SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1. Dgcr8-/- ESCs display characteristics of mesenchymal cells. (A) Morphology of wild type and Dgcr8-/- ESCs at different passages off mouse embryonic fibroblast feeders. (B) Examples of spread cells (red) and un-spread cells (green) marked by the Cell-IQ Analyzer program. Blue dots indicate cell debris or unknown particles. (C) Heat-map showing mRNA expression changes of epithelial and mesenchymal markers in wild type and Dgcr8-/- ESCs. Shown are log2 fold changes relative to the mean of all samples. Heatmap is generated with pheatmap package in R. (D) Western analysis of CDH1 and CDH2. GAPDH was used as a loading control. Representative gels are shown. Data were normalized to wild type ESCs. Shown are mean \pm range. n=2.

Supplementary Figure 2. MiR-294/302 and let-7 antagonistically regulate the EMT in ESCs. (A) Morphology of mock, control mimic, miR-293, miR-294, miR-295, and miR-302a transfected *Dgcr8-/-* ESC colonies. (B) Number of cells attached in 40 min after plating. (C) Western analysis of CDH1 and CDH2. GAPDH was used as a loading control. Representative gels are shown. Data were normalized to wild type ESCs. Shown are mean \pm range. n=2. (D) qRT-PCR analysis of epithelial and mesenchymal markers in mock and let-7c transfected *Dgcr8-/-* ESCs on days 1, 2, and 3. The β -actin gene was used as a control. For each gene, data were normalized to the mRNA level of mock transfected *Dgcr8-/-* ESCs. Shown are mean \pm SD, n = 3. (E) Western analysis of CDH1 and CDH2 in let-7c transfected *Dgcr8-/-* ESCs. Actin was used as a loading control.

Supplementary Figure 3. Activation of the EMT or apoptotic pathways inhibits the pluripotency program in wild type ESCs. (A) Western analysis of CDH1 and CDH2 in Snai1 overexpressing ESCs. Actin was used as a loading control. (B) qRT-PCR analysis of pluripotency markers in wild type ESCs without (-Dox) or with (+Dox) Snai1 overexpression. The β -actin gene was used as a control. Data were normalized to wild type ESCs without Snai1 overexpression. Shown are mean \pm SD, n = 3. (C) qRT-PCR analysis of pluripotency markers in wild type ESCs without The β -actin gene was used as a control. The β -actin gene was used as a control. Data were normalized to wild type ESCs without Snai1 overexpression. Shown are mean \pm SD, n = 3. (C) qRT-PCR analysis of pluripotency markers in wild type ESCs without or with PAC1 treatment. The β -actin gene was used as a control. Data were normalized to wild type ESCs without or with PAC1 treatment. Shown are mean \pm SD, n = 3.

Supplementary Figure 4. Identification of mRNA targets of miR-294 that may regulate EMT process in ESCs. (**A**) Strategy to identify miR-294 targets. (**B**) Luciferase reporter assays. Shown are mean \pm SD, n=4-8. P value < 0.05 for solid triangle and round dots. (**C**) qRT-PCR analysis of candidate targets in wild type and *Dgcr8-/-* ESCs. (**D**) qRT-PCR analysis of candidate targets in mock and miR-294 transfected *Dgcr8-/-* ES cells. For both **C** and **D**, the β -actin gene was used as a control. Shown are mean \pm SD, n=3. (**E**) Western analysis of GSK3A, GSK3B and VIM. GAPDH was used as a loading control. Representative gels are shown. Data were normalized to wild type (upper panels) or mock transfected *Dgcr8-/-* ESCs (lower panels).

Supplementary Figure 5. Identification of mRNA targets of miR-294/302. (A) qRT-PCR analysis for knockdown efficiency of siRNAs to candidate miR-294 targets. The β -actin gene was used as a control. For each gene, data were normalized to control mimic transfected *Dgcr8*-/- ESCs. n=1-2. For n=2, shown are mean ±SD. Two sets of siRNAs were used except for Vim.

(**B**) Colony morphology of *Dgcr8-/-* ESCs mock transfected or transfected with Mmp23 siRNAs after 48 hours. (**C**) Cell attachment analysis. Shown are mean ±SD, n=6-9.

Supplementary Figure 6. Combined suppression of the EMT and apoptotic pathways antagonizes multiple differentiation-inducing miRNAs. (A) Western analysis of CDH2 in R&C treated Dgcr8-/- ESCs. Actin was used as a loading control. Representative gels are shown. Data were normalized to DMSO treated ESCs. Shown are mean ±range. n=2. (B) qRT-PCR analysis of the pluripotency markers Esrrb, Klf4, and Rex1 in let-7c transfected Bak-/-, Bax-/flox, Dgcr8-/-ESCs treated with DMSO, RepSox, or R&C. The β -actin gene was used as a control. For each gene, data were normalized to mock transfected Bak-/-, Bax-/flox, Dgcr8-/- ESCs treated with DMSO. Shown are mean \pm SD, n = 3. qRT-PCR analysis of the pluripotency markers Oct4, Sox2, and Nanog in miR-26a, miR-99b, miR-193, miR-199a-5p, and miR-218 transfected (C) Dgcr8-/-ESCs and (**D**) Bak-/-, Bax-/flox, Dgcr8-/- ESCs treated with DMSO or R&C. The β-actin gene was used as a control. For each gene, data were normalized to mock transfected, DMSO treated ESCs with the same genotype. Shown are mean \pm SD, n = 3-6. (E) AP staining for miR-26a, miR-99b, and miR-218 transfected Bak-/-, Bax-/flox, Dgcr8-/- ESCs treated with DMSO or R&C. (F) qRT-PCR analysis of epithelial and mesenchymal markers in Dgcr8-/- ESCs transfected with differentiation-inducing miRNAs. The β-actin gene was used as a control. For each gene, data were normalized to the mRNA level of mock transfected Dgcr8-/- ESCs. Shown are mean \pm SD, n = 2. (G) Apoptosis analysis by Annexin V and propidium iodide staining in Dgcr8-/- ESCs transfected with differentiation- inducing miRNAs. Shown are mean \pm SD, n = 2.

5

Gene	Primer sequences (5' to 3')
Akt2	3UTR-F: GACACTCGAGACATCTAGAAGTT
Akt2	3UTR-R: GACCGCGGCCGCTTGTACCGTACAAATA
Akt3	3UTR-F: GACACTCGAGGTTCCTTTCAGTCTGTTTC
Akt3	3UTR-R: CTTGCGGCCGCAGATTGACATAGGGCTTTA
Arhgap1	3UTR-F: GACACTCGAGTTATACCTCTCACTG
Arhgap1	3UTR-R: GACCGCGGCCGCTCATTTACATTT
Arhgap26	3UTR-F: GCTACTCGAGACACTCAGGATCTCAGGAT
Arhgap26	3UTR-R: GCTAGCGGCCGCATCTGTCATAGGCCACACAT
Arhgef12	3UTR-F: GGCACCTCGAGGCCTTACTTCTTGCCTGTTCCC
Arhgef12	3UTR-R: GGCACGCGGCCGCGCTGAGTGACCAGGCTTACTG
Arhgef3	3UTR-F: GACACTCGAGCAGAAGACTGTGACCCTGC
Arhgef3	3UTR-R: GACACGCCGCCACAGTATTCATTTCACCAA
Arhgef7	3UTR-F: GACACTCGAGGCTGACTTCATTCTCATAGG
Arhgef7	3UTR-R: CTTGCGGCCGCTTAATAATTGCAAGGGTG
Fndc3a	3UTR-F: GGCACCTCGAGGTGGCATTTAGCACTGGCATTGA
Fndc3a	3UTR-R: GACACGCGGCCGCAGATACTTTTGCTACATAGTTTATGTATTC
Gsk3b	3UTR-F: GGCACCTCGAGGCGGGAAAGACCAGCACTTAC
Gsk3b	3UTR-R: GGCACGCGGCCGCGGACAAGCTCACTCACAGTGG
Itga5	3UTR-F: GACACTCGAGTGATCTCAGACTCATGAT
Itga5	3UTR-R: GACAGCGGCCGCCTTGCAACAGAGTTTA
Itgav	3UTR-F: GCTACTCGAGCACCCAGCAGTCTCAGT
Itgav	3UTR-R: GCTAGCGGCCGCCAGGGAGTTGCACACGCTT
Itgb3	3UTR-F: GACACTCGAGTGAGACCATCTTCAGATGA
Itgb3	3UTR-R: CTTGCGGCCGCGGAAAGCACATTTAATTC
Mmp23	3UTR-F: GGCACCTCGAGCACTGCTCAGAGCCTCTGTGCTGGAAGGCAGCAGATAAA
Mmp23	3UTR-R: GGCACGCCGCCCCCAGAGAGAAAGTGCTTTATCTGCTGCCTTCCAGCACA
Rock2	3UTR-F: GTGTAGATCCTAGTGAGACAT
Rock2	3UTR-R: GCTAGCGGCCGCGATGACATCACCTCATCTACT
Rragd	3UTR-F: GCTACTCGAGAACTGTCAGGAGCCTGAGT
Rragd	3UTR-R: GCTAGCGGCCGCCACTGTCCAGCTACAACAT
Smad2	3UTR-F: GGCACCTCGAGGCTGGTTGCAGTGGTAAACACTA
Smad2	3UTR-R: GGCACGCGGCCGCGACCTTCAACGCCAACTACTC
Tgfbr1	3UTR-F: GGCACCTCGAGCACCGTGGGAACTCTGCTCT
Tgfbr1	3UTR-R: GACACGCCGCCGCAGGATGAAATTTAAGCATCTCCCTAGC
Tgfbr2	3UTR-F: GGCACCTCGAGTCCTCTAGCCAAAGACCAGAGG
Tgfbr2	3UTR-R: GACACGCCGCCGCGAATACATGAATATGGCCGAAGTGTTC
Vim	3UTR-F: GCACACATTGGTGCAACAGT
Vim	3UTR-R: GAAGCAGTAACAAGTTGGTCAG
Fn1	3UTR-F: GGCACCTCGAGTCTTTCCAGCCCCACCCTACAAGT
Fn1	3UTR-R: GACACGCGGCCGCACTTGTCTTTCCACAGTAGTAAAGCGTT
RhoC	3UTR-F: GACACTCGAGCTTCCCCAAAGCTT
RhoC	3UTR-R: GACCGCGGCCGCAACCTTTGACCTTTATTCAT

Supplementary Table 1: Sequences of primers for cloning 3'UTRs of candidate targets

Note: Fn1 was chosen as a negative control without miR-294 binding site in its 3'UTR; RhoC was not significantly downregulated in wild type ESCs, but was included as it has been shown to be targeted by miR-294. (Subramanyam, D., Lamouille, S., Judson, R. L., Liu, J. Y., Bucay, N., Derynck, R., and Blelloch, R. (2011). Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat. Biotechnol 29, 443-8.)

Gene	siRNA sequences (5' to 3')
Arhgef3-si-3	sense:GCUUCGAGAUGUUCGGAAATT
Arhgef3-si-3	anti-sense:UUUCCGAACAUCUCGAAGCTT
Arhgef3-si-4	sense:GUGCACAGCGGAAACGAAATT
Arhgef3-si-4	anti-sense:UUUCGUUUCCGCUGUGCACTT
Fndc3a-si-3	sense:CAGCAUAGACCUCGGAGAUTT
Fndc3a-si-3	anti-sense:AUCUCCGAGGUCUAUGCUGTT
Fndc3a-si-4	sense:GUGAAGAGGUCCUGUACUATT
Fndc3a-si-4	anti-sense:UAGUACAGGACCUCUUCACTT
Gsk3b-si-1	sense:GAUCAUUUGGUGUGUAUATT
Gsk3b-si-1	anti-sense:UAUACCACACCAAAUGAUCTT
Gsk3b-si-2	sense:GGAGCAAAUUAGAGAAAUGTT
Gsk3b-si-2	anti-sense:CAUUUCUCUAAUUUGCUCCTT
Mmp23-si-1	sense:GGGAAAUGUAGAUGCGCCATT
Mmp23-si-1	anti-sense:UGGCGCAUCUACAUUUCCCTT
Mmp23-si-2	sense:GGGAAAGUAUACUGGUACATT
Mmp23-si-2	anti-sense:UGUACCAGUAUACUUUCCCTT
RhoC-si-1	sense:CUAUAUAGCCGACAUCGAATT
RhoC-si-1	anti-sense:UUCGAUGUCGGCUAUAUAGTT
RhoC-si-2	sense:GGAUCAGUGCCUUUGGCUATT
RhoC-si-2	anti-sense:UAGCCAAAGGCACUGAUCCTT
Tgfbrl-si-1	sense:GAUUUAUAGCAGCAGACAATT
Tgfbrl-si-1	anti-sense:UUGUCUGCUGCUAUAAAUCTT
Tgfbr1-si-2	sense:GAACAGAAGUUAAGGCCAATT
Tgfbr1-si-2	anti-sense:UUGGCCUUAACUUCUGUUCTT
Tgfbr2-si-1	sense:UGGGAGAAGUGAAGGAUUATT
Tgfbr2-si-1	anti-sense:UAAUCCUUCACUUCUCCCATT
Tgfbr2-si-2	sense:GGAGGAAGAACGACAAGAATT
Tgfbr2-si-2	anti-sense:UUCUUGUCGUUCUUCCUCCTT
Vim-si-1	sense:GUCUUGACCUUGAACGGAATT
Vim-si-1	anti-sense:UUCCGUUCAAGGUCAAGACTT

Supplementary Table 2: Sequences of siRNAs to candidate miR-294 targets

Gene	Primer sequences (5'to 3')
Actb-F	CCACCATGTACCCAGGCATT
Actb-R	CCGATCCACAGAGTACTT
Arhgap1-F	CGAAGGAATGTCTTGAGGATGAC
Arhgap1-R	GAGAAAAAAACCGAATGACCTATCA
Arhgef3-F	CCAGTCCCTCAGAGTCAAGCA
Arhgef3-R	TTTCCCCCTGCCACTTTCA
Cdh1-F	GAGCGTGCCCCAGTATCG
Cdh1-R	CTGCCTTCAGGTTTTCATCGA
Cdh2-F	CTCTTTATCCCGCCGTTTCA
Cdh2-R	TTGCACAGACAGTCGATGCTACT
Cldn6-F	GCCCACTCTATCATCCAGGACTT
Cldn6-R	CCCCAGCTCCCGCTTT
Esrrb-F	CCTGAGCGGACACACTGCTT
Esrrb-R	CCCAACTGTCACTGGTCCAT
Fndc3a-F	AGGAATCTCCCAATTCACTTGTG
Fndc3a-R	TCTGTGTGCAGACTGTCAGGTAAG
Gsc-F	GCTAGCTCCTCGTTGCTTTCTC
Gsc-R	ACCCCCCATACCCTTTTGTC
Gsk3b-F	CACGGTCTCCAGCATTAGTATCTG
Gsk3b-R	GCTGCCGGTGGACTTTGA
Klf4-F	CTATGCAGGCTGTGGCAAAA
Klf4-R	TGGTAAGGTTTCTCGCCTGTGT
Lama1-F	CCCCCACACCCATTCCA
Lama1-R	GCAGGATAGCCACCACATAA
Lamb1-F	AATCTGAAACGGCAGCTTCTG
Lamb1-R	CACGTTCCTCTCAAGCTTGCT
Mmp23-F	CACCAACCTTGTTTTCGTTCTG
Mmp23-R	TGTATCCGTCAGGCAAAAGAAA
Nanog-F	GCTCAGCACCAGTGGAGTATCC
Nanog-R	TCCAGATGCGTTCACCAGATAG
Oct4-F	ATGTTCTTAAGGCTGAGCTGCAA
Oct4-R	CCGTATCAGTGCACGTTCGA
Pvrl1-F	GCCCCCACCCCAAATATG
Pvrl1-R	TCAGCCTCATCCACAGTGAAGT
Rex1-F	GGTGTGGATGCGGATATGG
Rex1-R	GATTGTGGAGCCATACATTGCA
RhoC-F	CGCACCCCTTCCTTAGTCTTG
RhoC-R	GATTTCTGTTATGAATTCCCATTTCC
Smad2-F	TGTGCAGAGCCCCAACTGT
Smad2-R	CAGCCTGGTGGGATCTTACAC
Snail-F	CACATCCGAGTGGGTTTGG
Snail-R	CACGCAGTCGCTGAACGA

Supplementary Table 3: Quantitative RT-PCR primers

Snai2-F	GGGAGCATACAGCCCTATTACTGT		
Supplementary Table 3 continued			
Snai2-R	GGCCACTGGGTAAAGGAGAGT		
Sox2-F	GCAAGTACTGGCAAGACCGTT		
Sox2-R	CGATATCAACCTGCATGGACAT		
Tgfbr1-F	CCAAGGAACAAAGAAATGATTTACAA		
Tgfbr1-R	TGCCAGTGCTAACCCAGTAGCT		
Tgfbr2-F	CACTAGTGGACCAGCATTCTGTAAA		
Tgfbr2-R	GCCATCATCGCTATCCTTCTG		
Tjp2-F	CCCCCGCACATGAGTTCTA		
Tjp2-R	TGGTGTCCTGGTAAAGTCTGGAA		
Twist1-F	GACCTGGTACAGGAAGTCGATGT		
Twist1-R	TCCAGATCGATGTGGACGTTT		
Twist2-F	CGCTCCCCTCTGACAAGCT		
Twist2-R	GAACCTGGTAGAGGAAGTCTATGTACCT		
Vim-F	ATACTGCTGGCGCACATCAC		
Vim-R	CCCTTTCCCCAGTTTTTAATAGG		
Zeb1-F	GCTGGGCCAACTCTTAACAGA		
Zeb1-R	CCTGTGATGCGTATCAGAAAAG		
Zeb2-F	TTTCCCCCTGCCACTTTCA		
Zeb2-R	CCAGTCCTGGGTATGGTCGTA		