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Disentangling the Effects of Colocalizing
Genomic Annotations to Functionally Prioritize
Non-coding Variants within Complex-Trait Loci

Gosia Trynka,1,2,3,4 Harm-Jan Westra,1,2,3 Kamil Slowikowski,1,2,3,5 Xinli Hu,1,2,3,6 Han Xu,7

Barbara E. Stranger,8,9 Robert J. Klein,10 Buhm Han,1,2,3,11,12 and Soumya Raychaudhuri1,2,3,13,*

Identifying genomic annotations that differentiate causal from trait-associated variants is essential to fine mapping disease loci.

Although many studies have identified non-coding functional annotations that overlap disease-associated variants, these annotations

often colocalize, complicating the ability to use these annotations for finemapping causal variation.We developed a statistical approach

(Genomic Annotation Shifter [GoShifter]) to assess whether enriched annotations are able to prioritize causal variation. GoShifter de-

fines the null distribution of an annotation overlapping an allele by locally shifting annotations; this approach is less sensitive to biases

arising from local genomic structure than commonly used enrichmentmethods that depend on SNPmatching. Local shifting also allows

GoShifter to identify independent causal effects from colocalizing annotations. Using GoShifter, we confirmed that variants in expres-

sion quantitative trail loci drive gene-expression changes though DNase-I hypersensitive sites (DHSs) near transcription start sites and

independently through 30 UTR regulation. We also showed that (1) 15%–36% of trait-associated loci map to DHSs independently of

other annotations; (2) loci associated with breast cancer and rheumatoid arthritis harbor potentially causal variants near the summits

of histone marks rather than full peak bodies; (3) variants associated with height are highly enriched in embryonic stem cell DHSs;

and (4) we can effectively prioritize causal variation at specific loci.
Introduction

Functional annotations provide valuable information for

prioritizing potential causal variants within complex-trait

loci identified through genome-wide association studies

(GWASs).1–12 Profiles of such functional genomic annota-

tions, including transcription factor binding sites and

open chromatin regions from hundreds of cell types, are

rapidly becoming available.13–15 But, the most informative

annotation is not always known. The most informative

genomic annotations for fine mapping a particular trait

are most likely related to mechanisms important for that

trait. For example, binding sites for transcription factors

that regulate key pathogenic pathways might prioritize

variants for diseases,5,7 and promoters active in a specific

cell type might be able to prioritize expression quantitative

trait locus (eQTL) variants from that cell type. Informative

annotations such as these can be used for identifying likely

causal variants, and these variants can then in turn be

functionally interrogated for elucidating mechanisms un-

derlying the trait.

Identifying the most informative annotations requires a

robust statistical strategy that controls for two important

types of potentially confounding genomic features: (1) local
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structure of genetic variation near SNP associations and

(2) colocalization of multiple functional genomic annota-

tions. First, trait-associated SNPs often map to regions with

greater gene density, genetic variation, and linkage disequi-

librium(LD) than the restof thegenome. Second, functional

annotations that colocalize are often enriched within trait-

associated loci. For example, DNase-I hypersensitive sites

(DHSs) colocalize with exons,16,17 and regulatory elements

cluster together near andwithin gene transcripts. Therefore,

an observed enrichment of one annotation might be the

consequence of unaccounted colocalization with other

annotation, thus confounding inferences of causality.

We developed Genomic Annotation Shifter (GoShifter),

an enrichment test that controls for local genomic structure.

GoShifter employs an intuitive method that locally shifts

sites of tested features within each locus to generate a null

distribution of annotations overlapping associated variants

by chance. Other methods, such as Genome Structure

Correction (GSC), assess the relationships between genomic

featuresby shifting them.1,18–20AlthoughGSCcanassess the

significanceofoverlapbetween twogenomic features, itdoes

not provide a clear application to individual GWAS loci and

their local LDstructure.Here,weapply the shiftingapproach

to identify informative annotations for finemappingGWAS
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loci. We benchmark the performance of GoShifter against

that of commonly employed matching-based methods.

These methods rely on inferring the enrichment of the

SNP-annotation overlap in the observed data by contrasting

it with the overlap in the null set of SNPs derived by random

samplingof variants fromthegenome. Inorder to control for

plausible genomic confounders, thesemethods sample SNPs

by matching for a selection of defined genomic parameters.

The selection of these parameters is based on the assump-

tions about possible analytical confounders. In contrast,

GoShifter does not require prior knowledge because the

null distribution is derived within the tested loci, ensuring

that the density of SNPs, annotations, and the spatial distri-

bution of genomic features are preserved.

We show that compared with commonly used SNP-

matching-based methods, GoShifter is able to robustly

identify informative annotations under a range of different

scenarios. We show that matching-based approaches are

prone to inflating observed enrichment values: we high-

light that the lack of matching on SNPs in LD can lead to

misleading results. Furthermore, we implemented a strati-

fied test to distinguish contributions from two colocalized

annotations. Using the local-shifting approach, GoShifter

allows prioritization of loci by determining the most

informative functional variants driving the observed

enrichment.
Material and Methods

Assessing the Significance of Enrichment
We used three methods to assess the significance of enrichment:

(1) local annotation shifting, (2) stratified local shifting, where

we accounted for colocalization of a secondary annotation, and

(3) SNP matching. We implemented (1) and (2) in GoShifter.

Local Annotation Shifting

To assess the statistical significance of an overlap between trait-

associated SNPs and a genomic annotation X, we first identified

all variants in LD with each index SNP (r2 > 0.8 in 1000 Genomes

Project European [EUR] samples21; Figure 1A) and determined the

median size (in base pairs) of the tested annotation. We defined a

locus as the region between the furthest linked SNPs and extended

this region by twice the median size of the tested annotation. This

ensured a sufficient size for testing the significance of an overlap

within a locus defined by an index variant with no other variants

in linkage. Next, we quantified the proportion of loci in which at

least one SNP in LD overlapped X. We then randomly shifted X

sites within each locus and quantified the proportion of loci over-

lapping X while fixing the locations of the SNPs (Figure 1B). We

generated a null distribution from these proportions by repeating

the shifting process over a large number of iterations. In each iter-

ation, the magnitude of the shift was defined as a random integer

sampled from a uniform distribution between 0 and the size of the

locus in base pairs. We retained shifted annotations within the lo-

cus boundaries by ‘‘circularizing’’ the locus (i.e., as an annotation

was shifted beyond the boundaries of a segment, it re-emerged on

the other side of the segment). Circularization preserves the den-

sity of annotations and their spatial relationship within the tested

region. We computed the p value as the proportion of iterations
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for which the number of overlapping loci was equal to or greater

than that for the tested SNPs.

Stratified Enrichment of an Annotation

The stratified enrichment analysis assesses the significance of over-

lap of an annotation X while controlling for any overlap with a

potentially colocalizing annotation Y (see Figure 1). We used a

three-step approach: first, we fragmented each locus on the basis

of the presence of Y while fixing the relative positions of the

SNPs and annotation X. An X annotation site was split if it

partially overlapped Y. Second, we concatenated these fragments,

which yielded two distinct segments: (1) Y, which consisted of

concatenated fragments of annotation Y, and (2) Y, which lacked

annotation Y (Figure 1C). This preserved the relationships and

relative positions among X, Y, and the SNPs in the locus in both

segments. Third, to generate the stratified null distribution for

SNP overlap with X, we randomly shifted X within the Y and Y re-

gions independently and quantified the proportion of loci that

had at least one SNP that overlapped X in either region. To ensure

that an annotation could not fall outside the segment boundaries,

we circularized each of the Yand Y segments. As in the unstratified

test, we defined the p value of the enrichment as the proportion of

iterations where the number of loci with SNPs overlapping X ex-

ceeded the number of loci overlapping X prior to shifting. We

note that, just as any form of stratified statistical analysis, the

spatial restrictions on shifting X in a stratified manner might

reduce power.

SNP Matching

Enrichment can also be determined through SNP matching,

although a variety of parameters are used for matching SNPs in

practice (Table S1). To compare the overlap with the null in a set

of SNPs being tested for enrichment, we matched genomic vari-

ants on gene overlap (GEN), minor allele frequency (MAF; with

5% MAF bins), TSS proximity (bins defined by 500-bp, 2-kb,

5-kb, 10-kb, 20-kb, and 100-kb distances from the nearest TSS),

transcription end site (TES) proximity (bins defined by 1-kb,

2-kb, 5-kb, 10-kb, 20-kb, and 100-kb distances from the TES of

the same gene with the nearest TSS), and the number of SNPs in

LD. If fewer than 20 SNPs were present in the sampling bin with

matched SNPs, we expanded to the nearest LD bins while match-

ing on the other properties. The arbitrary choice of 20 ensured that

we had sufficient numbers of SNPs to sample for each SNP and

relative independence between sample SNP sets. We constructed

the null distribution by repeatedly quantifying the overlap be-

tween the annotation and the matched SNP sets. Then, we calcu-

lated the enrichment p value as the proportion of matched SNP

sets with a number of overlaps equal to or greater than that of

the tested SNPs. Because different genotyping platforms pose

distinct biases because of their designs (efficiency of tagging, allele

frequency of included SNPs, number of SNPs, and physical distri-

bution in the genome), we derived the null distribution by sam-

pling variants from a widely used commercial array (Illumina

Omni 2.5).
Quantifying Observed Enrichment by Using

Delta-Overlap
To quantify the effect size of the observed enrichment, we calcu-

lated the ‘‘delta-overlap’’ parameter: the difference between the

observed proportion of loci overlapping an annotation and the

mean of the proportion of loci overlapping the annotation under

the null derived by local shifting. If there is no enrichment, the

observed overlap will be close to the mean overlap under the
15



Figure 1. Schematic of the GoShifter Method
(A) To assess the statistical significance of an overlap between trait-associated SNPs and an annotation X, we start by using 1000
Genomes Project data to identify variants in LD (r2 > 0.8) with each index SNP.
(B) We quantify the observed overlap: the proportion of loci where at least one linked SNP overlaps annotation X (shaded boxes). We
estimate the significance of the observed overlap by comparing to a null distribution generated by random shifting of X sites (black
arrows) within each locus. After each shift, we calculate the proportion of loci overlapping the annotation. To ensure that the same num-
ber of shifted annotations remains within locus boundaries, we circularize each region.
(C) To determine the significance of an overlap with annotation X independent of a possibly colocalizing annotation Y, we partition
each locus into two types of fragments: those regions mapped by Y sites (light blue blocks) and those that lack them (denoted as Y; white
blocks). We join the respective Yand Y fragments into two independent continuous segments. To generate the null distribution, we shift
annotation X separately within each of the two segments. For each iteration, we count the proportion of loci where any of the linked
SNPs overlaps annotation X in either Y or Y segments to determine the significance of the observed overlap.
null, and delta-overlap will be close to 0. Conversely, larger delta-

overlap values correspond to stronger enrichment. In practice,

delta-overlap is independent of the number of SNPs in LD and

the TSS or TES proximities of associated SNP sets (Figure S1).

Prioritizing Informative Loci by Using the Overlap

Score
In order to identify individual loci where the overlap between a

SNP and an annotationwas particularly informative, we calculated

an ‘‘overlap score’’ for each locus. The overlap score is the probabil-

ity that each locus overlaps an annotation by chance. It is

computed only for the loci that overlap the annotation in the

observed data. Loci with low scores drive significant enrichment

observations and are higher-priority candidates for further func-

tional investigations. We defined the overlap score as ls=n, where
The A
ls is the number of shifting iterations for which at least one SNP

within an individual locus overlaps the annotation, and n is the

total number of iterations.

Genomic Annotations
Our study utilized DHS data, histone-modification data, and gene-

annotation data compiled from publicly available resources.

DHSs

We used the DHS data from 80 experiments from ENCODE13

and 137 experiments from the NIH Roadmap Epigenomics

Project14 (Table S2).We downloaded chromatin immunoprecipita-

tion sequencing reads mapped to hg19 (UCSC Genome Browser)

and merged reads from replicate samples. Using a corresponding

input DNA library as the control if available, we ran MACS

v.2.022 with default settings (false-discovery rate [FDR] ¼ 0.01;
merican Journal of Human Genetics 97, 139–152, July 2, 2015 141



bandwidth ¼ 300 bp) to identify significant peaks. In total, anal-

ysis of 217 experiments yielded 1,331,772 distinct autosomal

DHSs, collectively spanning 16.4% of the genome. We combined

DHS tracks across all cell types into a single consolidated DHS track

by identifying the genomic positions that overlap DHSs in any cell

type.

Histone Modifications

Similarly, we used MACS v.2.0 to call H3K4me3, H3K4me1, and

H3K9ac peaks in 118, 114, and 50 tissues and cell-type samples,

respectively, from the NIH Roadmap Epigenome14 (see Table S2

for a detailed list of included tissues and cell types). If multiple rep-

licates of the same tissue (input and control) were generated by the

same center, we used these multiple BED files as input for MACS.

For each experiment, we located the start and end of the peaks, as

well as the summit regions (defined as 5100 bp around summits)

called by MACS.

Gene Annotations

We defined gene annotations, including genes (whole transcripts

including UTRs), exons, 50 UTRs, 30 UTRs, introns, and promoter re-

gions, on the basis of RefSeq gene coordinates from the UCSC

Genome Browser. We retained genes with at least one exon and at

least one PubMed reference23 to exclude poorly studied genes, pseu-

dogenes, and falsely identified genes. In the resulting set of 18,183

genes,we identified exons, introns, andUTRs.Wedefinedpromoter

regions as the first 500 bp upstream of the TSS. We note that DHS

coverage for different gene features varied: 26% for exons, 73% for

promoters, 75% for 50 UTRs, 22% for 30 UTRs, and 20% for introns.
Simulations
To assess GoShifter’s sensitivity and specificity, we (1) defined sets

of SNPs within functional regions, (2) generated sets of variants

tagging these SNPs, as is common in GWASs, and (3) generated

sets of SNPs with variable proportions of functional variants.

Defining Functional SNP Classes

Using a total of 6,830,225 common autosomal SNPs (MAF> 5% in

Europeans in the 1000 Genomes Project), we grouped SNPs into

seven functional categories: nonsynonymous, intronic, 30 UTR,

50 UTR, promoter (<500 bp from the TSS), intergenic (>5 kb

from the TSS), and those residing within DHSs. To identify nonsy-

nonymous variants, we used SIFT.24

Simulating SNP Sets Tagging Defined Functional GWAS Variants

We simulated 1,000 sets of 1,416 SNPs (to match the NHGRI

GWAS Catalog SNP list), selected to overlap each of the predefined

seven functional categories. In each set, variants were randomly

selected from a given functional category. In order to mimic a

typical GWAS approach, we then identified a tagging SNP that

was in LD and was available on a commercial genotyping array

(Illumina Human Omni2.5) for each functional variant. In total,

5,569,657 of the available SNPs were tagged (r2 R 0.5) by

1,218,618 common (MAFR 5%) variants on the Illumina Human

Omni 2.5 array. If multiple SNPs were in LD with the functional

variant, we selected the best tag with the greatest r2. Finally, we

required SNPs in the final set to be more than 100 kb apart from

each other to ensure independence. As an alternative to simu-

lating a sequencing-based study, we also simulated 200 sets of

1,416 causal SNPs for each of the predefined functional categories

by selecting tagging SNPs with strong LD (r2 R 0.8) from the EUR

subset of the 1000 Genomes Project data. If multiple SNPs were in

LD with the functional variant, we selected the best tag with the

greatest r2, and we selected the functional SNP itself when no

tag SNP could be selected according to these criteria.
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SNP Sets with Variable Proportions of Causal Functional Variants within

DHSs

In addition to defining SNP sets derived from causal variants

within a single annotation, we also defined SNP sets where causal

variants were derived from two separate functional annotations.

In these instances, we selected a proportion of causal variants

from one annotation and selected the remainder from a second

annotation.
Associated Variants
Disease-Associated Variants from the NHGRI GWAS Catalog

We obtained trait-associated SNPs from the GWAS Catalog25 on

November 5, 2013. We included only high-frequency (MAF > 5%)

bi-allelic autosomal SNPs with a genome-wide significant (p < 5 3

10�8) associationwith any trait.We includedonly studieswhere Eu-

ropeans contributed to themajority of the final samples to simplify

LD calculations. We conducted LD calculations across the selected

SNPs by using 379 EUR samples from the 1000 Genomes Project21

and only bi-allelic SNPs with at least five copies of the minor allele.

We ensured that these SNPs were independent by randomly

excluding one SNP for each pair of SNPs if r2> 0.1 or if the distance

between the SNPs was <100 kb. Finally, we excluded phenotypes

with fewer than ten independent SNP associations after ourfiltering

criteria. This resulted in 1,416 SNPs in our test set.

Variants Associated with Height, Rheumatoid Arthritis, and Breast

Cancer

We used 689 SNPs associated with height,26 89 SNPs associated

with rheumatoid arthritis (RA [MIM: 180300]) in Europeans alone

or shared between Europeans and Japanese,27 and 69 SNPs associ-

ated with breast cancer (MIM: 114480).28

eQTLs

We assembled a set of 923,022 cis-eQTL SNPs associated with

whole-blood gene expression at a FDR of 0.5.29 For each reported

eQTL gene, we selected the single SNP most significantly associ-

ated with its expression and then performed LD pruning30 (by us-

ing a window of 1,000 SNPs, sliding by one SNP at a time, and

excluding one SNP in a pair if r2 > 0.1) to ensure independence

of the SNPs in our final SNP set. This resulted in a final dataset

of 6,381 eQTL SNPs.
Results

GoShifter Is a Robust Method for Enrichment Testing

To evaluate GoShifter’s performance in prioritizing annota-

tions that identify causal variants,wewould ideally use a set

of trait-associated loci inwhich the causal variants and rele-

vant driving genomic annotations are known. However,

causal variants are known for only a handful of complex-

trait loci. Therefore, to capture a wide range of possible

models of causal variation, we simulated 1,000 sets of

1,416 SNPs by tagging functional SNPs selected from seven

distinct functional genomic annotations:DHSs, promoters,

50 UTRs, nonsynonymous SNPs in exons, 30 UTRs, introns,

and intergenic regions (Figure S2).We then tested these SNP

sets for enrichment in DHSs. Pre-defining functional SNPs

on the basis of specific driving annotations allowed us to

assess the ability of a method to identify true enrichment

and reject spurious overlap (Figure S3). Anappropriate strat-

egy should detect high DHS enrichment in sets designed to
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Figure 2. Comparison of Statistics between GoShifter and Matching-Based Tests
(A) We compared the performance of GoShifter with that of matching-based tests by using different parameters—(1) GEN, MAF, and TSS
proximity and (2) GEN, LD, TSS proximity, and TES proximity—to match SNPs on. We generated sets of 1,416 SNPs tagging SNPs over-
lapping different genomic annotations; some SNP sets tagging SNPs in specific annotations (e.g., DHSs, promoter regions, 50 UTRs, and
nonsynonymous variants in exons) were enriched in DHSs, whereas others (e.g., 30 UTRs, introns, and intergenic regions) were depleted
in DHSs. For each functional model, we generated 1,000 sets of SNPs that we subsequently tested for enrichment in DHSs (left). The
number of expected false positives at p < 0.05 is indicated by the dotted line. On the right, we plot the delta-overlap, which is the dif-
ference between the proportions of SNPs overlapping an annotation in the actual data and the proportion of SNPs overlapping an anno-
tation in the null distribution.
(B) We generated sets of 1,416 SNPs with variable proportions of variants within DHSs (increments of 5% and 1,000 sets per increment).
We compared the power to detect significant enrichment in DHSs for each increment (i.e., the proportion of significant SNP sets) be-
tween GoShifter and the best-performing matching-based strategy (GEN, LD, TSS proximity, and TES proximity) for two significance
levels (p < 0.05 and p < 0.001).
(C) To test the performance of GoShifter, we generated sets of 1,416 SNPs with varying proportions of variants in either exons or DHSs
(with increments of 5% in either annotation and 1,000 sets per increment). We then used GoShifter to analyze the enrichment (at
p < 0.001) in DHSs stratified on exons (upper panel) and vice versa (lower panel).
tag functional variants in regulatory regions (DHSs, pro-

moters, and 50 UTRs), modest enrichment in nonsynony-

mous variants in exons and 30 UTRs (which colocalize

withDHSs),16,17 andno enrichment at introns or intergenic

regions (Material and Methods).

We observed that GoShifter was well powered to detect

significant enrichment in simulated SNP sets that tagged

variants in DHSs, promoters, and 50 UTRs: 100% of such

SNP sets obtained p < 0.001 according to 1,000 shifting it-

erations (Figure 2A; Figure S4). By chance, we would expect

5% of the SNP sets tagging variants in intronic and inter-

genic regions to obtain p < 0.05; indeed, we observed

that 4.44% and 7.4%, respectively, obtained p < 0.05

(Figure 2A; Table S3). The SNP sets tagging 30 UTRs and

nonsynonymous variants appropriately showed modest

enrichment (60% and 11% of these SNP sets, respectively,

obtained p < 0.05).
The A
The analyses to benchmark GoShifter were based on

simulated GWAS SNP sets ascertained from a commercial

array. To assess whether ascertaining tag SNPs from com-

mercial genotyping arrays would affect observed statistics,

we also evaluated GoShifter’s performance by using

sequencing SNPs (from the 1000 Genomes Project).21 We

observed no significant difference for GoShifter’s perfor-

mance under genotyping or sequencing scenarios

(Figure S5). This indicates that GoShifter’s performance is

robust to the intrinsic biases in SNP ascertainment of com-

mercial genotyping arrays.

We then compared the results of GoShifter to those of

the more commonly used matching-based enrichment

tests2,5,7–10,12,13,19,29,31–38 (Table S1). These methods typi-

cally match SNPs on GEN, MAF, and TSS prox-

imity.2,7,12,13,19,32,35 We observed that when we matched

SNPs on these parameters, all simulated SNP sets,
merican Journal of Human Genetics 97, 139–152, July 2, 2015 143



including 100% of those with functional variants derived

from intergenic regions, obtained p< 0.05 for DHS enrich-

ment (Figure 2A; Table S3). This suggests that selecting var-

iants on GEN, MAF, and TSS proximity might be insuffi-

cient to control false-positive rates in the assessment of

DHSs.

We then investigated whether matching on other com-

binations of SNP features was more effective. As expected,

we observed that the results were highly sensitive to the

choice of specific matching parameters. We noted that

the number of SNPs in LD was critical for appropriate sta-

tistical performance (Figure S4). Although MAF was

frequently included, it had little effect. We observed that

when SNPs were derived from 30 UTRs, matching on TES

proximity substantially decreased the inflated statistics.

Ultimately, we identified thatmatchingonthecombination

of GEN, TSS proximity, TES proximity, and LD adequately

controlled type I error if the SNPs were selected from non-

regulatory regions (e.g., intergenic or intronic regions).

After determining the best-performing SNP-matching

strategy, we wanted to more precisely quantify differences

in sensitivity between GoShifter andmatching-based tests.

For this purpose, we generated SNP sets where only a mi-

nority of variants tagged functional variants within

DHSs. We incremented the percentage of loci tagging func-

tional variants in the simulated SNP set by 3%. These sim-

ulations represented a test of the methods for detecting

enrichment under a range of more-challenging circum-

stances. For a set in which 10% of SNPs tagged DHSs,

GoShifter had 55% power to detect enrichment, but only

31% power with stringent SNP matching (Figure 2B). For

a set in which 10% of SNPs tagged DHSs, GoShifter had

55% power to detect enrichment, but only 31% power

with stringent SNP matching (Figure 2B).

Stratified Analysis Distinguishes Effects

of Colocalizing Annotations

To test the ability of GoShifter to control for the effects of

colocalized annotations, we examined two scenarios.

First, we tested the enrichment of different annotations

in 1,000 sets of 1,416 SNPs tagging exonic variants.

Although we observed significant enrichment of exons

across all SNP sets (p< 0.05), 60% also showed DHS enrich-

ment (Figure 2A). This secondary enrichment was a result

of colocalization between the DHSs and exons.16,17 Testing

for DHS enrichment after stratifying on exons resulted in a

much lower type I error rate, such that 10.2% of SNP sets

obtained p < 0.05. Similarly, at a more stringent signifi-

cance level (p < 0.001), we observed DHS enrichment in

12.5% of the SNP sets and 0.7% after stratifying on exons

(Figure 2C).

Second, we assessed 1,000 sets of 1,416 SNPs defined to

tag variants within DHSs. DHSs tend to overlap regions

mapped by H3K4me3 because they both colocalize with

active promoter regions. When testing for enrichment,

we would therefore expect to observe significant signal

for both of these annotations. However, because we
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know that functional signals were drawn from DHSs, an

adequate method should not detect significant enrich-

ment in H3K4me3 when it is stratified on the lead signal

from DHSs. Whereas all SNP sets were enriched in DHSs

at p < 0.05, 98% of the SNP sets were also enriched in

H3K4me3 sites (a histone mark known to highlight pro-

moters and colocalize with DHSs). As expected, after we

stratified on DHSs, only 1.3% of the SNP sets showed

H3K4me3 enrichment at p < 0.05, confirming that

H3K4me3 enrichment is entirely dependent onDHS coloc-

alization. Conversely, when tested for DHS enrichment

stratifying on H3K4me3, 100% of the SNP sets remained

significant. This confirmed that signal in H3K4me3 was

primarily explained by the DHS enrichment.

The stratified analysis modestly reduced power to detect

enrichment effects: for SNP sets where functional variants

were selected from both DHSs and exons, stratifying on

exons reduced power to detect DHS enrichment at p <

0.001 only when %20% of the functional variants were

from DHSs (Figure 2C). However, stratifying on DHSs did

not limit the power to detect exon enrichment.

We also assessed whether SNP-matching approaches

effectively account for colocalization of annotations. We

again considered the sets of DHS-tagging SNPs and tested

for H3K4me3 enrichment. To control for the DHS effect,

we used the most appropriate matching strategy (GEN,

TSS proximity, TES proximity, and LD) and included an ex-

tra matching parameter (DHS). We observed that 100% of

SNP sets still obtained H3K4me3 enrichment at p < 0.05.

We concluded that SNP-matching tests cannot easily con-

trol for colocalization of annotations (Figure S6).

GoShifter Effectively Annotates eQTL SNPs

As a proof of concept, we applied our approach to eQTL

variants, given that eQTLs are known to localize close to

TSSs and to be enriched in DHSs.39–43

First, we used GoShifter to assess the enrichment of

eQTLs in DHSs at various distances to the TSS (Figure 3A),

various histone marks (H3K9ac, H3K4me3, and H3K4me1)

associated with active gene regulation, and genes

(Figure 3B). We also included 30 UTRs because they have

been previously suggested to independently account for

a proportion of eQTL signal.29,39 We observed that each

of these annotations was enriched in eQTLs (p < 0.05).

To better localize the source of enrichment with respect

to the TSS, we stratified the TSS-distance window for

DHSs; we observed only significant results within 500 bp

of the TSS (p¼ 23 10�4; Figure 3A), consistent with earlier

studies. We then assessed the enrichment of the other

annotations while stratifying for DHSs. We observed that

the enrichment for genes and each of the histone marks,

with the exception of H3K4me1 (p ¼ 0.02) and 30 UTRs

(p ¼ 6 3 10�3), became insignificant (Figure 3B). However,

DHS enrichment remained significant after we stratified on

each of the annotations, indicating that eQTLs are en-

riched in DHSs independently of the other annotations.

This suggests that eQTLs might act through mechanisms
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Figure 3. eQTL Variants Localize to DHSs near TSSs
(A) To test the performance of GoShifter on real data, we analyzed the enrichment of 6,380 eQTLs with local DHSs at various distances
(varying between 0.5 and 50 kb) to the TSS by using 10,000 random shifts. The p values for each analysis are in the top panel, and the
delta-overlap measures are in the bottom panel (a higher value denotes a higher proportion of significant loci than in the null
distribution).
(B) We tested enrichment of these eQTLs in various other regulatory marks (H3K9ac, H3K4me3 H3K4me1, and DHSs) associated with
active transcription (10,000 random shifts) and overlap with genes and 30 UTRs. We tested each annotation in an unstratified analysis,
and we also tested for enrichment stratifying on each of the other annotations. When we tested for gene-transcript enrichment by strat-
ifying on regulatory annotations, negative delta-overlap values indicated that eQTL SNPs were primarily captured by the regulatory an-
notations and depleted in gene transcripts (except for 30 UTRs).
independent of genetic variation in DHSs. For 30 UTRs,

these mechanisms might include alterations in miRNA

binding sites.44–46

Quantifying the Proportion of GWAS Catalog SNPs

with DHS Causal Variants

We assessed 1,416 independent SNP associations from

the NHGRI GWAS Catalog25 for overlap with different an-

notations (Material and Methods). We observed enrich-

ment at DHSs (p < 10�4), at genes, at H3K4me3 and

H3K4me1 marks, and also at 5- and 10-kb windows

around TSSs (Figure 4A). Pairwise stratified tests showed

that DHSs were enriched independently of other annota-

tions (p % 7 3 10�4). In contrast, the enrichment of gene

transcripts and TSSs was not significant after stratification

on DHSs. Both H3K4me1 and H3K4me3 retained nomi-

nal enrichment independently of each other and DHSs

(p % 0.05; Figure 4B). These results suggest that causal

disease-associated variants in DHSs and H3K4me3 and

H3K4me1 marks function through three independent

mechanisms.

We aimed to accurately determine the proportion of

GWAS loci that tag variants in DHSs by using the
The A
GoShifter-derived delta-overlap parameter (Material and

Methods), which quantifies the strength of observed

enrichment (Figure S1). We calculated the delta-overlap

for the GWAS Catalog SNPs and DHSs to be 3.17%

(Figure 4C). We then sought to infer the proportion of

loci that overlap DHSs from the observed delta-overlap

value. We simulated 1,000 SNP sets (the same size as the

GWAS Catalog set) with 0%–45% of causal variants in

DHSs by using 3% increments and calculated their corre-

sponding delta-overlap values. We selected simulated sets

that had a delta-overlap within the range of that of the

GWAS Catalog (delta-overlap 5 0.2) and created a proba-

bility distribution of the proportion of causal variants

within DHSs. From this distribution, we estimated the

mean and 95% confidence interval for the proportion of

causal variants in DHSs for the GWAS Catalog. We deter-

mined that the delta-overlap of 3.17% corresponded to

15%–36% causal variants in DHSs (95% confidence;

Figure 4D). Recent studies have estimated that around

80% of trait-associated variants (or the SNPs in LD) within

the GWAS Catalog overlap DHSs2,12,13; our estimates sug-

gest that DHS enrichment might bemoremodest than pre-

viously reported.
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Figure 4. Quantifying the Proportion of Causal GWAS Catalog Variants Derived from DHSs
(A) We assessed the enrichment of 1,416 independent GWAS Catalog SNPs in various genomic annotations by using GoShifter with
10,000 local shifts. We observed strong enrichment of DHSs (p < 10�4) and nominal enrichment (p < 0.05, yellow line) of
H3K4me3, H3K4me1, genes, and distance to the TSS (5 and 10 kb).
(B) We performed pairwise stratified analysis for significantly enriched annotations. DHSs showed a strong residual enrichment (p< 73
10�4) after stratification on each of the other annotations.
(C) We generated sets of 1,416 SNPs overlapping an increasing proportion of DHSs (5% increments and 1,000 sets per increment) and
determined the delta-overlap per set, yielding a delta-overlap distribution per DHS-overlap increment. We then determined the delta-
overlap for the real GWAS Catalog to be 3.17 (dotted line), which corresponds to 15%–36% of loci with causal variants within DHSs
(D) within the 95% confidence interval.
RA and Breast Cancer Associations Are Enriched at the

Summits of Cell-Type-Specific Histone Marks

We examined two phenotypes to test GoShifter’s ability to

identify cell-type-specific functional variants. To ensure

that GoShifter was powered to detect significant enrich-

ments (Figure S7), we selected phenotypes with over 50

associated variants at the commonly applied genome-

wide significance threshold (p < 5 3 10�8). We first tested

88 SNPs associated with RA27 for enrichment of H3K4me3.

We focused on CD4þ memory T cells given recent observa-

tions of cell-type-specific gene expression and eQTLs

within these loci.1,47,48 We observed no enrichment
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(p ¼ 0.17) when we used the peak bodies of H3K4me3 in

either CD4þ memory T cells (p ¼ 0.17) or in an aggregate

of all 118 cell types from our datasets (p ¼ 0.14;

Figure 5A). Because the median width of H3K4me3 peak

bodies varied widely (110–86,490 bp), we examined the

summit regions (5100 bp from the H3K4me3 summits),

where active gene-regulatory elements are most likely

located.49 In the summit regions, we observed significant

enrichment both in the 118 aggregate cell types (p ¼
0.044) and in CD4þ memory T cells specifically (p ¼ 1.6 3

10�3). The CD4þmemory Tcell signal remained significant

after stratification on the summit regions of the other 117
15



Figure 5. Enrichment Results for Three Selected Sets of Trait-Associated SNPs
(A) We examined the enrichment of 88 RA-associated variants with H3K4me3 in CD4þ T memory cells and in an aggregate of 118
different cell types and tissues. We assessed raw peaks (peak bodies) and summit regions (5100 bp from the summit). We observed a
nominally significant enrichment in the aggregate of cell types and tissues (p ¼ 0.044) and a pronounced enrichment within CD4þ

T memory cells (p ¼ 1.6 3 10�3). Stratified analysis indicated that the enrichment signal was driven by CD4þ T memory cells: the
significance of the cell-type-aggregate enrichment decreased (p ¼ 0.08) when we stratified on CD4þ T cells, but not vice versa (p ¼
2.7 3 10�3).
(B) We assessed the enrichment of 69 breast-cancer-associated variants with various histone marks (H3K4me3 and H3K4me1) in the 118
tissues and cell types. Breast-cancer-associated SNPs were highly enriched (p ¼ 2 3 10�3) in summit regions of H3K4me1 peaks in
vHMECs (left panel), but not in other cells, H3K4me3 summit regions (p > 0.4), or H3K4me1 peak bodies. The stratified enrichment
analysis indicated that the enrichment of H3K4me1 summit regions in vHMECs was independent of the H3K4me1 summit regions
in the aggregated cell types and tissues. The H3K4me1 enrichment in vHMECs within summit regions was maintained when we strat-
ified on summit regions from other breast tissues and cell types (p < 3.6 3 10�3; right panel).
(C) Similarly, we assessed enrichment of 697 SNPs associated with height in DHSs from 217 different tissues. The height-associated SNPs
showed the highest enrichment of DHSs in embryonic stem cells (p < 10�4) and CD3þ cells (p < 10�4) from cord blood (left panel).
However, the CD3þ cell DHS enrichment diminished after stratification on embryonic stem cells (p ¼ 0.08), whereas embryonic
stem cells retained significance after stratification on CD3þ cells (p ¼ 9.6 3 10�3; right panel).
cell types (p ¼ 2.7 3 10�3). In contrast, the other cell types

did not retain significant enrichment after stratification

on CD4þ memory T cells (p ¼ 0.08). These results suggest

that H3K4me3 summit regions in CD4þ memory T cells

could help prioritize causal variants in RA-associated loci.
The A
Similarly, we examined 69 SNPs28 associated with

breast cancer for enrichment of H3K4me3. Summit re-

gions were not enriched (p > 0.4) in any of the three

breast tissues present in our dataset. We therefore tested

for enrichment of another active regulatory mark,
merican Journal of Human Genetics 97, 139–152, July 2, 2015 147



H3K4me1, for which there were four breast tissues in our

dataset. The peak bodies of this mark were nominally en-

riched (p ¼ 0.034) only in breast myoepithelial cells.

However, when we used H3K4me1 summit regions, we

observed significant enrichment (p ¼ 2 3 10�3) in

variant human mammary epithelial cells (vHMECs;

Figure 5B). We performed pairwise stratified enrichment

tests across the four breast tissues and found that the

vHMEC summit regions retained significance (p <

3.6 3 10�3) after stratification on peak summits from

each of the other three breast tissues. We found that

none of the DHS samples in our dataset showed nomi-

nally significant enrichment.

Stratified Analysis Can Indicate Relevant Cell Types

for Height

We assessed 697 SNPs associated with adult human

height,26 a highly polygenic trait without clearly estab-

lished relevant cell types. When we examined aggregated

DHSs from 217 cell types collectively, we observed nomi-

nal evidence of overlap (p¼ 0.019). Individually, many tis-

sues, including 13 at p < 10�3, demonstrated some evi-

dence of overlap (Figure 5C). We observed the strongest

enrichment (p< 10�4) in embryonic stem cells (H1-hESCs)

and primary CD3þ cells from cord blood. The enrichment

in H1-hESCs remained significant after stratification on

cord-blood CD3þ cells (p ¼ 9.6 3 10�3), but the converse

enrichment (p ¼ 0.08) did not. These results suggest that

examining DHSs in embryonic stem cells or a related cell

type might be informative for fine mapping height-associ-

ated loci for potential causal variants.

The Locus Overlap Score Can Be Used for Prioritizing

Trait-Associated Loci

After the most significantly enriched annotations are iden-

tified, the loci contributing the most to such enrichment

are those with the lowest overlap score (Figure S8). A locus

that obtains a low overlap score would typically have only

a few variants linked to the index SNP and sparse density of

the annotation. These are the loci where variants might be

most effectively prioritized.

For example, in breast cancer, the locus with the best

(lowest) overlap score (0.097) was rs889312 (Figure 6).

That SNP is in LD with seven other variants, of which

only rs1862626 overlaps a vHMEC H3K4me1 summit re-

gion. This SNP is upstream of MAP3K1 (MIM: 600982)

and modifies a predicted binding site for estrogen recep-

tor alpha (ER-a),50 consistent with the well-established

role of estrogen-mediated signaling in breast cancer pro-

gression.51,52 For height, rs11677466 showed the best

overlap score (0.026; Figure 6). This SNP itself overlaps

an embryonic stem cell DHS that is a known binding

site for HNF4a,53–55 a transcription factor that plays

important roles in metabolic regulation and stem cell dif-

ferentiation. Functional follow-up will be necessary to

further validate these variants. The specific annotations

indicate the type of regulatory element driving these as-
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sociations and define the cell type in which they are

active.
Discussion

Here, we have presented GoShifter, a method that enables

the identification of annotations that are the most infor-

mative in distinguishing causal variants from associated

ones. GoShifter stringently controls for local features by

shifting annotations within trait-associated loci. Our

method represents an important advance over current ap-

proaches in its ability to assess independent effects from

colocalizing annotations.

GoShifter is suited to investigate whether a specific

annotation might be effective in fine mapping known ge-

netic loci for a trait. Consequently, GoShifter does tend to

favor high-resolution annotations (e.g., annotations with a

small average size). But in certain instances, large annota-

tions (e.g., super enhancers or large gene sets) might be

important indicators that separate trait-associated varia-

tion from non-trait-associated variation.56 Although

informative, these annotations might not be particularly

effective for fine mapping. Under these circumstances,

SNP matching might be a necessity. We note with caution,

however, that the importance of individual matching pa-

rameters might be different depending on which specific

annotations are being tested. Importantly, matching on

the number of SNPs in LD will be critical: the number of

SNPs that a variant is in LD with will be proportional to

the chance that one of those variants overlaps an annota-

tion; consequently, failing to control for LD invariably

yields inflated results. In certain instances, controlling for

LD alone might substantially mitigate type I error, but in

most instances, matching on LD alone will not be

adequate. Additional parameters should be carefully

considered and evaluated (e.g., by simulation experiments)

when SNP-matching-based enrichment tests are used. For

example, in the assessment of DHS enrichment, our results

demonstrate that GEN, TSS proximity, and TES proximity

are additional important parameters. We speculate that

to accurately detect the enrichment in exons, it might be

necessary to further match on other parameters, such as

the number of exons and gene length.

In this study, we examined variants in LD (r2 > 0.8) with

an index SNP for overlap with an annotation. This is a

widely used approach, but it has limitations. In many in-

stances, index SNPs within loci that have been detected

by sparse genotyping or in relatively smaller studies have

a lower degree of linkage than r2 > 0.8 to a causal variant.

This is particularly true in complex genetic regions, where

multiple haplotypes might be driving an association, such

as within themajor histocompatibility complex in autoim-

mune diseases57 or IRF5 (MIM: 607218) in systemic lupus

erythematosus.58 One approach to increasing the sensi-

tivity of enrichment methods would be to weight annota-

tion overlaps by the posterior probabilities that associated
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Figure 6. Locus Plots Showing the Peaks, Variants, and Reads in Two Trait-Associated Loci
(A) The SNP rs889312 defines the locus with the best overlap score among breast cancer SNP associations. This SNP is in LD (r2 > 0.8)
with a variant (rs1862626) that overlaps the summit region of an H3K4me1 peak. This peak overlaps a predicted ER-a binding site. The
associated locus is located upstream of potential oncogene MAP3K1.
(B) Of the height-associated SNPs, rs11677466 defines the locus with the best overlap score and is located in an exon of DIS3L2 (MIM:
614184). This SNP overlaps a DHS peak, which also overlaps a known HNF4a binding site.
SNPs are the individual causal SNPs.59 GoShifter can be

used again tomake significance assessments by shifting an-

notations and reassessing weighted overlap to define a null

distribution.

We present examples to illustrate how stratified analysis

might help to determine whether fundamentally different

functions (such as regulatory versus coding variation)

might be driving complex-disease associations. In many

instances, different annotations colocalize because they

are derived from different molecular assays that query

the same genomic functional process. For example,

H3K4me1 marks and bidirectional transcription60 are

both signatures of enhancers. In these instances, stratified

analysis can be used to determine assays or cell types with
The A
themost informative annotations. Indeed, it could even be

the case that multiple assays are independently informa-

tive, and combining them could be the most powerful

approach. Stratified analysis offers not only a clear strategy

for evaluating individual annotations against each other

but also for assessing whether combinations of annota-

tions are more informative than any individual

annotation.

Applying GoShifter, we observed that different annota-

tions play dominant roles in different complex traits. The

eQTL results have highlighted that in addition to gene-reg-

ulatory regions and protein-coding genes, other mecha-

nisms might be mediating causal variation for complex

phenotypes. The observed enrichment of 30 UTRs in eQTLs
merican Journal of Human Genetics 97, 139–152, July 2, 2015 149



suggests that post-transcriptional gene regulation is one

such mechanism by which genomic variation affects

gene-transcript levels. Other functional genomic features,

such as non-coding RNAs and copy-number variation,

could also be driving complex phenotypic and disease vari-

ation.39,44–46

Our results indicate that SNPs represented in the GWAS

Catalog are globally enriched within DHSs. However, this

is not representative of enrichment for individual pheno-

types and in fact might be driven by a selection of pheno-

types with a large number of associated variants. When we

applied GoShifter to variants associated with height, we

observed strong DHS enrichment specifically in embryonic

stem cells, whereas breast cancer variants were enriched in

H3K4me1 but not DHSs. These could be partly due to the

fact that different trait-relevant tissues were mapped with

different assays. Nevertheless, variants associated with

different phenotypes are likely to act through various

mechanisms, resulting in differential enrichment of anno-

tations. These results also show that our stratified approach

can be applied to narrow down the specific cell type in

which disease-associated variants function, even from

within a single disease tissue of interest. The strong enrich-

ment of breast-cancer- and RA-associated loci within the

summit regions of histone marks is consistent with the

well-described functional significance of the summit re-

gions.49

We expect that the applicability of GoShifter will

expand as relevant functional annotations increase over

time. Once our approach identifies independently infor-

mative functional annotations by analyzing a large set of

associated variants, a powerful aspect of GoShifter is the

ability to identify the specific loci that drive the enrich-

ment statistics. Combining the identification of the func-

tional annotations associated with a trait and the identifi-

cation of the loci that drive that association should

facilitate effective and focused experimental interrogation

of these loci.

Software is available as the GoShifter package, written in

Python-2.7.
Supplemental Data

Supplemental Data include eight figures and three tables and can

be found with this article online at http://dx.doi.org/10.1016/j.
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Figure S1. Influence of different genomic parameters on delta-overlap. For each of the 1,000 simulated SNP 
sets tagging variable percent of DHS variants, we assessed if SNP structure (measured by the number of LD SNPs) 
or genomic features, such as proximity to TSS and TES, could influence the estimates of delta-overlap. For each 
SNP set, we plot the median characteristics and the set and the delta overlap. While we observed that the 
proportion of causal variants within DHS regions was proportional with the delta-overlap, for a fixed proportion 
of causal DHS variants delta-overlap is stable for all genomic features (r

2
<0.1). We observed weak correlation 

with the number of LD SNPs in SNP sets that were highly saturated with DHS-tagging loci (> 60%). 
  



 

 

Figure S2. Schematic figure of the strategy to simulate the GWAS SNP sets. From 1000 Genomes common 

European variants, we pick a functional SNP that maps within a pre-defined genomic annotation, e.g. intron. To 

imitate a GWAS approach we then identify the SNP on the genotyping array (Illumina Human Omni2.5 chip) that 

best tags (r
2
>0.5) the selected predefined functional variant. We construct sets of 1,416 SNPs tagging predefined 

functional variants. These sets are then subject to enrichment tests. 

  



 

Figure S3. Quantification of measured overlap for Illumina Omni2.5 SNPs tagging functional variants from 

different annotations. About 30% of SNPs at Illumina Omni2.5 overlap with DHS sites on their own. This 

percentage quickly increases as additional linked SNPs are included. At r
2
=0.8 we should observe the strongest 

enrichment for promoter and 5’UTR SNPs, moderate signals for coding (non-synonymous) and 3’UTR, and no 

enrichment for intron or intergenic regions. The decrease in r
2
 threshold increases the percentage of SNPs 

overlapping with DHS. Importantly, when deriving the null through matching-based tests, not accounting for the 

number of LD SNP dramatically affects the enrichment results.   



 

 
 
Figure S4. Comparison of the effect sizes (delta-overlap) and power of different enrichment methods. Not 
matching on the number of SNPs in LD results in global inflation in statistics. For example, we observed p<0.001 
significance across all regulatory and non-regulatory SNP sets. However, matching on LD alone is insufficient; we 
observed consistently inflated type I error across SNP sets tagging functional variants from introns (p<0.05 in 
81% of 1,000 SNP sets). We also observed that the standard matching parameters were inadequate across SNP 
sets that tagged variants in 3’UTR and exons. Accounting for the distance to the end of transcription (TES) was 
crucial if functional variants were selected from the 3’UTR, and it decreased the false positive rate by 26% (at 
p<0.05). Note that including MAF in the matching parameters has no effect, even though it is a frequently used 
parameter in SNP matching-based tests.   



 
 
 
Figure S5. Performance of GoShifter when selecting tag variants from sequencing data. We generated sets of 
1,416 SNPs that tag functional variants from SNPs within annotations enriched for DHS (SNPs overlapping DHS, 
promoter regions, 5' UTR, nonsynonymous variants in exons) or depleted for DHS (3'UTR, introns and intergenic 
regions). We generated 1,000 sets of SNPs where we selected tagging SNPs from a commercial genotyping 
platform (left), and 200 sets of tagging SNPs were selected from a sequencing based study (1000 Genomes 
Project, right). Array-based data is identical to the data presented in Figure 2. Then we subsequently tested for 
enrichment for DHS with GoShifter. We also tested the number of SNP sets obtaining p<0.05 stratifying DHS for 
sets where causal variants were in exons. The proportion of expected sets p<0.05 under the null is indicated by 
the dotted line.  



 
 

 
Figure S6. Conditional matching and colocalizing annotations. We assessed the feasibility of using a matching 
based approach to disentangle colocalizing annotations. For this purpose, we generated 1,000 sets of SNPs 
tagging functional variants in DHS. We tested these sets for enrichment with DHS (black) and the colocalizing 
annotation H3K4me3 (grey) using matching based on (GEN, TSS, TES and LD). To account for colocalization, we 
appended an extra matching parameter (DHS) and repeated the H3K4me3 enrichment analysis (red). We found 
that each of these enrichment analyses yielded significant enrichment (p<0.05) for 100% of the generated sets 
(as indicated by the delta-overlap values being all greater than zero). Matching on the additional DHS parameter 
did not mitigate the delta-overlap for H3K4me3 enrichment. This is probably due to confounding factors 
included by the extra DHS matching parameter (for example LD bias within DHS overlapping variants), and the 
lack of correlation between the associated and causal SNP in the annotations they occur in.    
  



 
 
Figure S7. Power to detect significant enrichment as a function of the number of tested SNPs. We subsampled 
SNPs from SNP sets tagging variants in DHS regions (Figure 2A and S4 – functional model with DHS variants). To 
obtain power estimates for GoShifter to detect significant enrichment we generated a hundred SNP sets with 
variable number of variants (from 10 to 100 incremented by 10 SNPs). With 30 SNPs GoShifter has 80% of power 
to detect significant enrichment (p<0.05).  
  



 
Figure S8. Prioritization of functional variants using overlap score. Here we define a prioritized variant, as a 
variant(s) within a locus overlapping the annotation in question. For each tested trait we plot the relationship of 
the overlap score of each locus and the number of SNPs in LD within each associated locus (left). We also plotted 
the relationship of the overlap score and the number of those SNPs in LD overlapping an annotation site (e.g. 
prioritized variants).  



 
Table S1. Overview of published enrichment methods. Published statistical strategies within the literature to 
assess enrichment for different annotations. 
 

Trait Annotation Enrichment method Reference 

NHGRI GWAS Catalog  TFs ChIP-seq, DHS Matching on MAF, TSS, 
platform, UCSC gene 
predicted function 

1
 

144 diseases NF-kB ChIP-seq Matching on MAF, TSS 
2

 

Platelet and erythrocyte 
phenotypes 

FAIRE-seq Matching on MAF, TSS and 
LD 

3
 

Breast cancer TF and histone modification ChIP-
seq  

LD 
4

 

Primary biliary cirrhosis DHS, FAIRE-seq Permutations with SNPs 
within associated loci 

5
  

Asthma Chromatin HMM states, 
H3K4me1, H3K27ac 

None 
6
  

NHGRI GWAS Catalog  DHS MAF, TSS, GENIC 
7
  

NHGRI GWAS Catalog Intronic splicing enhancers MAF, TSS 
8
  

NHGRI GWAS Catalog - trans-
eQTL SNPs 

CNVs, TFBS, splice 
enhancers/silencers, histone 
enhancers 

Relative to disease 
associated non-trans-eQTL 
SNPs 

9
  

NHGRI GWAS Catalog DHS, TFBS Matching on MAF, TSS, 
genomic location  

10
  

Migraine DHS MAF, TSS, GC content 
11

  

Lipid levels Chromatin HMM states, histone 
modifications, open chromatin 

MAF, TSS, LD partners 
12

  

eQTLs Histone modifications MAF, TSS 
13

  

Colorectal cancer SNPs Enhancers LD, IlluminOmniExpress 
14

  

Immune-related disease 
SNPs 

Enhancers LD, IlluminOmniExpress 
15

  

Specific traits from GWAS 
Catalog; T2D and fasting 
glycemia 

Human pancreatic islet TFBS and 
enhancer clusters 

LD; TSS, MAF 
16

  

GWAS Catalog traits Chromatin states Shifts and permutations 
within GWAS Catalog traits 

17
  

Rare variants and structural 
variations (SVs)/SNPs/eQTLs 

GENECODE annotation/functional 
annotations 

Annotation 
shifting/MAF+TSS matching 

18
  

 

Table S2. Detailed description of used cell types for DHS, H3K4me1, H3K4me3, and H3K9ac. 

 

Table S3. Proportion of 1,000 SNP sets, derived from causal variants with specific functional annotations, 

demonstrating enrichment at p<0.05.  

Enrichment method Promoter 5’UTR Non-
synonymous 

3’UTR Intron Intergenic 

GEN+TSS+TES+LD 1 1 0.002 0.102 0.013 0 



GEN+MAF+TSS+LD 1 1 0.001 0.358 0.016 0 

GEN+MAF+TSS 1 1 1 1 1 1 

GEN+TSS+LD 1 1 0.001 0.342 0.017 0 

MAF+TSS+LD 1 1 0.114 0.959 0.708 0 

MAF+TSS 1 1 1 1 1 1 

LD 1 1 0.875 0.994 0.808 0 

Local shifts 1 1 0.604 0.112 0.044 0.074 
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