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Cell-Size Homeostasis and the Incremental Rule in a Bacterial Pathogen
Maxime Deforet,1 Dave van Ditmarsch,1 and João B. Xavier1,*
1Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, New York
ABSTRACT How populations of growing cells achieve cell-size homeostasis remains a major question in cell biology. Recent
studies in rod-shaped bacteria support the ‘‘incremental rule’’ where each cell adds a constant length before dividing. Although
this rule explains narrow cell-size distributions, its mechanism is still unknown. We show that the opportunistic pathogen
Pseudomonas aeruginosa obeys the incremental rule to achieve cell-length homeostasis during exponential growth but
shortens its cells when entering the stationary phase. We identify a mutant, called frik, which has increased antibiotic sensitivity,
cells that are on average longer, and a fraction of filamentous cells longer than 10 mm. When growth slows due to entry in
stationary phase, the distribution of frik cell sizes decreases and approaches wild-type length distribution. The rare filamentous
cells have abnormally large nucleoids, suggesting that a deficiency in DNA segregation prevents cell division without slowing the
exponential elongation rate.
INTRODUCTION
Bacteria exist in a wide diversity of sizes that can span six
orders of magnitude, but individual cells within a species
maintain regular shape (1–5). How this cell-size homeosta-
sis is achieved remains a topic of intense research (6–13).
Recent studies in bacteria propose that rod-shaped bacteria
such as Escherichia coli and Bacillus subtilis follow an in-
cremental rule (also known as the ‘‘adder’’) (6,7,11,12,14),
whereby each cell adds a constant volume to their cell
body before dividing. New studies take advantage of tech-
nical advancements in microfluidics and live-cell imaging
to follow thousands of cell divisions. Rod-shaped bacteria
have fairly constant cell width, which means that cell length
may be used as a proxy for size. The increment in cell length
before division is independent of cell’s length at birth, ruling
out alternative size-regulation rules such as the ‘‘timer’’,
according to which cells would divide at regular intervals,
and the ‘‘sizer’’, where cells would divide when reaching a
maximum size (7,11,12).

In a timer model, any noise in the regulatory mechanism
would lead to fluctuations in the time of division (Dt),
causing the distribution of cell sizes to spread out over
consecutive divisions; but that is not the case here. The sizer
model is mostly rejected because the cell-size increment at
division (DL) does show anticorrelation with cell size at
birth (Lb), as predicted by that model. Lb and DL are in
fact uncorrelated, which supports a constant increment.
The incremental rule provides a simple explanation for
why variations in cell size converge to the population
average without the need for additional regulatory mecha-
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nisms (15). The rule works even in the presence of random
fluctuations in DL (11).

Despite the elegant simplicity of the incremental rule, its
mechanism remains unknown. However, it is well known
that populations grown in nutrient-poor media grow at a
slower exponential growth but still have cell-size homeo-
stasis (12,16). The same happens in mutants defective in
sugar uptake (7). Cells that grow more slowly due to
nutrient limitation adjust DL to a smaller value so that
their mean cell size becomes shorter, a relation called the
‘‘growth law’’ (12,16), suggesting that the increment is
coupled to the growth rate. This is an important point
because exponentially growing cells could, in theory,
keep the same size distribution even when growing at a
slower growth rate simply by increasing the time between
divisions. It also means that experiments that manipulate
growth rate by imposing nutrient limitations may not be
the best way to discern the mechanism for the incremental
rule (11,12). Conversely, a mutation that alters the location
of cell division in E. coli (DminC) increases variability of
cell lengths without significantly affecting the population
average, but individual cells still initiate division only
once after a constant increment (7). This experiment shows
that the incremental regulation works over a wider range
of lengths. DminC cells have a moderate nucleoid segrega-
tion defect leading to a small fraction of cells elongating
abnormally. This raises the question of how defects in
DNA segregation influence incremental regulation of cell
division (7).

We investigate cell-size distribution and its dynamics
in the opportunistic pathogen Pseudomonas aeruginosa.
We find that, like E. coli and other rod-shaped bacteria,
P. aeruginosa follows the incremental rule for cell-size
homeostasis. We also investigate an elongated mutant
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isolated from an evolutionary experiment (17), called frik
due to its aspect ratio resembling a frikandel sausage. Frik
has a drastically different size distribution than wild-type
but also follows the incremental rule with a cell-length
increment set to a larger value. A fraction of frik cells
become hyperelongated, easily surpassing 10 mm in length,
which correlates with an abnormal nucleoid. Finally, we find
that frik cells are more sensitive to clinically relevant antibi-
otics, a finding that links defects in cell-size regulation to
antibiotic susceptibility in this major pathogen.
MATERIALS AND METHODS

Agar pad imaging

All chemicals and reagentswere purchased fromFischer Scientific (Pittburgh,

PA) unless otherwise noted. Overnight cultures were diluted 100-fold and

left to grow for 3.5 h to get the cells to exponential growth. Cells were inoc-

ulated onto an agar pad (18), withM9minimalmedia (19), either undiluted or

diluted 10-fold. Imageswere taken every 2min for 7 h using anAxioObserver

Z1 invertedmicroscope, equippedwithDefiniteFocus anda 100�/1.4 oilDIC

lens (Carl Zeiss, Thornwood, NY). Cell length at division (Ld) was measured

with the image-processingpackageFIJI (http://fiji.sc/Fiji) (20) and the lineage

was tracked with the MTRACKJ plugin (from ImageJ, National Institutes

of Health, Bethesda, MD) (21). Length at birth (Lb) of daughter cells was

defined as one-half of the length of their mother cell (symmetric division

is confirmed by measuring Lb/Ld on a subset of our data; see Fig. S2 B

in the Supporting Material). In the case of evident asymmetric division,

manual measurement of daughter-cell lengths was performed.
Swarming

Swarming assays and competitions were performed as previously described

in van Ditmarsch et al. (17) and Xavier et al. (19). The selection coefficient
A B

C D

are L ¼ 2.22 exp(0.32 m) (mm) for wt, L ¼ 2.82 exp(0.83 m) (mm) for frik.

acid media, imaged by fluorescence microscopy. Scale bar: 2 mm. To see this fi
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is the initial ratio of frik to its direct competitor over the final ratio of frik

to its direct competitor (selection coefficient < 1 means frik wins). The in-

verse selection coefficient of the competition between frik and wild-type

was published before in van Ditmarsch et al. (17).
Cell-size determinations

From swarms: the washed overnight culture was diluted 20-fold, to ensure

a sufficiently small swarm after 20 h of incubation. The swarming edges

were covered by an 18 � 18 mm glass coverslip and snapshots were taken

with a 1-ms exposure time using a 40� phase-contrast objective and an

Orca2-ER charge-coupled device camera (Hamamatsu Photonics, Middle-

sex, NJ) mounted on an Axio Observer Z1 inverted microscope (Carl

Zeiss). Only the first three cell rows into the swarms were measured manu-

ally using FIJI (20). At different phases of growth: akin to the growth curve

synchronization protocol (22), an overnight culture of green-fluorescent

protein (GFP)-tagged cells (P. aeruginosa attB::PA1/04/03-gfp) was washed

and media were inoculated at a final OD600 of 0.0025 ODU for the lowest

dilution. The first dilution below that was 4096-fold lower, followed by

another five dilution steps of twofold each. Growth was measured on a

96-well plate in eight replicates (by OD600) for 14 h for Luria broth

(LB) and casamino acid media, 32 h for glycerol media, and 24 h for

glucose media. After growing the cells, 2 mL of bacteria were placed on

a glass slide and covered with an 18 � 18 mm glass coverslip, followed

by exposure to an Hg lamp and imaging with a 63� oil-immersed fluores-

cent objective (500 ms exposure). Images were processed using custom

scripts written in the software MATLAB (The MathWorks, Natick, MA),

which calculated an optimal threshold for segmentation. Then morphoma-

thematical operators were used to extract cell length (skeletonization,

geodesic distance transformation). Very long cells (outliers) were removed

from the frik dataset for average cell-length calculation in Fig. 1 D. We

never observed wild-type (wt) cells longer than 1.5 times the average

length; therefore, we chose this cutoff rule for frik. For each condition,

100–400 cells were measured. Cell width was measured as the full width

at half-maximum of GFP intensity, along a cross section through the cell

body.
FIGURE 1 Cell-size regulation in Pseudomonas

aeruginosa and its elongated mutant frik. (A)

Correlation between relative growth (log(Ld/Lb))

and time between divisions reveals identical growth

rates in both strains. Binned data. (B) Cell width in

exponential growth is independent of cell length

in both wild-type and frik (Pearson correlation

coefficient: 0.061 (wt) and �0.039 (frik)). Data

are rescaled by average length and width for

each strain. Average cell length is 3.14 mm for wt

and 5.60 mm for frik. Average cell width is

0.75 mm for wild-type and 0.74 mm for frik (p ¼
0.58, N ¼ 117 for wild-type and N ¼ 107 for

frik). (C) There is no correlation between growth

from birth to division (DL ¼ Ld-Lb) and length at

birth Lb (Pearson correlation coefficient: �0.010

(wt) and 0.114 (frik)). (D) Cell lengths measured

in exponential growth in different liquid media

show that wild-type and frik follow the growth

law. Media used were (from slowest to fastest)

minimal glycerol media, minimal glucose media,

casamino acid media, and LB. Error bars are

25 and 75% percentiles. Linear fits (solid lines)

are L ¼ 0.89 m þ 2.18 (mm) for wt, L ¼ 4.21 m þ
2.32 (mm) for frik. Exponential fits (dashed lines)

(Inset) Micrographs of a frik cell (left) and a wt cell (right) in casamino

gure in color, go online.
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Simulations

Experimental distributions of DL were fitted with a log-normal distribution

using the NLINFIT function from the statistics toolbox of MATLAB.

Coefficients and 95% confidence intervals were: m ¼ 0.587 [0.570 0.603]

and s ¼ 0.220 [0.206 0.233] for wild-type; and m ¼ 0.979 [0.965 0.993]

and s ¼ 0.264 [0.253 0.276] for frik. We started the simulations with a

single 2-mm-long cell, which grew for 23 generations following constant

increment model rules: at generation n, 2n�1 cells divide symmetrically

at a length Ld ¼ Lb þ DL, where DL was drawn from f(DL) for each cell.

Length of the initial cell had no influence on the final outcome.
Staining

Overnight cultures were brought to exponential phase as before. Cell mem-

branes were stained using 1 mg/mL of FM 4-64 dye (Life Technologies,

Grand Island, NY). Nucleic material was stained using 10 mg/mL of

Hoechst 33342. Nucleoids were condensed using 150 mM of chloramphen-

icol (23). Proton-motive force was nullified by adding 25 mM of CCCP

(carbonyl cyanide 3-chlorophenylhydrazone) (24). Imaging was done in

nutrient-deficient agar.
Whole-genome sequencing

Whole-genome sequencing was performed using MISEQ sequencing

(Illumina, San Diego, CA) and the software MICROSEQ (Applied

Biosystems, Las Vegas, NV) with 250 � 2 paired-end reads, yielding an

average coverage of 50–70�. Mutations were called using the program

BRESEQ (http://barricklab.org/twiki/bin/view/Lab/ToolsBacterialGenome

Resequencing) (25) and then verified through Sanger sequencing. Previous

sequencing was performed on the SOLiD platform (Applied Biosystems)

using 50-bp reads (17).
Minimal inhibitory concentration measurements

Ten twofold dilutions were made for ampicillin (1024 mg/mL and lower),

gentamicin (8 mg/mL and lower), tetracycline (16 mg/mL and lower), chlor-

amphenicol (64 mg/mL and lower), and ciprofloxacin (0.5 mg/mL and

lower). For all antibiotics, except ampicillin, dilutions were made directly

in a transparent 96-well plate (Becton Dickinson, Franklin Lakes, NJ)

with a final volume of 150 mL of LB media per well, taking along a control

without antibiotics. Both wild-type and frik were inoculated directly from

glycerol stock into 100 mL of LB-Miller. One microliter of the appropriate

cells was then added per well as inoculum. Growth was measured every

10 min through an optical density of 600 nm (OD600) for 24 h. Only for

ampicillin, the dilution series was made in 2-mL microcentrifuge tubes,

with a final volume of 500 mL for either strain per concentration, again

inoculating with 1 mL of the cell suspension. A quantity of 3 � 150 mL

per dilution step, and per clone, was transferred to a 96-well plate. Growth

was measured as before. Three replicates were used (with three technical

replicates each for ampicillin), averaging the final 15 measurement points

for each sample. Mean and standard deviations are plotted. IC50 values

were determined using a four-parameter logistic nonlinear regression.

Fitting was carried out in the software MATLAB (The MathWorks) with

a custom script using the statistics toolbox FMINSEARCH function:

y ¼ ðtop� bottomÞ
1þ 10ðlogðIC50Þ�xÞ �HillSlope

þ bottom:

The top and bottom were defined as the highest and lowest measurement,

with the approximation for the IC50 being in the middle of those two points.

The starting Hill coefficient was chosen at 0.8. The FMINSEARCH func-

tion then optimized each parameter, using a maximum-likelihood approach.

The optimized fits are displayed as continuous lines in the plots in Fig. S5.
RESULTS

P. aeruginosa follows the incremental rule

We investigated the dynamics of P. aeruginosa cell size in
single cells using agar pads and live-cell imaging (18). To
determine whether P. aeruginosa follows the incremental
model (14), we focused on exponential growth. We
measured length at birth (Lb) and length at division (Ld),
as well as the generation time elapsed between birth and
division (Dt) over several generations. Semilog correlation
between relative growth (Ld/Lb) and Dt (Fig. 1 A) confirms
that elongation of P. aeruginosa is exponential at the sin-
gle-cell level, with a specific growth rate of m ¼ 0.76 h�1.
Exponential growth is maintained for multiple hours (>5
cell divisions; Fig. 2 A). P. aeruginosa maintains constant
cell width, regardless of the cell length (Fig. 1 B), which
allows us to use cell length as a proxy for cell size.

Recent studies use sophisticated microfluidics to maintain
a constant influx of nutrients and allow cells to be tracked
in time indefinitely (6,7,12). Agar pads have a limited
time window of exponential growth but the data acquired
suffices to confirm that the incremental model applies to
P. aeruginosa. First, we observed that DL (¼ Ld-Lb) and
Lb are not correlated (Fig. 1 C), thereby ruling out the sizer
model, where DL and Lb would be negatively correlated.
Second, a negative correlation between Dt and Lb (Fig. S1
A) rules out the timer model, which requires a constant gen-
eration time. Several inheritance properties from lineages
give further support to the incremental model. For example,
there is no correlation between DLdaughter and DLmother

(Fig. S1 B), supporting a random distribution of DL
(hDLi ¼ 1.825 0.44 mm). Moreover, Lb

mother and Lb
daughter

are positively correlated (Fig. S1 D), which obeys a rule
derived from the incremental model: Lb

daughter ¼ (Lb
mother þ

DL)/2. The slope of 0.5 in this correlation is consistent with
cell-size homeostasis. Finally, P. aeruginosa cell length is
dependent on growth rate, following the so-called growth
law (12,16), where cells that grow faster are, on average,
longer (Fig. 1 D).
Frik mutants: longer cells through larger
increment

We then investigated the frik mutants—1 of 12 isolated hy-
perswarmers from an experimental evolution of swarming
motility that has a cell-elongation phenotype (17). Frik
had the highest competitive fitness among all hyperswarm-
ers isolated so far (Fig. S3), but its cell-elongation pheno-
type is independent of the original mutations identified in
hyperswarmers (Fig. S2).

We asked whether frik adheres to the incremental rule,
despite the cell-elongation phenotype. Indeed, frik grows
at the same exponential rate as wt in agar pads (Figs. 1 A
and 2 B) with constant width regardless of the length of
the cells (Fig. 1 B). Furthermore, we saw no correlation
Biophysical Journal 109(3) 521–528
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FIGURE 2 Cell growth in agar pads is exponential. (A and B) Tracking single cells over several hours reveals exponential growth even holds for single cells

in both wild-type (A) and frik (B). (Arrows) Elongation events that lead to filamentous cells in the frik mutant; (dashed lines) when growth arrests. (C) Both

wild-type (black) and frik (cyan) have the longest cells in the exponential phase in liquid cultures with a steady decrease as cells transition into the stationary

phase. (Straight lines through the various points are guides to the eyes.) (Inset) Representative growth curve from which the cell sizes were determined. (Gray

area) What we call the ‘‘exponential’’ phase. (Anything outside of the gray area is considered the ‘‘stationary’’ phase.) (D) Frik continues to divide even after

growth arrests in agar pads. Growth stops after 360 min in this example (indicated by the black outline around the picture). After this time, both a long cell and

the shorter cells still divide to become shorter. (E) Frik tends to show budding off of two cells on opposite poles in short sequence. (Gray arrowhead) First

septation event, followed by a second septation event (pointed out by the black arrowhead). To see this figure in color, go online.
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between DL and Lb (Fig. 1 C), in addition to a negative cor-
relation between Dt and Lb (Fig. S1 A). These correlations
confirm that frik also follows the incremental rule. The incre-
ment between divisions for frik is larger than for wt (2.825
1.02 mm for frik and 1.82 5 0.44 mm for wt). Thus,
frik overrides the normal increment for P. aeruginosa
but still keeps a constant DL, suggesting that the greater
amount of added material is subject to stringent regulation
nonetheless.

Frik not only follows the incremental rule, albeit with
a different DL than wt, it still also obeys the growth law,
but again with marked cell-size differences compared to
wt (Fig. 1 D). It is well known that bacterial cells shorten
when entering the stationary phase. By measuring the size
distributions of bacteria sampled at distinct times during
the growth phase we observed that this is not only the
case for wt, but also for frik (Fig. 2 C). Intriguingly, the
average cell size of frik decreases much more rapidly
than wt, and eventually even reaches a similar mean length
as wt.
Rare elongation events explain filamentous
frik cells

Frik cells are longer than wt on average, but there are occa-
sionally filamentous cells with length longer than 10 mm
(Fig. S2). The absurdly long cells account for ~15% of the
Biophysical Journal 109(3) 521–528
frik population obtained from liquid culture, causing the
distribution of Ld to be skewed (frik skewness ¼ 2.45;
wild-type skewness ¼ 1.19) (data points in Fig. 3 A). How
do cells >10� the median length arise despite cell-size
regulation? To answer this question, we simulated cell divi-
sions following the incremental rule. Drawing only DL from
experimental distributions, we could recapitulate experi-
mentally observed Ld distributions for frik and wild-type
fairly well (lines in Fig. 3 A), except for the tail of the
distribution of frik. This suggests that a separate process is
required to explain the occurrence of filamentous cells.
Even though the Ld distributions of wt and frik collapse
nearly entirely when normalizing by DL, the tail is main-
tained in the distribution of frik.

Lineage analysis of frik cells reveals that filamentation
events are typically restricted to a single lineage (Fig. 3 B).
Therefore, large fluctuations in DL are mostly restricted to
the same filamentous cells, rather than following a random
pattern within the lineage tree, suggesting that once a cell
is filamented, it is more likely to continue disobeying the
incremental rule and to continue elongation (Fig. 2D). Inter-
estingly, whenever filamentous frik cells do divide they
tend to clip at the edges, producing normally sized cells.
The clipping can occur from both poles, sometimes one
occurring shortly after the other (Fig. 2E), leading to increas-
ingly asymmetrical divisions (Fig. S2 B). The smaller cells
that arise at either pole behave like normal cells, but the



A B

FIGURE 3 The filamentous cell in frik. (A) Distributions of Ld from ex-

periments (dots) and simulations (lines). The X axis is rescaled with DL of

each strain. The Yaxis is rescaled for consistency. (B) Lineage tree from one

colony of frik. To see this figure in color, go online.
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remaining long cell keeps elongating before such events
happen again.

There are two known types of cell elongation in bacteria:
chaining, where the cells stick together after division; and
filamentation, where the cell may or may not have septated
cellular compartments and is usually multinucleate (26–32).
To confirm that the long cells are filamented, we stained the
membrane and nucleic material (Fig. 4). Wild-type cells
were short and usually not chained together. Whenever
this was the case, a typical chain did not consist of more
than two cells (presumably two daughter cells from shortly
after septation). Each of these cells tended to have one
nucleoid. The average short cells in frik populations are
markedly longer than wild-type cells after the same amount
of growth and have a longer nucleoid (Fig. 4 B 3). The very
long frik cells (>10 mm), on the other hand, showed a com-
bination of the two types of elongation (Fig. 4, B 1 and 2).
There were chains of cells, and very long cells were fila-
mented and multinucleate.

We sequenced the genome of the frik mutant with a
technology that allows longer reads, and we found two addi-
tional mutations in the annotated open reading frames
PA14_39100 and PA14_65570. We found that PA14_39100
had a deletion of 12 basepairs in frik, but was ruled out as
FIGURE 4 Frik has longer nucleoids; filamentous cells have abnormal

nucleoids. Wild-type (A) and frik (B) from exponentially growing liquid

cultures were stained with FM 4-64 (membrane dye) and Hoechst 33342

(a DNA intercalating dye). (Red arrowheads) Areas where the membrane

has septated. To see this figure in color, go online.
the cause by using microbial genetics. The remaining muta-
tion, a 9-bp deletion in PA14_65570, could thus be the
causative mutation. Attempts to recreate this mutant by ho-
mologous recombination failed due to difficulties in produc-
ing merodiploids, the first step of the protocol. Our failure to
manipulate PA14_65570 using molecular techniques sug-
gests that this open reading frame encodes a vital protein,
or one whose expression level is highly regulated, so that
disruption through allelic replacement may be lethal.
Frik cells have increased sensitivity to antibiotics

Sublethal concentrations of some antibiotics, such as
b-lactams, which target penicillin-binding proteins (PBPs),
can cause filamentation of bacterial cells, including
P. aeruginosa (31,33–36). Furthermore, filamentation can
be induced in certain bacteria by deleting PBP3 (32). PBPs
are responsible for the final steps of peptidoglycan synthesis.
Frik cells were observed on several occasions to have mem-
brane instabilities (Fig. S4). These combined observations
prompted us to evaluate the frik antibiotic susceptibility
to clinically relevant antibiotics. The antibiotics were chosen
to cover most aspects of bacterial biogenesis: cell wall, pro-
tein, and DNA synthesis. As expected, frik had an increased
sensitivity to ampicillin, gentamicin, and chloramphenicol,
although not to ciprofloxacin, or tetracycline (Fig. S5).
DISCUSSION

How do single cells regulate their size to achieve homeostat-
ic size distributions even when growing exponentially?
The picture that emerges from compiling thousands of cell
divisions (7,37,38) is that rod-shaped cells divide after
growing a fixed amount of length (DL). This manifestation
of the so-called incremental rule of cell-size regulation
(14) is a passive mechanism that automatically ensures ho-
meostasis by diluting variation over consecutive divisions
(7,11,12,38). Nonetheless, the mechanism by which these
rod-shaped cells set a constant DL remains unknown.

We show for the first time, to our knowledge, that
P. aeruginosa, an opportunistic pathogen and an important
cause of persistent infections (39), obeys the incremental
rule. In contrast to recent studies (7,12), our data comes
not from microfluidics but from agar pad experiments.
Agar pad experiments have a lower throughput but, like
others before us (38,40), we see that we can still follow
cells growing exponentially over several divisions and find
correlations that rule out alternative cell-size homeostasis
explanations. We observed that the average cell length
shrinks as growth slows down in accordance with the growth
law (11,16).

We also investigated cell-length distribution dynamics
in a frik mutant, which has longer cells without a faster
growth rate. This mutant was originally isolated from a
hyperswarming evolution experiment (17) and is fitter in
Biophysical Journal 109(3) 521–528



526 Deforet et al.
swarming competitions against other hyperswarmer clones
with shorter cells, suggesting that cell length could be an
evolvable trait in swarming. In E. coli, cells can filament
because of an SOS response (10), and given the standing
wave pattern of Min oscillation (41), the expectation is
that filamentous cells then divide at quarter positions. Frik
filaments also show budding off of cells at either pole in
short sequence (Fig. 2 E), but our data (Fig. S2 B) suggests
a continuously increasing asymmetry in the division pattern,
instead of the quarter positions that would be expected after
the standing wave of Min.

Resequencing the genome of frik on a different platform
allowed us to find one mutated open reading frame,
PA14_65570, which we could not rule out. We cannot
conclude, however, that this is the causal mutation because
we could not manipulate the locus and other mutations
could have escaped our analysis. Still, we found numerous
orthologs of PA14_65570 in OrtholugeDB (http://www.
pathogenomics.sfu.ca/ortholugedb/) (42), which are puta-
tive histidine kinases. Histidine kinases, transmembrane
proteins that are often involved in two-component signal
transduction systems (43), are also found in many different
cellular processes such as cell-cycle progression (44), septa-
tion (45), sporulation (46), chemotaxis (47), and mechano-
sensing (48) and thus PA14_65570 could be involved in
cell-size regulation in P. aeruginosa.

Our data suggest that cell-length regulation could obey a
model first proposed by Fantes et al. (49). Importantly, this
model still holds true for any system with similar compo-
nents, such as other two-component systems. Consider a
one-dimensional cell growing exponentially, with growth
rate m:

vL

vt
¼ m L: (1)

Now suppose that histidine kinases (putatively encoded by

PA14_65570, or any other hypothetical open reading frame)
are evenly distributed over the cell membrane. Because the
cell width is constant, the number of kinases H scales with
the cell length:

H ¼ a L:

We speculate that a protein P regulates cell division by

triggering septation when it reaches a threshold P*. Pro-
tein P is activated by this unknown histidine kinase at
the membrane. Thus, the activation rate scales with the
cell size:

vP

vt
¼ b H ¼ ab L: (2)

Combining Eqs. 1 and 2, we obtain
dP ¼ ab

m
dL:
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Integrating this equation from birth (L ¼ LB, P ¼ PB) to di-
vision (L ¼ LD, P ¼ P*), we get

P� � PB ¼ ab

m
ðLD � LBÞ ¼ ab

m
DL:

After division, proteins P are degraded or deactivated, then
PB ¼ 0,
DL ¼ m
P�

ab
:

Note that assuming an even sharing of the proteins
P between the two daughter cells with no degradation,

would lead to a sizer model, with LD ¼ mP*/ab. This model
leads to the incremental rule of cell-size regulation, as DL
is not correlated with the length at division LB. The value
DL depends only on the septation-triggering threshold P*,
the density of kinases a, the rate of activation of the protein
b, and the growth rate m. It also predicts a linear (not expo-
nential) growth law:

hL i ¼ DL

logð2Þ ¼ m
P�

logð2Þab:

Our experimental measurements agree with a linear depen-
dence of the average cell size with the growth rate (Fig. 1D).

Due to the narrow range of accessible growth rates, linear
and exponential models of growth law are difficult to
discriminate. Data published in previous publications
(12,16,50) suggest an exponential growth law but could
arguably support a linear growth law as well. If this hypo-
thetical model is correct, it could also explain why DL
is larger for frik cells. Interestingly, using the InterPro
(http://www.ebi.ac.uk/interpro/) (51) and TMHMM Server
(http://www.cbs.dtu.dk/services/TMHMM/) (52) tools, we
see that the 9-bp deletion in PA14_65570 falls in one of
the two predicted transmembrane domains (Fig. S6). If
this was indeed the mutation driving the frik elongation,
the phenotype could be caused by a loss of stability of the
putative histidine kinase at the membrane and/or its activity,
leading to a lower a and/or b, thus greater DL.

The model so far ignores the role of DNA replication on
cell-size regulation. DNA replication is likely to be coupled
to cell division (e.g., Cooper and Helmstetter (53) and Wang
and Levin (54)). Even if PA14_65570 is responsible for the
frik phenotype, there are mechanisms possible other than the
putative histidine kinase. For example, PA14_65570 could
regulate peptidoglycan synthesis, which would have an
indirect role in cell division, a mechanism consistent with
the antibiotic sensitivity of frik cells. Alternatively, the frag-
mented localization of DNA revealed by the staining of the
frik mutant suggests that there may be some DNA damage,
and in turn DNA damage could stimulate the SOS response
to inhibit cell division. Future studies that unveil the role
of DNA replication, chromosome segregation, or DNA
replication, for example, because of the presence of multiple

http://www.pathogenomics.sfu.ca/ortholugedb/
http://www.pathogenomics.sfu.ca/ortholugedb/
http://www.ebi.ac.uk/interpro/
http://www.cbs.dtu.dk/services/TMHMM/
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replication forks (50), should shed important light on cell-
size regulation and the growth law. It is important to note
that our model is not the only model that could explain an
increase in DL and is purely phenomenological in its setup.
Other explanatory models include those that specifically
take DNA replication into account, such as the initiator
model first stipulated by Cooper and Helmstetter (53), as
well as other models describing the CþD phases of bacterial
growth (C ¼ chromosome replication, D ¼ time between
completion of replication and division) (55).

Our finding that abnormal cell-size regulation increases
antibiotic sensitivity has potential therapeutic implications.
In a time when antibiotic resistance increases at the global
scale and the commercial incentive to develop novel
antibiotic is low (56), unveiling mechanisms that sensitize
pathogenic bacteria to existing antibiotics by interfering
with cell-size regulation is a relevant option (15). Drugs
that affect cell size could be used in combination with
traditional antibiotics to restore sensitivity in resistant
pathogens.
SUPPORTING MATERIAL
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Figure S1: P. aeruginosa and the frik mutant obey the incremental rule of cell size regulation. For all plots, wt is plotted 
in black and orange, whereas frik is plotted in cyan and red. (A) There is a negative correlation between Lb and ∆T. Solid lines 
indicate best fits to the incremental model and dash lines indicate best fit to the “sizer” model. (C‐D) There is no correlation 
between ∆mother and ∆daughter. (E‐F) Lbmother and Lbdaughter are correlated with a slope of 0.5. 

 
 
 
 
 
 
 
 

 
Figure S2: Cell size in Pseudomonas aeruginosa and its elongated mutant frik. (A) Cell length distributions from 

exponentially growing liquid cultures and swarms. In liquid culture, frik and frik FleN
wt
 are longer than wt and FleN

W253C
 (N = 

423‐897, p <<0.001 by Kruskal‐Wallis). Frik and frik FleN
wt
 are longer than the other two strains when quantifying at 

swarming edges, as determined by Kruskal‐Wallis test (p<<0.001, n = 107‐376). (B) Cell division is very symmetric for both 
wild type (black) and frik cells (cyan), with the exception of the filamentous cell (>10 μm). 

 
 
 
 
   



 
Figure S3: frik has a swarming advantage over wild type and other hyperswarmers. (A) Selection coefficients 
(defined as final ratio over initial ratio) of various clones against frik. The horizontal line represents the neutral 
selection coefficient of 1; anything below that means that the respective clone loses against frik. The (inverse) 
selection coefficient of frik versus wt was previously published [21]. (B) Frik segregates at the edge of a swarm from 
early on. The top row represents fluorescence images and the bottom row is the calculated ratio of frik versus 

FleN
W253C

 based on the fluorescence channels.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S4: frik occasionally shows membrane instabilities. Microscopy pictures taken from either agar 
pad or liquid culture cells (the latter are outlined in dark yellow) for frik shows various cells with 
membrane instabilities (indicated with red arrowheads). 

 
 
 
 
 
 
 



 
Figure S5: frik is sensitive to ampicillin, gentamicin, and chloramphenicol, but not 
tetracycline, or ciprofloxacin. Minimal inhibitory concentration (MIC) measurements for (A) 
ampicillin, (B) gentamicin, (C) chloramphenicol, (D) tetracycline, and (E) ciprofloxacin. Black 
circles represent wild type, cyan triangles represent frik. Mean and standard deviation are 
plotted. The lines indicate the model fit with which the IC50 was determined. (F) The 

determined IC50 values for the various antibiotics with 95%‐CI. 

 
 
 
 
 
 

 

Figure S6: frik mutants have a mutation in a putative transmembrane domain in gene PA14_65570. 
The amino acid sequence encoded by gene PA14_65570 has two predicted transmembrane domains (in red). 
The 9 base pair deletion found in the frik mutant would cause the loss of 3 amino acid residues in one of the 
transmembrane domains (shown in a rectangle).
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