching. Under
these conditions, fluorescence photobleaching was measured to be <10%
of the average fluorescence intensity of the first frame of the image series.
EGFP was excited using the 488 nm laser line and Alexa-594 was excited at
561 nm. Imaging was performed using a Plan-Apochromat 63 x (NA 1.40)
oil immersion objective, a confocal pinhole of 1 Airy unit, and a digital gain
setting of 900. The experiments were performed on subconfluent, unpolar-
ized HBE cells expressing GFP-CFTR in a humidified cell incubator on the
microscope stage maintained at 37°C with 5% CO, (Live Cell Instrument,
Seoul, South Korea).

The time series consisted of 800 images (256 x 256 pixels) collected
from a single cell and focused on an area of membrane in contact with
the glass coverslip. Image series were collected at a frame rate of 6.5 Hz,
a pixel diameter of 0.06 um, and a pixel dwell time of 1 us. For the analysis
of confined dynamics, 59—136 image series were analyzed per stimulation
condition. For the purpose of visually showing CFTR distribution in the
plasma membrane, individual confocal images of a 1024 x 1024 pixel
area were collected at 0.2 Hz, with a pixel diameter of 0.13 um, a dwell
time of 6 us, and laser power of 5% to enhance the signal/noise ratio.

Spatial ICS

ICS was used to measure the degree of aggregation and cluster density for
CFTR in cells exposed to different stimuli. The ICS technique has been
described in detail elsewhere (19). Briefly, the degree of aggregation
(DA) was calculated as

DA = -~ 6]

and the cluster density (CD) as

cp = ), @
TW;

where CD is the average number of independent fluorescent entities per unit
area, (i) is the spatial average pixel intensity of the image region of interest
(ROI), (n,) is the average number of particles per beam focus, and wy is the
e~? beam radius. (np) is the reciprocal of the zero spatial lags amplitude of
the spatial correlation function of the image, which is obtained from a
nonlinear least-squares fit of a Gaussian function. Details of the spatial im-
age cross-correlation spectroscopy technique can be found elsewhere
(24.25) and in the Supporting Material.

kICS: Theory and analysis

CFTR dynamics were studied using kICS analysis (20,21). Briefly, for this

analysis, the k-space time correlation function, ®(k;7), is obtained by
calculating the temporal correlation function of the k-space image series



CFTR Confinement in the Plasma Membrane

(i.e., after calculating the two-dimensional spatial Fourier transform for
each image in the time series) using

®(k;r) = (i(k,0)i (k,r+7)), 3)

where ;(l?7 t) is the Fourier transform of the image acquired at time t, and
i (l:, t + 7) is the complex conjugate of the Fourier transform of the image
acquired at time ¢ 4+ 7. The angular brackets denote temporal correlation.

For particles undergoing two-dimensional diffusion with a diffusion co-
efficient D, ®(k; 7) is analytically written as

. 212 A2
o(F7,1) = N < (000t + 7))
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where N is the number of fluorescent particles in the image ROI, q is the
quantum yield of the fluorophore, I is the intensity at the center of the
beam focus, and w is the e~ 2 laser-beam radius in the lateral direction
at focus. Fluorophore photophysics effects (bleaching and blinking) are
accounted for by the time-dependent function, ®(t).

The correlation function in Eq. 4 can be simplified to

O (k;7,1) = <N(1‘))exp[— |%|2<DT+%3):|, )

where (N(#)) is proportional to the average number of particles in the ROI
and to the time-dependent photophysics effects given in the correlation pre-
factor amplitude of Eq. 4.

In the case of two different diffusing species (species 1 and 2), the cor-
relation function is the weighted sum of all contributions, computed as

71?207+ﬁ —/?ZDT+ﬁ
@(%;T,I)<N1>e||<l 4)+(N2>e||(2 4). (6)

The finite width of the correlation function at the zero temporal lag will
mask the motion at spatial scales smaller than the point spread function
(PSF). In KICS, the contribution of the finite PSF can be removed by
normalizing the correlation function with the zero-temporal-lag correlation
function as follows:

d>(l;; T, t)

2 212
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where ¢, is the amplitude of population i in the normalized multicomponent

correlation function. It is proportional to N; and is photophysics- and time

dependent:

_ N (0(0)0(t+1))
CN+N (0n)

This two-component model in Eq. 7 can be applied to a system with one
particle type that exhibits confined (microscale) and unconfined (macro-
scale) diffusion dynamics within and between small domains distributed
in two dimensions if the exchange occurs on a faster timescale. A fit to
this model was used to extract effective diffusion coefficients for the
confined (Dpicro) and unconfined (Dy,cr0) particle populations and their
respective amplitude parameters.

More specifically, the correlation function is fit to a sum of two Gaussians
at each temporal lag 7. The fit parameters are D07, DmicroTs Pmacro» and
Gmicro @s a function of 7. Mean-square displacement (MSD) plots for the
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two populations are then constructed from the fit-extracted D;7 versus T,
and the amplitude graphs are constructed from the fit-extracted ¢; versus 7.

The slope of the macro MSD versus 7 plot is Dy,cro, Which is an effective
diffusion coefficient of CFTR inside and between microdomains (see
Fig. S4 in the Supporting Material). For the image sampling rate and mem-
brane CFTR system in this study, the slope of the first three temporal lags of
the micro MSD versus 7 plot is Dyyicro, Which is the diffusion coefficient of
particles confined inside the microscopic domains. The fractions that are in
the macro and micro populations are then calculated from the amplitudes at
long-temporal-lag values 7 asfmacro = ¢1nacr0/(¢macro + Pmicro) andfmicro =
Gmicro/ (Pmacro + Pmicro)- According to simulations (20), the recovered
Dinacro and Dyyicro are dependent on the probability of particles escaping
from confinement (see the Supporting Material for details). Thus, practi-
cally, the Dy, describes an apparent diffusion coefficient that includes ex-
change in addition to simple diffusion outside of domains.

The y-axis intercept of the micro MSD plot extrapolated from long tem-
poral lags 7 is R%/4. R is a spatial parameter proportional to the domain
radius (d), Dmjicro» and the probability of molecules exiting the domains
(Pouy). Based on simulations, the R-value is v/2 d for domains with radii
larger than the PSF radius (20). For domains with radii smaller than the
PSF radius, the R-value is twice the pixel diameter. There is a limitation
for recovering the actual domain radius due to the background noise of
the system and the spatial aliasing which is set by the Nyquist criterion.
However, according to simulations, the R-value and domain confinement
are inversely related; the smaller the R-value, the stronger the domain
confinement, and the larger the R-value, the weaker the confinement (20).
This makes the R-value a measure of confinement strength rather than a
physical measurement of the domain radius.

For the analysis of CFTR dynamics using kICS, 59—136 image series
were analyzed per stimulation condition. The mean of each measured
parameter, the standard error, and the t-value were then calculated over n
cells (neens, see Table 1) for statistical significance evaluations.

Statistical analysis

The KICS measured parameters, Diacros Drmicros fmacros Jmicro» and R-value,
were presented as the mean = SE for n cells. Data sets obtained with
different treatments were compared to the control condition using the un-
paired Student #-test. Differences with p < 0.01 were considered statisti-
cally different.

RESULTS

The nature of CFTR clusters on the plasma
membrane

Fig. 1 shows a typical confocal image of the plasma mem-
brane of an unpolarized primary HBE cell expressing GFP-
CFTR (henceforth called CFTR). Under control conditions
(no stimulation), some CFTR was found in bright, PSF-sized
fluorescent clusters that were homogeneously distributed

TABLE 1 CFTR confinement parameters using kiCS analysis
Treatment Dmicrn (Mmz/s) fmicm R (Mm) Neell
Ctrl 0.009 = 0.001 0.27 £ 0.02 0.293 = 0.007 136
+COase 0.014 + 0.001* 0.20 = 0.01° 0.324 + 0.005* 130
+CEase 0.0032 + 0.0006" 0.38 = 0.05* 0.224 + 0.007* 60
Ctr2 0.008 = 0.002 0.23 £ 0.03 0.291 = 0.009 55
+Virus 0.0019 + 0.0003" 0.51 = 0.05* 0.221 + 0.003" 59

“Significantly different from its respective Ctr, p < 0.001.
®Significantly different from its respective Ctr, p < 0.01.
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FIGURE 1

CFTR distribution on the plasma membrane of primary HBE
cells. A fluorescence confocal microscope image of GFP-CFTR in the
plasma membrane of a live HBE cell reveals two populations; one
comprised of bright clusters that are homogeneously distributed (arrow
on right) and another more diffuse population (arrow on left). To see this
figure in color, go online.

over the plasma membrane (red arrow). Diffraction-limited
imaging dictates that the actual physical size of the clusters
is equal to or smaller than the PSF diameter. CFTR was
also visible outside the clusters as diffuse fluorescence
(vellow arrow) that was significantly more intense than the
background autofluorescence, which was negligible under
these conditions (Fig. S1). We refer to this diffuse fluores-
cence as the unconfined CFTR population. The clusters ex-
hibited very slow diffusion (~107* ,umzls) and occasional
fission events over the course of an image series (123 s).
Similar clusters have been described for both glycosylphos-
phatidylinositol-anchored and epidermal-growth-factor-
receptor GFPs, which partition into lipid rafts (26,27).

CFTR clusters were still observed after the cells were
sheared off the glass-bottom FluoroDish by sonication so
that only the plasma membrane remained attached
(Fig. S5; see the Supporting Material for details), suggesting
they were in the plasma membrane or closely associated
with it in these primary epithelial cells. To rule out the pos-
sibility that clusters were sites of clathrin-mediated endocy-
tosis (28), we quantified the colocalization of CFTR clusters
with clathrin coated pits using fluorescent transferrin and
image cross-correlation spectroscopy analysis (Fig. S6;
see the Supporting Material for details). The analysis
revealed that only 20% of CFTR clusters were spatially
colocalized with clathrin, suggesting that most clusters
are unlikely to be undergoing internalization at clathrin-
coated pits.
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The CFTR aggregation state is cholesterol
dependent

In a previous study of Calu-3 airway epithelial cells, CFTR
was detected in a DRM fraction after solubilizing airway
epithelial cell lysates in ice-cold Tris-buffered saline and
fractionating them on a sucrose gradient (4). To test the hy-
pothesis that the clusters in Fig. 1 are CFTR molecules that
have aggregated in lipid rafts, we studied the effects of
enzyme treatments that are well known to disrupt or enhance
lipid rafts in other cell types (29-31). Spatial ICS (19) was
used to measure the distribution and aggregation state of
CFTR in primary HBE cells (see Materials and Methods
for details). COase, an enzyme that converts cholesterol
into cholestenone, which does not partition to rafts, was
used to disrupt the membrane microdomains (29-33).
Reducing cholesterol within these domains would decrease
their viscosity and make them weaker traps, which in turn
would reduce the amount of CFTR within microdomains
and hence its aggregation. Spatial ICS analysis (19) was
applied to assess the DA and CD before and after enzyme
treatment. After COase treatment, ICS analysis revealed a
30% increase in CFTR CD and a 35% decrease in DA
(Fig. 2). These results indicate that stability, cell surface
density, and size of CFTR clusters are cholesterol depen-
dent, consistent with their association with membrane
microdomains.

To further establish that CFTR clusters are associated
with rafts, HBE cells were exposed to CEase, which cata-
lyzes the synthesis of cholesterol and increases its concen-
tration in the plasma membrane. ICS analysis revealed a
twofold decrease in CD and a threefold increase in DA after
CEase treatment (Fig. 2). The increase in DA and decrease
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FIGURE 2 CFTR CD and DA in the plasma membrane as measured by
spatial ICS are strongly cholesterol dependent. CD and DA were normal-
ized to their control values, the CD ratio and the DA ratio, respectively.
In the COase condition, cholesterol loss increased the CFTR CD by 30%
and decreased the DA by 35% (p < 0.01). Elevating cholesterol in the mem-
brane using CEase reduced the CD by twofold and increased the DA by
threefold (p < 0.01). Error bars indicate the mean * SE.



CFTR Confinement in the Plasma Membrane

in CD when cholesterol is augmented may reflect increased
fusion of adjacent rafts into large confinement zones in the
membrane. Regardless, the effects of manipulating choles-
terol on the CFTR aggregation state strongly suggest that
a population of CFTR resides within lipid rafts.

CFTR confinement is cholesterol dependent

Confocal-laser-scanning-microscopy imaging under the
different treatments shown in Fig. 3, a—c, highlights the
dependence of CFTR clustering on cholesterol. Conditions
that cause cholesterol loss from the membrane reduced the
density and brightness of the clusters (Fig. 3 b, +COase)
whereas those that elevate cholesterol increased cluster
size and brightness (Fig. 3 ¢, +CEase) relative to control
conditions (Fig. 3 a). These results link the stability and
loss of CFTR clusters with the formation and disruption
of lipid rafts, and they strongly suggest that CFTR clusters
are associated with cholesterol-rich microdomains.

To explore this further, we investigated CFTR dynamics
and confinement in the plasma membrane using an exten-
sion of the KICS technique (20,21). This analysis uses a
confocal image series of GFP-CFTR to calculate the k-space
time correlation function for an ROI, as shown in Fig. S2 a.

Ctr +COQOase

+CEase

+Adeno virus

FIGURE 3 CFTR distribution in the plasma membrane depends on mem-
brane cholesterol. (a) A confocal microscope image of GFP-CFTR in an
ROI on the plasma membrane of live HBE cells under Ctr conditions.
(b) After lipid raft disruption (+COase). (¢) After membrane cholesterol
insertion (+CEase). (d) After acute viral infection (+adenovirus). To see
this figure in color, go online.

89

The k-space time correlation function is fitted with a two-
component model that accounts for confined diffusion
within a microscopic domain and macroscopic effective
diffusion of CFTR (i.e., the micro and macro components,
respectively). We infer that bright clusters on the plasma
membrane of cells expressing GFP-CFTR (Fig. 1) represent
CFTR molecules that have partitioned into lipid rafts and
that display confined mobility that can be measured using
KICS as Dpicro- The diffuse background fluorescence, on
the other hand, is considered to represent the CFTR popula-
tion that is outside rafts and has a macroscopic diffusion
coefficient proportional to D ac0 (see Fig. S4). The distri-
butions of these two distinct CFTR populations detected
by kICS have fit amplitudes ¢picro and Gmacro, Which are
normalized to obtain the fraction of CFTR in each popula-
tion, fiicro and fmacro (see Materials and Methods). kICS
was used to study the effects of cholesterol reduction
(4+COase) and insertion (+CEase) on the macroscopic-
and microscopic-scale dynamics of these CFTR populations
and their respective fractions in the membrane.

Cholesterol depletion reduces CFTR confinement

MSD plots calculated for unconfined and confined popula-
tions of CFTR (Dyacro7 and D07 versus 7) and the lag-
time-dependent amplitude plots (Pmacro(7) and Gmicrol(7)
versus 1) under control (Ctr) conditions and after COase
are shown in Fig. 4. The MSD plot for the unconfined pop-
ulation (Fig. 4 a) has a steeper slope after COase treatment,
indicating an increase in Dpacro (Ctr, Dipacro = 0.014 =+
0.003 um?/s; COase, Dacro = 0.026 = 0.002 um?/s). Dy-
namics of the confined CFTR population also increased af-
ter COase treatment, as evidenced by the steeper initial
slope of the MSD curve for the micro component (the linear
fit of the first three temporal lags: Ctr, Do = 0.009 =
0.001 um?/s, COase: Dpmico = 0.014 = 0.001 um?/s)
(Fig. 4 b). The increase in D, indicates an increase in
CFTR exchange dynamics into and out of lipid rafts after
enzyme exposure. This would be explained if reducing
raft cholesterol reduced their viscosity, making them weaker
traps for CFTR. The amplitude of the confined CFTR pop-
ulation (¢micro) declined significantly after raft disruption
by COase, whereas that of the unconfined population
(dmacro) Was increased (Fig. 4 ¢), demonstrating a redistri-
bution of CFTR between the two populations. A summary
of the fit parameters Dmacrov Dmicrov fmacrm and fmicro for
each cell population during Ctr and COase treatment is
shown in Fig. 5 and Table 1. Fig. 5 shows that ~25% of
CFTR in the plasma membrane was in the confined popula-
tion under the control conditions, and this fraction was
reduced when rafts were disrupted by COase.

Cholesterol insertion stabilizes CFTR within lipid rafts

Cholesterol promotes the formation of microdomains and
increases their viscosity (32,33). If a population of CFTR
channels partitions into rafts, augmenting cholesterol in

Biophysical Journal 109(1) 85-94
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and distribution on the plasma membrane are
cholesterol dependent. (@) The average macroscale
MSD, D hacroT, increased linearly as a function of 7
for control (Ctr, black) and COase-treated cells
(gray). The slope, Duyacro, is the macro diffusion
coefficient of unconfined CFTR. (b) The average
microscale MSD, D07, increased linearly for
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changed its slope at a later 7 for both conditions.
The first three temporal lags were fit with straight

lines, as shown, yielding a slope, Dyicro» that describes the mobility of the CFTR population inside confinements. COase treatment resulted in a larger Dpyicro
compared to the Ctr condition, indicating a weaker trap. (c) The average amplitudes of the macro- (acro, [ine) and microcomponents (G micro, S0lid circles)
of the k-space correlation function as a function of 7. For n averages, see Table 1. Error bars indicate the mean + SE.

the raft with CEase should increase the efficiency of CFTR
confinement. Fig. 5 a shows that diffusion coefficients for
the unconfined (Dacr0) and confined (Dpicro) populations
of CFTR were both reduced by CEase treatment. Moreover,
the fraction of CFTR in the unconfined population (fiacro)
declined, whereas the confined fraction (f;,;c;o) Was signifi-
cantly increased (Fig. 5 b). The confinement parameters ob-
tained for Ctr and CEase treatment using kICS analysis are
shown in Table 1. This strongly supports the hypothesis that
two populations of CFTR molecules exist in the plasma
membrane, one of which is localized to lipid rafts.

CFTR confinement strength is cholesterol
dependent

The y-intercept of the micro MSD-versus-t plot extrapo-
lated from long temporal lags yields the R-value, which is
a measure of confinement strength within lipid microdo-
mains (see Materials and Methods for details). Simulations
indicate an inverse relationship between R and confinement
strength: the larger the R-value, the weaker the traps, and
vice versa (20). It can be seen in Fig. S7 a that cholesterol
depletion from the membrane (i.e., COase treatment) signif-
icantly increased the R-value, consistent with a decrease in
CFTR confinement. Conversely, cholesterol insertion into
the membrane (4CEase) dramatically decreased the
R-value, indicating increased confinement in rafts (see Ta-
ble 1). Taken together, these results indicate that membrane
cholesterol is a determinant of CFTR populations through
its effects on confinement. Cholesterol depletion reduces
CFTR confinement strength by allowing proteins to escape

from membrane rafts, whereas cholesterol insertion in-
creases it, probably through an increase in raft viscosity.

CFTR confinement increases when large
platforms form in response to acute viral infection

Bacteria and viruses trigger the hydrolysis of sphingomyelin
in lipid rafts to ceramide, which leads to the aggregation of
the rafts into large membrane platforms (34-36). Exposure
to pathogens leads to ceramide synthesis and the formation
of large platforms that are essential for their entry into
airway epithelial cells (14,16,34,35,37). We studied the ef-
fects of acute adenoviral infection on the transformation
of nanoscale lipid rafts into large platforms and on the dis-
tribution and dynamics of CFTR using kICS.

Within minutes of exposure to adenovirus particles, punc-
tate clusters of CFTR began to coalesce into 1- to 2-um-
diameter platforms (see Fig. 3 d). This was accompanied
by striking decreases in Dyacro and Dyicro (Fig. 6 a) and a
redistribution between the two CFTR populations (Fig. 6
b). The fraction displaying macroscopic dynamics (fiacro)
decreased, whereas the confined population (fiicro)
increased dramatically (Fig. 6 b). Viral infection also caused
a dramatic reduction in the R-value (Fig. S7 b), confirming
that recruitment into large ceramide platforms dramatically
increased CFTR confinement. Table |1 summarizes the ef-
fects of acute viral infection on the confinement parameters.
In summary, viral infection induces the fusion of CFTR-
containing rafts into large platforms where CFTR mobility
is greatly reduced, and it also leads to recruitment of
CFTR from the unconfined population.

a om*‘ ’moos b 1*‘ ® micro| FIGURE 5 CFTR macro- and microdynamics
— - and distribution on the plasma membrane are
Nﬂ NQ 0.8} 108 cholesterol dependent. (a) Both Dy, and
g 0.02¢ 1002 2 ° o6l lo6 @ Dmico of CFTR increased significantly after
o .
=, ‘1’0 2 o o é cholesterol  depletion from the membrane
So.01f Joor 5w T o (+COase) and decreased significantly after
QE . DE 0.2} 102 chole.ster.ol augmentation (+CEase).. (b) qray
0 . . __o 0 . 0 bars indicate the unconfined population fraction,
Ctr COase CEase Ctr COase CEase

Jfinacro» increased by cholesterol loss (+COase)

and decreased after cholesterol insertion (+CEase). Black bars indicate the confined population fraction of CFTR, fuicro. decreased significantly after
COase and increased significantly after CEase. Error bars indicate the mean *+ SE.
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FIGURE 6 CFTR dynamics and distribution af-

® micro 1

ter acute viral infection. (a) Both the Dy, and
{08 Diicro 0f CFTR decreased significantly after the
infection. (b) Although the unconfined population
fraction, fiacro, decreased significantly postinfec-
tion (gray), the confined population fraction, fisicro,
increased by twofold (black). This indicates
0 recruitment of CFTR to confinement zones during

micro
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£ oot 0.0g o i
= 0§

° o _E 04

$0.005, 0.005 § 4
QE DE 0.2

Ctr Virus Ctr

DISCUSSION

This study distinguishes two CFTR populations on the
plasma membrane of primary HBE cells, one that is in clus-
ters and another that is diffusely distributed. Quantitative an-
alyses of image time series also revealed two populations of
CFTR molecules based on lateral mobility in the membrane.
One displayed confinement and slow dynamics and was sen-
sitive to membrane cholesterol concentration. The other was
more abundant, relatively unconfined, and more rapidly
diffusing. The existence of two populations is consistent
with biochemical data showing that ~50% of the total
CFTR in the airway epithelial cell line Calu-3 occurs in a
cholesterol-rich DRM fraction (4,8). Therefore, a straight-
forward interpretation of the imaging data is that some
CFTR molecules at the cell surface reside in nanoscale
cholesterol- and sphingolipid-rich microdomains (lipid
rafts). We quantified the distribution of CFTR between mi-
crodomains and bulk membrane on live cells and studied
CFTR dynamics within each population. Finally, we exam-
ined the effects of acute viral infection quantitatively and
found aggregation of preexisting CFTR clusters into large
platforms similar to those described previously during infec-
tion by Pseudomonas aeruginosa (34) and rhinoviruses (35).

The cell model

First-passage primary HBEs differentiate into a pseudostra-
tified layer that is remarkably similar to airway surface
epithelium in vivo when they are cultured at the air-liquid
interface. The quantitative imaging methods used here
required an area of flat membrane, so we used unpolarized
cells and imaged GFP-CFTR in the plasma membrane that
was in contact with the collagen-covered glass coverslip.
This enabled the analysis of CFTR dynamics but also al-
lowed mixing of apical and basolateral membrane constitu-
ents. It is not known whether identical CFTR dynamics
would be observed in pure apical membrane, but platforms
very similar to those induced by adenovirus in this study
have been reported after infection of fully polarized cells
in vivo (34). It is also worth noting that epithelial cell polar-
ity is transiently lost in vivo, for example, during injury by
the gram-positive bacterium Staphylococcus aureus, which
usually infects CF airways before Pseudomonas aerugi-
nosa. Wild-type GFP-CFTR was expressed in cells isolated
from patients that were homozygous for the F508del muta-

bt infection. Error bars indicate the mean *+ SE.

tion, which ensured that the plasma membrane contained
little, if any, endogenous nonfluorescent CFTR. A replica-
tion-deficient adenoviral vector lacking most of the viral
genome was used for efficient GFP-CFTR expression.
Capsid proteins on the adenovirus particles can trigger inter-
feron and inflammatory responses in HBEs, and acute expo-
sure did cause CFTR clusters to coalesce into large
platforms. However, the innate immune response to adeno-
virus subsides within 1-2 days in most cell types, and the
absence of platforms under control conditions 4 days post-
transduction suggests that adenoviral delivery of GFP-
CFTR did not have a persistent effect on CFTR dynamics.

CFTR clustering is cholesterol dependent

GFP-CFTR clusters remained after the cells had been
sheared from the coverslip, indicating that they are intimately
associated with the plasma membrane (Figs. 1 and S5). This
punctate distribution of GFP-CFTR was also observed in the
immortalized CF cell line CFBE after adenoviral transduc-
tion or plasmid electroporation. Importantly, it was affected
by changes in membrane cholesterol that affect the properties
and composition of lipid rafts. Although the precise nature of
the aggregates remains uncertain, only 20% were colocalized
with fluorescent transferrin; therefore, most CFTR clusters
were not situated in clathrin-coated pits that mediate CFTR
internalization. To explore the possibility that CFTR clusters
reflect confinement in cholesterol-rich lipid rafts, we used
enzymes that are known to alter the amount of cholesterol
in the membrane. Cholesterol depletion by COase reduced
the number and brightness of CFTR clusters compared to un-
treated control cells (Fig. 3 b) and reduced the degree of ag-
gregation (Fig. 2), suggesting that the formation and stability
of clusters are cholesterol dependent. Conversely, augment-
ing membrane cholesterol using CEase increased the average
size of the clusters (Fig. 3 ¢) and the degree of aggregation
(Fig. 2), consistent with cholesterol promoting the formation
of lipid rafts or their fusion into larger domains that sequester
CFTR.

Comparison of kICS and single-particle tracking
for studies of CFTR confinement

Single-particle tracking (SPT) (38) has been used to
examine CFTR dynamics at the cell surface (18,39). In
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the first study, quantum-dot labeling after specific bio-
tinylation of wild-type CFTR revealed very low mobility
(average microscale diffusion coefficient, ~5 x 1073 ,urn2/s
(39)). Wild-type CFTR was predominantly tethered, whereas
mobility was dramatically increased in a mutant that had 10
histidine residues added to the C-terminus to inhibit binding
by NHERF and other PDZ-domain proteins. The 10-His
mutant displayed transient confinement suggestive of resid-
ual protein-protein interactions. Near immobilization of
wild-type CFTR was confirmed using CFTR that was labeled
with antibody-coated quantum dots, although transient
confinement was not detected when NHERF binding was dis-
rupted (18). Finally, a study with antibodies conjugated to
colloidal gold revealed transient confinement of wild-type
CFTR, which was reduced by mutation of a filamin binding
site near the amino terminus (40). None of these studies re-
ported an association of CFTR with lipid rafts.

SPTyields precise information regarding molecular trajec-
tories but requires dilute (usually exofacial) labeling with
bright fluorophores so that single molecules can be resolved
(41). The KICS analysis used here is more suited for studying
populations because it is an ensemble method that can be
applied to fluorescently-tagged proteins anywhere in the
cell and over a wide range of expression levels (42). Ensemble
averaging of kICS data allows separate analysis of the micro-
and macroscale dynamics and the resulting Dyacro, Drmicros
and domain radii are limited only by the background
noise and the spatial and temporal resolution of the image
time series. Multicomponent fitting of the kICS correlation
function provides average results for large numbers of cells,
facilitating statistical comparisons over very different time-
and lengthscales. The kICS analysis described here provides
the firstevidence, to our knowledge, that cholesterol influences
CFTR mobility and confinement. Our estimate of the micro-
scale diffusion coefficient 6-10 x 107> um?/s is well within
the range of confined dynamics reported previously; thus,
CFTR partitioning in the plasma membrane likely involves in-
teractions with both cytoskeletal elements and lipid rafts.

CFTR confinement and dynamics are influenced
by cholesterol

Approximately 25% of the CFTR in the plasma membrane of
primary HBE cells was confined under unstimulated (con-
trol) conditions, consistent with localization in lipid rafts.
The confined population was reduced by 20% after cells
were exposed to COase, but it was not eliminated. COase is
arelatively mild treatment and is expected to cause only par-
tial depletion of membrane cholesterol, so 20% is likely an
underestimate of the fraction confined to membrane micro-
domains. More complete extraction of cholesterol would be
expected with MBCD, but preliminary experiments have re-
vealed that MBCD causes cell damage during long-term im-
aging experiments. The modest decrease in confined CFTR
molecules may reflect the fraction that is in cholesterol-
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sphingomyelin rafts, with the other 80% being confined by
ceramide-based rafts or attachments to the actin cytoskel-
eton. Elevating cholesterol with cholesterol esterase caused
the fraction of CFTR displaying confinement to double.
Since cholesterol is a major component of lipid rafts, promot-
ing its insertion into the plasma membrane may increase lipid
raft density and/or viscosity. Taken together, the opposing ef-
fects of depleting and elevating cholesterol levels provide
further evidence for CFTR partitioning into cholesterol-
rich membrane microdomains.

Fluorescence-recovery-after-photobleaching studies indi-
cate that 40-50% of the CFTR on IB3-1 and BHK cells has
very slow dynamics and does not recover in the photo-
bleached region (15,39). Similar results were obtained using
temporal image correlation spectroscopy analysis (39). The
contribution of cholesterol-rich microdomains to CFTR dy-
namics was not examined, but more recent studies have de-
tected 6-48% of the total CFTR from Calu-3 cells in a DRM
fraction (4,8).

The results presented here indicate that the lateral mobility
of a CFTR population is cholesterol dependent, consistent
with confinement in cholesterol-rich microdomains (lipid
rafts). Cholesterol depletion significantly increased Dynicros
suggesting that they were weaker traps. Dy,acro increased as
well since large spatial scale dynamics are also influenced
by transient confinements. Reduced trapping was also evident
as an increase in the R-value, indicating a decrease in the
confinement strength. On the other hand, enhancing choles-
terol insertion with CEase dramatically reduced D¢, prob-
ably through enhanced sphingomyelin packing, which
increased order within the microdomains. Trapping was ex-
pected to reduce Diicros Dmacro» and the R-value, and this
was observed. To our knowledge, these results present the first
biophysical quantification of CFTR partitioning into choles-
terol-rich microdomains in the plasma membrane of live cells.

KICS analysis together with the spatial ICS analysis
showed that elevating membrane cholesterol reduces the
CFTR CD by twofold, increases the DA by threefold, dramat-
ically increases the fraction of CFTR molecules displaying
microscale dynamics, fiicro, increases CFTR confinement
strength (i.e., R-value), and reduces small-spatial-scale dy-
namics, Dpy;cro- The decline in CFTR CD suggests a decrease
in the density of lipid rafts after cholesterol insertion, perhaps
due to formation of larger lipid rafts or the fusion of microdo-
mains as shown in Fig. 3 c. The increase in DA and f;;c., and
the decrease in Dyco Suggest that lipid raft viscosity and
CFTR confinement are increased after cholesterol insertion,
probably due to enhanced sphingomyelin packing.

CFTR platforms after viral infection

CFTR is central to innate immunity in the airways through
its roles in mucociliary clearance, bicarbonate-dependent
bacterial killing, and perhaps direct binding and internaliza-
tion of bacteria (14-16,37,43). Exposing airway epithelial



CFTR Confinement in the Plasma Membrane

cells to Pseudomonas aeruginosa causes lipid rafts to fuse
into large ceramide-rich platforms, which leads to internal-
ization of the bacterium, apoptosis and cytokine release
(34). Infection by some viruses is also enhanced by the hy-
drolysis of membrane sphingomyelin to ceramide (35,36).
We found that acute exposure to adenovirus particles had
rapid effects on CFTR mobility. Within 30 min, CFTR dy-
namics decreased >80% with a pronounced shift of uncon-
fined CFTR to the confined population, consistent with
fusion of nanoscale lipid rafts containing CFTR clusters
into much larger platforms 1-2 um in diameter (Fig. 3 d).
These acute effects resemble those described previously
during Pseudomonas aeruginosa infection (34). The plat-
forms were transient; they were not observed 4 days postin-
fection under control conditions, further evidence that cells
had recovered from any interferon or inflammatory re-
sponses to the adenoviral vector delivery of CFTR.

CONCLUSIONS

To our knowledge, these studies provide the first biophysical
evidence that CFTR exists in two populations at the cell sur-
face, one of which is influenced by cholesterol. Since
cholesterol is an important constituent of lipid rafts, this
strongly suggests that one of the CFTR populations is situ-
ated in lipid rafts under unstimulated conditions. Clustering
and confinement in lipid rafts may modulate CFTR channel
function as the membrane microdomains are known to re-
cruit kinases and other signaling molecules that regulate
CFTR. NHERF1, a scaffold protein that tethers CFTR to
the actin cytoskeleton and stabilizes it in the plasma mem-
brane, is especially interesting in this regard as it has a
cholesterol binding motif (13). Whether this motif helps
target NHERFI and its interactome to rafts remains to be
determined. The incorporation of CFTR into large cer-
amide-rich platforms through the fusion of lipid rafts may
be a mechanism by which CFTR expression and channel
function are elevated at the cell surface.
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Supporting Materials and Methods

Isolation and culture of human bronchial epithelial (HBE) pri-
mary cells:

Human lung tissues were obtained from non-CF and CF individuals after lung
transplantation with informed consent under a protocol approved by the Institu-
tional Review Board of the Research Ethics Office of McGill University. Isola-
tion and culture of HBE cells were adapted from procedures previously described
(1, 2). Briefly, non-CF and CF airway epithelial cells were isolated from bronchial
tissue by enzymatic digestion and were cultured in bronchial epithelial growth
medium (BEGM; (1)) on Vitrogen-coated plastic flasks (Advanced BioMatrix,
San Diego, CA), then trypsinized, counted, and cryopreserved or transferred di-
rectly onto Vitrogen-coated glass-bottom FluoroDishes (4.34 cm?, World Preci-
sion Instruments, Inc. Sarasota, FL) adapted for imaging at a density of 3x10°
cells/dish. Fresh or previously cryopreserved passage 1 (P1) cells were used. The
BEGM medium was changed every two days for a total of 4 days. At 80% con-
fluency, cells were ready to be infected with GFP-CFTR containing adeno-virus
as detailed in the paper. For the CF HBE cells, the isolation and growth media
were supplemented with specific and adapted antibiotics based on a recent patient
antibiogram.

Preparation of membrane patches:

The preparation of membrane patches was done according to (3). Briefly, HBE
cells expressing GFP-CFTR grown on 35 mm collagen-coated glass-bottom Fluo-
roDishes were sheared by sonication in ice-cold PBS-buffer using a 100 ms ultra-
sound pulse. This resulted in removal of cell content except for the basal plasma
membrane, which remained attached to the glass-bottom of the FluoroDish and
is referred to as a membrane patch. After the procedure, membrane patches were
rinsed three times and kept at 4°C in PBS until imaging. The patches were imaged
at room temperature using an LSM-710 (Zeiss, Germany).

Transferrin internalization assay:

For live cell imaging of fluorescent-transferrin to reveal clathrin-coated pits (CCPs),
HBE cells were serum-starved in OptiMEM for 18 hours at 37°C, then treated
acutely with 50 ug/mL of Alexa-594 labeled transferrin (Molecular Probes) for
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30 min at 37°C. The cells were then rinsed, mounted in transferrin-free Opti-
MEM medium and transferred to the microscope where they were kept at 37°C to
monitor transferrin receptor accumulation in CCPs. Samples were imaged using
the 488 nm and 561 nm laser lines simultaneously for fluorescence colocalization
studies.

Cell fixation:

HBE cells were rinsed twice in 37°C PBS, then incubated with neutral buffered
formalin (10%) (Harleco) for 1 hour at room temperature and maintained at 4°C
overnight. The next morning, the cells were rinsed twice for 5 min with cold PBS
and stored in PBS at 4°C until imaged. Cells were imaged at 37°C to maintain
similar imaging conditions for comparison with live cells results.

Spatial image cross-correlation spectroscopy (ICCS):

Two-color ICCS was used to assess the colocalized fractions of GFP-CFTR clus-
ters and fluorescent-transferrin-labeled CCPs (4, 5). Colocalization fractions for a
region of interest (ROI) were calculated as the ratio of the amplitudes of the spa-
tial cross-correlation and autocorrelation functions determined from CLSM im-
ages from the green (g) and red (r) detection channels. The number of colocalized
particles (clusters) per beam area was determined as follows:

r(0,0)gr A,

A, 1
(0,0)g47(0,0) Ag (1)

N>, =
&=

where 1(0,0) is the zero lags best-fit amplitude of the spatial autocorrelation (gg
and 1) or cross-correlation (gr) functions, and A, . is the effective area of the
focal spot for each laser. The ICCS interaction fraction was defined as the ratio
of the number of interacting particles to the total number of fluorescently labeled
particles in each detection channel:

7(0,0)gr  <N>g
r(0,0)g  <N>

2)
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r(0,0),,  <N>gq

3)

Mccp =



CFTR confinement in the plasma membrane 3

where GFP-CFTR was collected in the g channel and CCPs (Alexa-594 transfer-
rin) in the r channel. Analysis was performed on a large ROI inside the cells.
Spatial ICCS provides information about the colocalization of clusters rather than
single molecules for an aggregated system. About 50 cells were analyzed.

Supporting Results

GFP-CFTR signal versus autofluorescence:

Fluorescence confocal microscopy images of HBE cells transiently expressing
GFP-CFTR on the plasma membrane showed the presence of two different CFTR
populations: a population in clusters and a diffuse population in areas outside of
clusters. Confocal images of HBE cells expressing GFP-CFTR were compared
to images of non-expressing cells (autofluorescence control). Fig. S1 shows a
large field of view containing an HBE cell expressing GFP-CFTR (red arrow)
next to several other cells that do not express the protein (yellow arrows). It is
clear that autofluorescence in cells devoid of GFP-CFTR is negligible compared
to the fluorescence generated by the expression of GFP-CFTR.

Fixed cells analysis:

As a negative control for the kICS analysis, untreated and fixed HBE cells ex-
pressing GFP-CFTR were imaged and analyzed in a similar manner to untreated
live cells. Protein diffusion is arrested in fixed cells, thus fixation establishes the
minimum detection limits for kICS transport measurements and the R value due
to mechanical noise arising from random thermal drift of the microscope stage
and sample.

Fig. S2 shows the circularly averaged correlation function for GFP-CFTR in
live and fixed cells as a function of k* at different temporal lags. The correlation
functions of GFP-CFTR under live and fixed cell conditions show clear differ-
ences in decay rates as expected. The average correlation function of CFTR from
the live cells decays as a function of time (from blue to red) indicating protein
mobility whereas the correlation function from fixed cells shows no clear decay
in time indicative of immobile CFTR. Fig. S3 shows the average micro MSD
versus T graph for fixed and live measurements. The slope of the first 3 tempo-
ral lags of the micro MSD for the fixed cells is dramatically smaller than the live
cells which indicates a significantly smaller D,,;.,, for the fixed cells as expected
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due to fixation (table S1). Moreover, a significant difference in the intercept of
the Dy,icro T axis at large time lags indicates a much smaller R value for fixed cell
measurements (table S1). The smaller R value is indicative of a higher degree of
confinement as expected from fixed molecules which are cross-linked.

Parameter interdependency:

Fig. S4a shows a schematic drawing of a 2D trajectory of an individual CFTR
channel undergoing transiently confined dynamics on the plasma membrane of
live cells. The black trajectory represents CFTR transport dynamics in the mem-
brane outside of confinements (microdomains, yellow discs), while the red tra-
jectory is the movement of confined CFTR inside the microdomains, which is
referred to in this study as micro dynamics. The KICS analysis yields D,yjcro:
the recovered diffusion coefficient inside the confinements. Fig. S4b shows the
macroscale trajectory of CFTR in the plasma membrane (blue) which is referred
to as the macro scale dynamics of CFTR. The recovered diffusion coefficient by
KICS is Dyacro-

Dyuacro 1s affected by several factors as established by simulations (6). To
summarize, a decrease in the recovered D,,,.r, can be due to an increase in the
viscosity of the membrane, an increase in the density of microdomains, or a de-
crease in the escape probability of particles from confinements. For systems with
populations in kinetic exchange between confinements, D4y 1s an effective (not
absolute) macro scale diffusion coefficient as it is partially coupled to D¢, de-
pending on the dynamic parameters of confinement and exchange. Simulations
(6) show that D,,;.,, is affected by several factors as well, but is independent of
Dacro- To summarize, a decrease in D,,;., reflects an increase in the viscosity
of domains, a decrease in the escape probability of particles from domains, or an
increase in domain radii. Overall, an increase in CFTR confinement is expected
to decrease both D,,4cr0 and Dyyicro-

CFTR clusters are on the plasma membrane according to the
membrane-patch method:

To determine if CFTR clusters were localized to the plasma membrane or attached
to a structure within the cell (such as the actin-cytoskeleton), membrane patches
were prepared from HBE cells expressing GFP-CFTR as described in Materials
and Methods and immediately imaged (Fig. S5). The imaged CFTR distribu-



CFTR confinement in the plasma membrane 5

tion was similar to that on the basal membrane of live cells for all membrane
patches imaged indicating that CFTR clusters are attached to the plasma mem-
brane. To rule out the possibility that these clusters are associated with residual
components of the actin-cytoskeleton, samples were fluorescently labeled with
phalloidon-Alexa555 to label F-actin. Images of phalloidin labeled membrane
patches did not reveal any F-actin on the patches (data not shown). Our results
suggest that CFTR clusters are aggregates of CFTR molecules within the plasma
membrane, consistent with their ion channel function.

CFTR clusters are not clathrin-coated pits:

It has been previously shown that CFTR is internalized through clathrin-coated
pits (CCPs) (7). To test whether CFTR clusters are CCP internalization sites
of CFTR, a fluorescent-transferrin internalization assay was performed to fluo-
rescently label CCPs (8, 9), followed by a fluorescent colocalization study be-
tween GFP-CFTR clusters and labeled CCPs using Image Cross Correlation Spec-
troscopy (ICCS) analysis. Live HBE cells expressing GFP-CFTR were treated
with a fluorescently labeled transferrin receptor (TfR) ligand (transferrin-Alex594)
as detailed in Materials and Methods. Upon binding its receptor, transferrin stim-
ulates the internalization of TfR through CCPs and results in fluorescent labeling
of the coated pits. Fluorescently labeled CCPs were homogeneously distributed
as shown in Fig. S6 (white arrows). Approximately 20% of the CFTR clusters
were colocalized with CCPs according to ICCS analysis suggesting that only a
small percentage of CFTR clusters are situated at these sites of endocytosis.
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Supporting Tables

Table S 1: CFTR confinement parameters measured using kICS analysis

Treatment  Dyicro(Wm?/s)  Diacro(um?/s) R (um) Neel)

Live 0.009+0.001 0.014+0.003  0.293+0.005 136
Fixed  0.00054+0.00027 0.0010+0.0003" 0.236+0.0027 151

(1) significantly different than live cells, p <0.001
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Supporting Figures

(a) Fluorescence confocal image (b) Transmitted Light image

Figure S 1: The fluorescence produced by GFP-CFTR expression is readily dis-
tinguished from autofluorescence. (a) Fluorescence confocal image of HBE cells
transiently expressing GFP-CFTR (red arrow). (b) Transmitted light image of the
same region of interest. Comparing cells with (red arrow) and without (yellow
arrow) GFP-CFTR clearly shows that autofluorescence is negligible.
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Figure S 2: Control: normalized and circularly-averaged k-space correlation func-
tion for GFP-CFTR measured on fixed HBE cells establishes the transport param-
eter detection limit for this optical system. (a) The average correlation function
for GFP-CFTR measured on live cells as a function of the spatial frequency (k?),
for different temporal lags. The average spatial correlation function decays as a
function of 7 (blue to red) due to CFTR mobility in the membrane. The presence
of at least two dynamically distinct populations is evident in both the early (blue)
and the late (red) temporal lag spatial correlations. (b) The average correlation
function for GFP-CFTR from fixed cells as a function of k? for different time
lags. No decay in the spatial correlation function in time is observed indicative of
CFTR immobility due to cell fixation. See also Supporting Table 1.
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HBE cells. The average micro scale MSD, D,,.,7, of CFTR increased linearly
as a function of 7 for the first few temporal lags in live cells (black) due to CFTR

mobility. No significant increase in the MSD for fixed cells was observed (gray)

indicative of immobile CFTR as expected. Error bars are SEM.
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Figure S 4: A schematic drawing of the measured transport dynamics parame-
ters probed via kICS. (a) A 2D trajectory of an individual CFTR channel on the
plasma membrane of live cells. The black trajectory describes CFTR transport
dynamics outside of confinements (yellow discs), while the red trajectory is the
movement of confined CFTR inside the microdomains, that we term micro dy-
namics. The recovered diffusion coefficient inside the confinements is D,;jcr0. (b)
The macroscale trajectory of CFTR in the plasma membrane (blue) that we term
macro, but it is also coupled via particle exchange to the micro scale dynamics.
The recovered diffusion coefficient by KICS is D;,4c0-
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Figure S 5: GFP-CFTR distribution on a plasma membrane patch is similar to that
on the basal membrane of live cells. The clear presence of CFTR clusters suggests
their insertion in the plasma membrane.
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Figure S 6: The majority of CFTR clusters are not situated at CCPs and therefore
are not undergoing clathrin mediated endocytosis. ICCS analysis revealed that
only 20% of CFTR clusters (green) spatially colocalize with CCP internalization
sites (red) while the majority of the clusters do not overlap with the labeled CCP
sites. White arrows mark examples of colocalization sites.
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Figure S 7: CFTR confinement strength is cholesterol-dependent. (a) Choles-
terol loss by COase treatment resulted in a significant increase in the average R
value, consistent with an increase in the exchange dynamics of CFTR in and out
of confinements. Cholesterol insertion by CEase treatment resulted in a dramatic
decrease in the average R value, consistent with an increase in CFTR confine-
ment and tethering. (b) CFTR confinement strength increased immediately after
adenovirus infection. The decrease in the average R value after acute infection
indicates an increase in CFTR tethering and confinement in the newly-formed
platforms. Error bars are SEM.
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