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Figure S1. Influence of different genomic parameters on delta-overlap. For each of the 1,000 simulated SNP 
sets tagging variable percent of DHS variants, we assessed if SNP structure (measured by the number of LD SNPs) 
or genomic features, such as proximity to TSS and TES, could influence the estimates of delta-overlap. For each 
SNP set, we plot the median characteristics and the set and the delta overlap. While we observed that the 
proportion of causal variants within DHS regions was proportional with the delta-overlap, for a fixed proportion 
of causal DHS variants delta-overlap is stable for all genomic features (r

2
<0.1). We observed weak correlation 

with the number of LD SNPs in SNP sets that were highly saturated with DHS-tagging loci (> 60%). 
  



 

 

Figure S2. Schematic figure of the strategy to simulate the GWAS SNP sets. From 1000 Genomes common 

European variants, we pick a functional SNP that maps within a pre-defined genomic annotation, e.g. intron. To 

imitate a GWAS approach we then identify the SNP on the genotyping array (Illumina Human Omni2.5 chip) that 

best tags (r
2
>0.5) the selected predefined functional variant. We construct sets of 1,416 SNPs tagging predefined 

functional variants. These sets are then subject to enrichment tests. 

  



 

Figure S3. Quantification of measured overlap for Illumina Omni2.5 SNPs tagging functional variants from 

different annotations. About 30% of SNPs at Illumina Omni2.5 overlap with DHS sites on their own. This 

percentage quickly increases as additional linked SNPs are included. At r
2
=0.8 we should observe the strongest 

enrichment for promoter and 5’UTR SNPs, moderate signals for coding (non-synonymous) and 3’UTR, and no 

enrichment for intron or intergenic regions. The decrease in r
2
 threshold increases the percentage of SNPs 

overlapping with DHS. Importantly, when deriving the null through matching-based tests, not accounting for the 

number of LD SNP dramatically affects the enrichment results.   



 

 
 
Figure S4. Comparison of the effect sizes (delta-overlap) and power of different enrichment methods. Not 
matching on the number of SNPs in LD results in global inflation in statistics. For example, we observed p<0.001 
significance across all regulatory and non-regulatory SNP sets. However, matching on LD alone is insufficient; we 
observed consistently inflated type I error across SNP sets tagging functional variants from introns (p<0.05 in 
81% of 1,000 SNP sets). We also observed that the standard matching parameters were inadequate across SNP 
sets that tagged variants in 3’UTR and exons. Accounting for the distance to the end of transcription (TES) was 
crucial if functional variants were selected from the 3’UTR, and it decreased the false positive rate by 26% (at 
p<0.05). Note that including MAF in the matching parameters has no effect, even though it is a frequently used 
parameter in SNP matching-based tests.   



 
 
 
Figure S5. Performance of GoShifter when selecting tag variants from sequencing data. We generated sets of 
1,416 SNPs that tag functional variants from SNPs within annotations enriched for DHS (SNPs overlapping DHS, 
promoter regions, 5' UTR, nonsynonymous variants in exons) or depleted for DHS (3'UTR, introns and intergenic 
regions). We generated 1,000 sets of SNPs where we selected tagging SNPs from a commercial genotyping 
platform (left), and 200 sets of tagging SNPs were selected from a sequencing based study (1000 Genomes 
Project, right). Array-based data is identical to the data presented in Figure 2. Then we subsequently tested for 
enrichment for DHS with GoShifter. We also tested the number of SNP sets obtaining p<0.05 stratifying DHS for 
sets where causal variants were in exons. The proportion of expected sets p<0.05 under the null is indicated by 
the dotted line.  



 
 

 
Figure S6. Conditional matching and colocalizing annotations. We assessed the feasibility of using a matching 
based approach to disentangle colocalizing annotations. For this purpose, we generated 1,000 sets of SNPs 
tagging functional variants in DHS. We tested these sets for enrichment with DHS (black) and the colocalizing 
annotation H3K4me3 (grey) using matching based on (GEN, TSS, TES and LD). To account for colocalization, we 
appended an extra matching parameter (DHS) and repeated the H3K4me3 enrichment analysis (red). We found 
that each of these enrichment analyses yielded significant enrichment (p<0.05) for 100% of the generated sets 
(as indicated by the delta-overlap values being all greater than zero). Matching on the additional DHS parameter 
did not mitigate the delta-overlap for H3K4me3 enrichment. This is probably due to confounding factors 
included by the extra DHS matching parameter (for example LD bias within DHS overlapping variants), and the 
lack of correlation between the associated and causal SNP in the annotations they occur in.    
  



 
 
Figure S7. Power to detect significant enrichment as a function of the number of tested SNPs. We subsampled 
SNPs from SNP sets tagging variants in DHS regions (Figure 2A and S4 – functional model with DHS variants). To 
obtain power estimates for GoShifter to detect significant enrichment we generated a hundred SNP sets with 
variable number of variants (from 10 to 100 incremented by 10 SNPs). With 30 SNPs GoShifter has 80% of power 
to detect significant enrichment (p<0.05).  
  



 
Figure S8. Prioritization of functional variants using overlap score. Here we define a prioritized variant, as a 
variant(s) within a locus overlapping the annotation in question. For each tested trait we plot the relationship of 
the overlap score of each locus and the number of SNPs in LD within each associated locus (left). We also plotted 
the relationship of the overlap score and the number of those SNPs in LD overlapping an annotation site (e.g. 
prioritized variants).  



 
Table S1. Overview of published enrichment methods. Published statistical strategies within the literature to 
assess enrichment for different annotations. 
 

Trait Annotation Enrichment method Reference 

NHGRI GWAS Catalog  TFs ChIP-seq, DHS Matching on MAF, TSS, 
platform, UCSC gene 
predicted function 

1
 

144 diseases NF-kB ChIP-seq Matching on MAF, TSS 
2

 

Platelet and erythrocyte 
phenotypes 

FAIRE-seq Matching on MAF, TSS and 
LD 

3
 

Breast cancer TF and histone modification ChIP-
seq  

LD 
4

 

Primary biliary cirrhosis DHS, FAIRE-seq Permutations with SNPs 
within associated loci 

5
  

Asthma Chromatin HMM states, 
H3K4me1, H3K27ac 

None 
6
  

NHGRI GWAS Catalog  DHS MAF, TSS, GENIC 
7
  

NHGRI GWAS Catalog Intronic splicing enhancers MAF, TSS 
8
  

NHGRI GWAS Catalog - trans-
eQTL SNPs 

CNVs, TFBS, splice 
enhancers/silencers, histone 
enhancers 

Relative to disease 
associated non-trans-eQTL 
SNPs 

9
  

NHGRI GWAS Catalog DHS, TFBS Matching on MAF, TSS, 
genomic location  

10
  

Migraine DHS MAF, TSS, GC content 
11

  

Lipid levels Chromatin HMM states, histone 
modifications, open chromatin 

MAF, TSS, LD partners 
12

  

eQTLs Histone modifications MAF, TSS 
13

  

Colorectal cancer SNPs Enhancers LD, IlluminOmniExpress 
14

  

Immune-related disease 
SNPs 

Enhancers LD, IlluminOmniExpress 
15

  

Specific traits from GWAS 
Catalog; T2D and fasting 
glycemia 

Human pancreatic islet TFBS and 
enhancer clusters 

LD; TSS, MAF 
16

  

GWAS Catalog traits Chromatin states Shifts and permutations 
within GWAS Catalog traits 

17
  

Rare variants and structural 
variations (SVs)/SNPs/eQTLs 

GENECODE annotation/functional 
annotations 

Annotation 
shifting/MAF+TSS matching 

18
  

 

Table S2. Detailed description of used cell types for DHS, H3K4me1, H3K4me3, and H3K9ac. 

 

Table S3. Proportion of 1,000 SNP sets, derived from causal variants with specific functional annotations, 

demonstrating enrichment at p<0.05.  

Enrichment method Promoter 5’UTR Non-
synonymous 

3’UTR Intron Intergenic 

GEN+TSS+TES+LD 1 1 0.002 0.102 0.013 0 



GEN+MAF+TSS+LD 1 1 0.001 0.358 0.016 0 

GEN+MAF+TSS 1 1 1 1 1 1 

GEN+TSS+LD 1 1 0.001 0.342 0.017 0 

MAF+TSS+LD 1 1 0.114 0.959 0.708 0 

MAF+TSS 1 1 1 1 1 1 

LD 1 1 0.875 0.994 0.808 0 

Local shifts 1 1 0.604 0.112 0.044 0.074 
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