Supplementary Information

Comparative genome-based identification of a cell wall-anchored protein from *Lactobacillus plantarum* increases adhesion of *Lactococcus lactis* to human epithelial cells

Bo Zhang¹, Fanglei Zuo¹, Rui Yu¹, Zhu Zeng¹, Huiqin Ma², Shangwu Chen¹*

¹ Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China

²College of Agriculture and Biotechnology, China Agricultural University, Beijing, China

*Corresponding author. Mailing address for Shangwu Chen: College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Hai-dian District, Beijing 100083, China. Phone: (86)1062738663. Fax: (86)1062738663. E-mail: swchen@cau.edu.cn.

Fig. S1 Genome map of *Lt. plantarum* NL42. The circles from inside to outside indicate: GC skew (ring 1); GC content (ring 2); RNA genes (ring 3); KEGG-annotated enzymes (ring 4); COG-annotated coding sequences (rings 5 and 6) and genome sequence (ring 7, each tick indicates 100 kb). The order of the contigs was arranged according to *Lt. plantarum* WCFS1.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		
	1		99.9	99.9	99.9	99.9	100.0	100.0	100.0	99.9	99.5	100.0	99.9	99.9	99.9	99.9	99.9	99.5	99.9	100.0	100.0	99.9	1	JDM1
	2	0.1		100.0	100.0	100.0	99.9	99.9	99.9	100.0	99.6	99.9	99.9	99.9	99.9	100.0	100.0	99.4	99.8	99.9	99.9	100.0	2	Lp90
	3	0.1	0.0		100.0	100.0	99.9	99.9	99.9	100.0	99.6	99.9	99.9	99.9	99.9	100.0	100.0	99.4	99.8	99.9	99.9	100.0	3	LP91
	4	0.1	0.0	0.0		100.0	99.9	99.9	99.9	100.0	99.6	99.9	99.9	99.9	99.9	100.0	100.0	99.4	99.8	99.9	99.9	100.0	4	NC8
	5	0.1	0.0	0.0	0.0		99.9	99.9	99.9	100.0	99.6	99.9	99.9	99.9	99.9	100.0	100.0	99.4	99.8	99.9	99.9	100.0	5	NL42
	6	0.0	0.1	0.1	0.1	0.1		100.0	100.0	99.9	99.5	100.0	99.9	99.9	99.9	99.9	99.9	99.5	99.9	100.0	100.0	99.9	6	P8
L	7	0.0	0.1	0.1	0.1	0.1	0.0		100.0	99.9	99.5	100.0	99.9	99.9	99.9	99.9	99.9	99.5	99.9	100.0	100.0	99.9	7	ST-III
	8	0.0	0.1	0.1	0.1	0.1	0.0	0.0		99.9	99.5	100.0	99.9	99.9	99.9	99.9	99.9	99.5	99.9	100.0	100.0	99.9	8	UCMA_303
	9	0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.1		99.6	99.9	99.9	99.9	99.9	100.0	100.0	99.4	99.8	99.9	99.9	100.0	9	WCFS1
	10	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		99.5	99.5	99.5	99.5	99.6	99.5	98.9	99.4	99.5	99.5	99.6	10	WHE_92
	11	0.0	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.1	0.1		99.9	99.9	99.9	99.9	99.9	99.5	99.9	100.0	100.0	99.9	11	wikim18
L	12	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1		99.9	99.8	99.9	99.9	99.5	99.8	99.9	99.9	99.9	12	ZJ316
L	13	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1		99.8	99.9	99.9	99.4	99.8	99.9	99.9	99.9	13	16
L	14	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2		99.9	99.9	99.4	99.7	99.9	99.9	99.9	14	19L3
L	15	0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1		100.0	99.4	99.8	99.9	99.9	100.0	15	AG30
L	16	0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.0		98.5	99.8	99.9	99.9	100.0	16	ATCC_1491
L	17	0.2	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.3	0.3	0.2	0.1	0.3	0.3	0.3	0.6		99.4	99.5	99.5	99.4	17	AY01
L	18	0.1	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.2	0.3	0.1	0.2	0.2	0.3	0.2	0.2	0.3		99.9	99.9	99.8	18	EGD-AQ4
L	19	0.0	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.2	0.1		100.0	99.9	19	EW_p
L	20	0.0	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.0		99.9	20	PLA88
L	21	0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.3	0.2	0.1	0.1		21	JCM_1149
L		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		

Fig. S2 Sequence distance of the 16S rRNA genes of *Lt. plantarum*. Strains used here are the same with those in Fig 1a. Strain names represented by the numbers 1 to 21

are listed on the right.

Fig. S3 Numbers of genes assigned to different COG functional categories among Lt.

plantarum genomes.

Fig. S4 Numbers of adhesion-associated and cell wall-anchored genes in different Lt.

plantarum strains.

Fig. S5 Predicted secondary structure of CwaA. The analysis was performed using Protean (Lasergene package, DNASTAR, Madison, WI, USA).

Fig. S6 Multiple sequence alignment of Lt. plantarum NL42 CwaA with its homologues in other Lt.

plantarum strain complete genomes. Regions of signal peptide, cell wall surface anchor repeats

and LPxTG-like motif are labeled. NL42_peg585 indicates CwaA.

1 MSKDNOKV T G	11 DSI¥RVKMYK	21 DGKRWVYAGA	31 TTLALAAGLV	41 Fanvnasadt				
51	61	71	81	91				
TP <mark>ANETKTEQ</mark>	VTSGASSSAT	SQAATSDASS	ASSTSQATST	TSQST <mark>S</mark> T <mark>V</mark> SA				
101	111	121	131	141				
ATQSATSTTS	AASSVASQND	TTQTAVATSA	KVQSRAVSAD	TTATVQQATP				
151 	161	171	181	191 CCI A A CUDURI				
TVTAPTSSAT	PRVISEATLT	TSEAASGSTS	LATSTVATGS	GSLAASHDVN				
ANNVKVDGTT		DMOVVI.TKNK	ATDWSNGDAN	COFVIAPAGS				
251	261	271	281	291				
SETANGTWKA	VSYQIDKNTP	VAVTSGSSIT	VPVKDVINAN	TLTFNYEYTA				
301	311	321	331	341				
TNDTNSNSDY	LSINDIPNAD	NKANIDASGN	TVLYQHGWDY	TAQTTTDVTT				
351	361	371	381	391				
TTPAEDAQDV	SVAYVVITGV	NADGTPKYTK	IDGGVIKSGK	VGTTFTINPA				
401	411	421	431	441				
TIDGYALYGA	NNNVTGDASG	LTGTVDTDAT	NNEVVLVYAE	NTGIVVNYQT				
			481	491 CYKICDCDVO				
501	511	5.21	521	5.4.1				
SGNVAAGTLV	AGANTVIEVY	APVVEOSDVT	VNYVDESGKT	TKAATIOTLD				
551	561	571	581	591				
NGSTYNVDTP	TIDGYTYKSA	DAALTGTVDG	NKTITLTYTK	NATPVEQSTV				
601	611	621	631	641				
TVNYVDADGK	TIKAATTQTL	DNGSTYNVDT	PTIDGYTYKS	ADAALTGTVD				
651	661	671	681	691				
GNKTITLTYT	KDSTTPVENK	ANLTINYVDA	DGNTIKASSV	TEYIVGQAYT				
701	711	721	731	741				
VGQPEIAGYS	YNHSTGDAIA	GTIGYNGNTV	TLVYTKNGGT	TTAPTTAPT				
751	761	771	781	791				
APTTAPTVAP	TTAPTTAPTV	APTTAPTVAP	TTAPTVAPTT	APGTGDNVNG				
		821	831 STUTTSTADA	841 TTVSDDEVTP				
851	861	871	881	801				
TTTATTNNGT	SGVVPASASL	KPVTTKTTT	SDAKTLEQTD	EDENGTALAV				
901	911	921						
LGLSTLLMGS	ALYFGVSRRK	HEA						
Legend:								
<u>Regenui</u>								
The conservation	scale:							
1 2 3 4	4 5 6 7	8 9						
Variable Average Conserved								

```
{	extsf{X}} - Insufficient data - the calculation for this site was performed on less than 10% of the sequences.
```

Fig. S7 Analysis of the evolutionary conservation of amino acids in CwaA using the web server ConSurf (<u>http://consurf.tau.ac.il/</u>).

Strains/plasmids	Relevant characteristics	Source or reference
Lt. plantarum NL42	Isolate from cheese	Zuo et al. 2014
Lc. lactis NZ9000	MG1363 pepN::nisRK	Kuipers et al. 1998
<i>Lc. lactis</i> NZ9000-401	<i>Lc. lactis</i> NZ9000	This study
	harboring empty vector	
	pNZ401	
Lc. lactis NZ9000-401-cwaA	<i>Lc. lactis</i> NZ9000	This study
	harboring pNZ401-cwaA	
E. coli DH5α	Cloning host	Takara
<i>E. coli</i> DH5α-401	<i>E. coli</i> DH5α harboring	Laboratory stock
	empty vector pNZ401	
E. coli DH5α-401-cwaA	<i>E. coli</i> DH5α harboring	This study
	pNZ401- <i>cwaA</i>	
E. coli H10407 (ETEC) ATCC	Enterotoxigenic E. coli	ATCC ¹
35401	strain	
S. aureus ATCC 25923	Quality control strain	CGMCC
pNZ401	Em ^r , inducible expression	Laboratory stock
	vector containing the	
	nisA promoter, derivative	
	of pNZ8048	
pNZ401-cwaA	pNZ401 carrying cwaA	This study
	gene	

Table S1 Bacterial strains and plasmids used in this study

¹http://www.atcc.org/products/all/35401.aspx