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A Fast Method that Uses Polygenic Scores to Estimate
the Variance Explained by Genome-wide Marker Panels
and the Proportion of Variants Affecting a Trait

Luigi Palla1 and Frank Dudbridge1,*

Several methods have been proposed to estimate the variance in disease liability explained by large sets of genetic markers. However,

current methods do not scale up well to large sample sizes. Linear mixed models require solving high-dimensional matrix equations,

and methods that use polygenic scores are very computationally intensive. Here we propose a fast analytic method that uses polygenic

scores, based on the formula for the non-centrality parameter of the association test of the score.We estimatemodel parameters from the

results of multiple polygenic score tests based onmarkers with p values in different intervals. We estimate parameters by maximum like-

lihood and use profile likelihood to compute confidence intervals. We compare various options for constructing polygenic scores, based

on nested or disjoint intervals of p values, weighted or unweighted effect sizes, and different numbers of intervals, in estimating the

variance explained by a set of markers, the proportion of markers with effects, and the genetic covariance between a pair of traits.

Our method provides nearly unbiased estimates and confidence intervals with good coverage, although estimation of the variance is

less reliable when jointly estimated with the covariance. We find that disjoint p value intervals perform better than nested intervals,

but the weighting did not affect our results. A particular advantage of our method is that it can be applied to summary statistics from

single markers, and so can be quickly applied to large consortium datasets. Our method, named AVENGEME (Additive Variance

Explained and Number of Genetic Effects Method of Estimation), is implemented in R software.
Introduction

Genome-wide association studies have been successful in

identifying many variants linked to complex diseases. To

date more than 6,000 have been found in more than 500

quantitative traits and commondiseases in humans.1 How-

ever, when considering the variance explained by the

markers associated with any specific disease, there remains

a large gap to match the heritability estimates obtained

from family studies.2 This observation has spurred the

development of theories and investigations to explain the

missing heritability, including copy-number variation,3

rare variants,4 epigenetics,5 and genetic interactions.6

It has become increasingly clear that a large portion of

the missing heritability is represented on current geno-

typing products, but the associated markers are not statis-

tically significant. Several approaches have been devel-

oped to estimate the heritability explained by a set of

genetic markers that might not be individually associ-

ated. In the linear mixed model approach, the genetic

value of each individual is treated as a random effect

whose sample covariance matrix is derived from the relat-

edness matrix, which is estimated from the genotype

data.7 Solving this model gives an estimate of the addi-

tive genetic variance explained by the available geno-

types, often called the ‘‘chip heritability.’’ Variations of

this approach include multiple classes of variant with

different effect size distributions,8,9 regression of pair-

wise phenotypic correlation on genetic correlation,10

and multivariate models to estimate genetic correlation

between traits.11
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Another approach uses polygenic scores to estimate chip

heritability. Here, effect sizes for allmarkers are estimated in

one sample of data, called the training sample. These effects

are then used to construct a score for each subject in a sec-

ond sample, called the target sample, as the weighted sum

of genotypes across a set of markers. Originally, association

of the score in the target sample was used to demonstrate

the presence of missing heritability among an ensemble

ofmarkers.12More recently, the strength of this association

has been used to infer the chip heritability.13,14

A further approach uses empirical Bayes methods to esti-

mate the chip heritability from the distribution of Z scores

for individual markers.15 This has the advantage of

requiring only summary statistics from standard associa-

tion analysis. Finally, a very recent method of ‘‘LD

scoring’’16 estimates the chip heritability from the correla-

tion between the marginal effect size of a marker and a

measure of its linkage disequilibrium (LD) with other

markers, also using only summary statistics.

In general, the methods using linear mixed models are

computationally expensive and require individual-level

data to calculate the genetic relatedness matrix. Further-

more, many of these methods estimate only the chip her-

itability, but it is often of interest also to estimate the pro-

portion of markers that affect a trait. This bears on the

design of association studies, because it indicates the num-

ber and effect sizes of the associated markers remaining to

be found. It is also relevant for the debate on the nature of

evolution,17,18 because if a large number of variants affect a

trait, mechanisms of selection by polygenic adaptation are

possible, acting on standing variation without requiring
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new mutations.19 Methods for the estimation of the num-

ber of genes affecting a trait have been proposed since the

early 20th century, including complex segregation analysis

comparing single- and multi-locus models with or without

polygenic background,20 but only with the recent avail-

ability of dense genome-wide data has it become possible

to assess the polygenic background itself.

Linear mixed models have been extended to allow for a

proportion of variants with effects,8 but this remains

computationally demanding. Polygenic scoring has also

been used to estimate this proportion, but again with a

computationally demanding procedure that uses repeated

genome-wide simulations within a Bayesian sampling

scheme.13 On the other hand, an analyticmethod for poly-

genic scores14 estimates only one parameter among several

defined in its model; therefore, it can estimate the propor-

tion of variants with effects if the chip heritability is

assumed to be known, or vice versa. Empirical Bayes

methods are also available to estimate the proportion of

markers with effects21 but have not been adapted to jointly

estimate this proportion with the chip heritability.

Here we extend the analytic approach of Dudbridge14 to

develop a fast analytic method based on polygenic scores

for the joint estimation of chip heritability and the propor-

tion of variants affecting the trait, and we further estimate

the genetic covariance between two related traits. A partic-

ular advantage is that our method can be applied when

only summary data is available for individual markers,

and this allows our approach to be readily applied to the

increasingly large datasets that are now being made avail-

able by study consortia.
Methods

Parameter Estimation: AVENGEME
We consider the model presented by Dudbridge14 in which a pair

of standardized traits Y ¼ (Y1,Y2)
0 is expressed as a linear combina-

tion of m genetic effects and an error term E ¼ (E1,E2)
0:

Y ¼ b0G þ E ¼
�Xm

i¼1
bi1Gi þ E1;

Xm

i¼1
bi2Gi þ E2

�0
(Equation 1)

where G is an m vector of coded genetic markers and b an m 3 2

matrix of coefficients, with E independent of G. Assuming that

in two independent samples the estimates of the genetic effects

are given, respectively, by bbi1 and bbi2, where i ¼ 1,...,m, either

set of estimates can then be used to create polygenic scoresbS1 ¼ Pm
i¼1

bbi2Gi and bS2 ¼ Pm
i¼1

bbi1Gi to be tested for association

with Y1 and Y2, respectively. Focusing without loss of generality

on bS2, the statistical properties of the test of association have

been described.14 In particular, the coefficient of determination

between bS2 and Y2, i.e., the variance explained by the polygenic

score in the regression of Y2 on bS2, is given by

R2
Ŝ2 ;Y2

¼
mcov

�bbi1; bi2

�2

var
�bbi1

�
varðY2Þ

;

where the terms on the right-hand side are expressed analytically

in terms of the following parameters. For study design: sample
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sizes of the two samples, (n1, n2); number of variants in the marker

panel,m, assumed to be uncorrelated; p value thresholds for select-

ing a marker into the score from the training sample, (pL,pU); and

for binary traits, population prevalences (K1,K2) and case sampling

fractions (P1,P2). For genetic model: additive genetic variance in

the training sample, s21; genetic covariance between training and

testing samples, s12; and proportion of null markers with no effect

on the trait in the training sample, p01. The variance and covari-

ance are marginal over all markers, so include the null markers

with bi1 ¼ 0 or bi2 ¼ 0.

The asymptotic non-centrality parameter of the c2
1 test of

association between Y2 and bS2 is given by l ¼ n2R
2
Ŝ2 ;Y2

=ð1� R2
Ŝ2 ;Y2

Þ;
equivalently, the expectation of the Z (or t) test is

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2R

2
Ŝ2 ;Y2

=ð1� R2
Ŝ2 ;Y2

ÞÞ
q

with the sign taken from the correla-

tion between Y2 and bS2.
Binary traits are assumed to arise from a liability threshold

model, in which each subject has an unobserved trait, called the

liability, that is normally distributed in the population. Subjects

with liability greater than a fixed threshold have the trait. The

same theory then holds when either Y1 or Y2 is binary as for

when it is quantitative, assuming linear transformations between

effects on the liability scale to effects on the observed (0/1) scale,

and accounting for ascertainment in case/control studies. Specif-

ically, each effect bij on the liability scale corresponds to an effect

bij4ðtjÞðPjð1� PjÞ=Kjð1� KjÞÞ on the observed binary scale,14

where tj ¼ F�1(1 � Kj) with f and F the standard normal density

and cumulative distribution functions, respectively.

We aim to estimate the genetic model parameters s21, s12, and

p01 from the association test between bS2 and Y2. Previously it

was shown14 that one parameter could be estimated by solving

for the value at which l equals the observed c2 statistic. To esti-

mate multiple parameters, we now propose using association tests

of Y2 with multiple polygenic scores constructed by selecting

markers with different p value thresholds in the training data.

We then fit parameters to the observed association tests by using

maximum likelihood.

Specifically, let d1,...,dk denote a set of k intervals within the unit

interval, where k is equal to or greater than the number of param-

eters to be estimated. For each i ¼ 1,..., k, we select markers with

p values falling in di, construct the corresponding polygenic score,

and obtain its (signed) Z score (Zi) for association with Y2. The log-

likelihood for s21, s12, and p01 is then

[
�
s2
1; s12;p01

� ¼ Xk

i¼1

log4
�
Zi � m

�
s2
1;s12;p01; di

��
;

where mðs21;s12;p01; diÞ is the expectation of the Z test as described

above, expressed explicitly as a function of the model parameters

given selection interval di. Maximization of this log-likelihood

yields estimates of the model parameters. Note that any of s21,

s12, and p01 could be held fixed while the other parameter(s) are

estimated.

An equivalent procedure estimates (using obvious notation) s22,

s12, and p02 by reversing the roles of the training and target sam-

ples. Furthermore, a bidirectional procedure can be used to simul-

taneously estimate up to five parameters (s21, s
2
2, s12, p01, and p02)

by fitting to the Z scores for association of both bS2 with Y2 and bS1
with Y1.

The number of estimated parameters can be reduced by

assuming that the genetic architectures are identical in the

training and testing samples. This would occur if two samples
ican Journal of Human Genetics 97, 250–259, August 6, 2015 251



Table 1. Parameter Values for Studies of Four Diseases13 and
Three Studies of Schizophrenia26

RA CD MI T2D SCZ ISC SCZ PGC1 SCZ PGC2

n1 16,016 5,309 6,042 14,919 5,953 19,548 77,195

n2 12,078 6,785 4,861 4,862 5,120 5,120 5,120

m 82,390 91,388 89,808 75,912 84,882 93,093 103,125

s21 0.18 0.44 0.48 0.49 – – 0.30

p01 0.973 0.972 0.980 0.962 – – 0.95

P1 0.248 0.394 0.491 0.416 0.423 0.477 0.425

P2 0.126 0.273 0.396 0.396 0.515 0.515 0.515

K1 0.01 0.01 0.06 0.08 0.01 0.01 0.01

K2 0.01 0.01 0.06 0.08 0.01 0.01 0.01

Abbreviations are as follows: RA, rheumatoid arthritis; CD, celiac disease; MI,
myocardial infarction; T2D, type II diabetes; SCZ, schizophrenia; ISC, Interna-
tional Schizophrenia Consortium; PGC, Psychiatric Genomics Consortium.
Values of s21 and p01 for RA, CD, MI, and T2D were estimated by Stahl
et al.13 and subsequently used in our simulations. Those for SCZ are an approx-
imation based on estimates from several studies and methods (Table 5).
are drawn from the same population with the same trait defini-

tions, or if one sample is randomly split into training and target

subsets. Then we can assume s21 ¼ s22 ¼ s12 and p01 ¼ p02, esti-

mating just two parameters in either unidirectional or bidirec-

tional analysis.

Ours is not a proper likelihood because the Z scores Zi corre-

sponding to the marker selection intervals are not independent.

The presence of a marker in one interval determines its presence

or absence in all other intervals, creating dependence between

the corresponding scores, but this is not reflected in our likeli-

hood. Furthermore, the bidirectional likelihood does not account

for dependence between the scores calculated in each direction.

We are therefore using a quasi-likelihood and will later use simula-

tions to investigate its sensitivity to the assumption of indepen-

dent likelihood contributions.

Maximization of the log-likelihood is complicated by con-

straints on the range of s12. Because the absolute correlation

between bi1 and bi2 must be no greater than 1, js12j%s1s2. In

the unidirectional estimation, s22 is not identified and we need

only respect that s22%1, giving the constraint js12j%s1. In the bidi-

rectional estimation, we must also consider that the absolute cor-

relation is no greater than 1 for the markers that have non-null

effects in both training and target samples. Denoting this correla-

tion as r*, the correlation over all markers as r, and the proportion

of markers with non-null effects in both samples as g % 1 �
max(p01, p02), we have

r� ¼ s12g
�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
1ð1� p01Þ�1

s2
2ð1� p02Þ�1

q ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� p01Þð1� p02Þ

p
g

s12 ¼ rs1s2 ¼ r�gs1s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� p01Þð1� p02Þ
p

j s12 j%ð1�maxðp01;p02ÞÞs1s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� p01Þð1� p02Þ
p

:

We maximize the likelihood numerically by nesting the maximi-

zation for s12 within that for the other parameters: for each pro-

posed value of s21, s
2
2, p01, and p02, we perform a univariate maxi-

mization for s12 subject to the constraint imposed by the

proposed values.

To obtain analytic confidence intervals, we use profile likeli-

hood.22 For a general scalar parameter q, its profile log-likelihood

function is [PðqÞ ¼ [ðq; bwðqÞÞwhere bwðqÞ is themaximumlikelihood

estimate of the remaining parameters in themodel given q. Because

for a regularmodel 2ð[ðbq; bwðbqÞÞ � [ðq; bwðqÞÞÞ/D c2
1, for the estimated

value bq we obtain a (1 � a) confidence interval as the set

fq : [PðqÞR[PðbqÞ � ð1=2Þc2
1ð1� aÞg where c2

1ð1� aÞ is the 1 � a

quantile point of the c2
1 distribution. This procedure is used to

obtain confidence intervals for each of s21, s
2
2, s12, p01, and p02.

Often it is the genetic correlation rather than the covariance be-

tween two traits that is of interest. Because the unidirectional esti-

mation does not identify s22, the correlation cannot be estimated

unless a value is assumed for s22. In the bidirectional estimation,

the correlation and its confidence interval can be obtained via pre-

viously derived formulas.23

Association tests of polygenic scores can be calculated from

summary data alone, as shown in the gtx package for R (see Web

Resources). The regression of Y2 on bS2 has coefficient

cov
�
Y2; bS2�

var
�bS2� ¼

P
cov

�
Y2; bb1jGj

�
P

var
�bb1jGj

� ¼
Pbb1j

bb2j var
�
Gj

�
P bb2

1j var
�
Gj

� z

Pbb1j
bb2js

�2
2jPbb2

1js
�2
2j
252 The American Journal of Human Genetics 97, 250–259, August 6
where s22j is the sampling variance of bb2j, assumingmarkers are un-

correlated. This is the inverse-variance weighted mean of bb2j=bb1j

and hence has sampling variance ð1=Pbb2

1js
�2
2j Þ. TheWald statistic,

Pbb1j
bb2js

�2
2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP bb2

1js
�2
2j

q ; (Equation 2)

is then calculated from summary effect sizes and standard errors

for the individual markers. These data are frequently available

from research consortia even when access to individual-level

data is impractical.24,25

Our methods, named AVENGEME (Additive Variance Explained

and Number of Genetic Effects Method of Estimation), are imple-

mented in R software available from the authors.

Method Evaluation
To study the statistical and operating characteristics of

AVENGEME, we simulated genome-wide marker data under

various genetic models. We based our simulations on four com-

plex diseases studied by Stahl et al.,13 allowing direct comparisons

with their ABPAmethod, which is conceptually similar to ours.We

also performed simulations based on three successively larger

studies of schizophrenia.26 The study design parameters and the

genetic models used for our simulations are given in Table 1.

For each genetic model, we simulated estimated effect sizes bb1j

and bb2j independently for eachmarker, by drawing the true effects

from the bivariate normal distribution in Equation 1 and adding

independent sampling error to each effect. We then selected

markers according to their p values in the training sample and

used the summary statistic formula in Equation 2 to obtain tests

of association for each polygenic score. We verified this approach

for sample sizes up to 10K by explicitly simulating genotypes in

case and control subjects as previously described.14 In brief, inde-

pendent biallelic markers were defined with population minor

allele frequencies uniformly distributed on (0.01,0.5). Their effect

sizes were drawn from the bivariate normal distribution such that

the desired variances and covariances were attained. Allele fre-

quencies were then derived for case and control subjects and geno-

types simulated in each. Allelic odds ratios were then computed
, 2015



Table 2. Application of AVENGEME to Simulated Data for Four
Genetic Models Shown in Table 1

Estimation of s21, p01 Estimation of s21, p01, s12

RA CD MI T2D RA CD MI T2D

True s21 0.180 0.440 0.480 0.490 0.180 0.440 0.480 0.490

Mean bs2
1 0.180 0.438 0.486 0.483 0.270 0.467 0.522 0.581

SD bs2
1 0.019 0.035 0.050 0.034 0.312 0.325 0.335 0.332

Coverage 0.95 0.89 0.91 0.93 0.97 0.95 0.99 0.99

True p01 0.973 0.972 0.980 0.962 0.958 0.972 0.979 0.961

Mean bp01 0.972 0.972 0.979 0.961 0.968 0.972 0.979 0.957

SD bp01 0.0054 0.0046 0.0040 0.0052 0.028 0.016 0.011 0.018

Coverage 0.94 0.85 0.88 0.90 0.98 0.95 0.98 0.98

True s12 – – – – 0.180 0.440 0.480 0.490

Mean bs12 – – – – 0.190 0.442 0.491 0.509

SD bs12 – – – – 0.034 0.048 0.061 0.072

Coverage – – – – 0.98 0.93 0.94 0.993

Mean and standard deviation of parameter estimates and coverage of 95%
confidence interval are shown over 1,000 simulations. Monte Carlo error for
the mean is SD/O1000 and for coverage of 0.95 is 0.007.
from the genotype counts. The results from the genotype simula-

tions were indistinguishable from those from summary statistics,

so we adopted the summary statisticmethod, which ismuch faster

and easily scales up to very large sample sizes. Note that in our sim-

ulations, markers were assumed to be independent, i.e., in linkage

equilibrium, as assumed by AVENGEME.We will later consider the

effect of LD on our method.

For the models in Table 1, we simulated 1,000 sets of polygenic

score results and estimated the genetic model parameters via the

unidirectional AVENGEME. This was done both when assuming

s21 ¼ s12 (which reflects the assumption that the two samples

have the same geneticmodel), inwhich case AVENGEME estimates

the two free parameters s21 and p01, and when allowing s21ss12, in

which case AVENGEME estimates three free parameters. We evalu-

ated the accuracy from themean and SDof the parameter estimates

and the coverage of the 95% confidence intervals.

We then considered different options for constructing polygenic

scores, simulating under the design of the largest schizophrenia

study (rightmost column of Table 1) (hereafter termed ‘‘SCZ simu-

lation’’). We fixed ten thresholds (Table S1, right half) and

compared the use of disjoint to nested p value intervals with those

thresholds, with the nested intervals each having a lower limit of

0.We compared weighted scores to unweighted scores in which all

markers were given an equal weight in the direction of disease risk.

We performed 1,000 simulations and evaluated bias, precision,

and coverage as before.

Weconsidered the effectof increasing thenumberof selection in-

tervals and the sample size. Here we simulated different heritabil-

ities in the two samples: s21 ¼ 0:3, s22 ¼ 0:45,s12¼ 0.294 (giving ge-

netic correlation of 0.8), and different proportions of null markers:

p01¼0.95andp02¼0.94 (hereafter termed ‘‘bivariate simulation’’).

We compared the use of 3, 5, 10, 20, and 40 selection intervals in

sample sizes of 10K, 20K, 40K, and 80K subjects with case sampling

fractions P1¼ 0.425 and P2¼ 0.515 and disease prevalencesK1¼K2

¼0.01. This reflected the SCZPGC2studydesign, althoughbecause

that was a meta-analysis of case/control studies, the overall sam-
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pling fraction should be adjusted to reflect the different fractions

in each study.We did not do this here but have found that such ad-

justments have very little effect on the estimated model.

We evaluated the bidirectional AVENGEME for the simulta-

neous estimation of all five parameters. We then returned to the

SCZ simulation and applied bidirectional AVENGEME under the

constraints s21 ¼ s22 ¼ s12 and p01 ¼ p02 to compare the precision

of the bidirectional and unidirectional AVENGEME when esti-

mating only two free parameters.

Finally, we compared AVENGEME to the genomic restricted

maximum likelihood (GREML) solution of the linear mixed

model, as implemented in the popular GCTA program.27 We per-

formed the bivariate simulation with a total sample size of 10K.

GREMLwas applied on the entire sample, whereas for AVENGEME

it was split into training and testing samples each of 5K subjects.

We also compared AVENGEME to the method of So et al.,15 which

also uses summary statistics for estimation of s21 only, under the

SCZ simulation for a total sample size of 10K.
Linkage Disequilbrium
The theory underlying AVENGEME assumes that markers are un-

correlated.14 This is approximately ensured in practice by pre-

filtering markers with ‘‘LD-pruning’’ algorithms that select

markers with limited pairwise correlation. Although this practice

is common for many methods that estimate chip heritability, it

might lead to under-estimation of the true chip heritability

because the selected markers might not fully tag the causal varia-

tion. Conversely, in our approach, the residual LD among the

pruned markers might lead to over-estimation of the explained

variance and under-estimation of the proportion of null markers,

because marker effects will be biased by LD with other markers.28

We therefore performed simulations on real genotype data to

assess the effect of LD pruning. We combined genotype data

from all seven case and both control samples in phase 1 of the

Wellcome Trust Case-Control Consortium (WTCCC),29 giving

genotypes for 384,845 markers on 15,769 subjects after basic

quality control (Table S2). We allocated a chip heritability of

s21 ¼ s22 ¼ s12 ¼ 0:3 among a random 5% of the markers (p01 ¼
p02¼ 0.95). We simulated a normally distributed quantitative trait

under this model, split the sample into equally sized training and

target samples, and estimated the model with AVENGEME on a

reduced marker set. We considered both a ‘‘pruning’’ algorithm,

which does not take association results into account (‘‘indep-pair-

wise’’ option in PLINK,30 window size 100, step 10), and a ‘‘clump-

ing’’ algorithm that greedily retains themost associatedmarkers in

the reduced set (‘‘clump’’ option in PLINK with index and

clumped p value thresholds of 1 and 100 marker radius). Both al-

gorithms were applied with r2 thresholds of 0.1 and 0.2, giving

reduced sets of approximately 77,000 and 102,000 markers,

respectively, on average. The simulation was repeated 1,000 times.
Results

Bias and Precision

We simulated data based on the estimates for additive ge-

netic variance and proportion of null markers obtained

by Stahl et al.13 for four common diseases (Table 1). We

compared the performance of AVENGEME for these four

models with the same p value intervals as those authors

(Table S1). Results are shown in Table 2. For the estimation
ican Journal of Human Genetics 97, 250–259, August 6, 2015 253



Table 3. Comparison of AVENGEME Performance with Weighted
and Unweighted Score with Nested or Disjoint Intervals

Estimation of s21, p01 Estimation of s21, p01, s12

Disjoint Nested Disjoint Nested

W U W U W U W U

Mean bs2
1 0.274 0.274 0.254 0.258 0.299 0.298 0.422 0.471

SD bs2
1 0.011 0.011 0.008 0.009 0.105 0.106 0.045 0.081

Coverage 0.36 0.37 0 0 0.94 0.93 0.01 0.20

Mean bp01 0.950 0.950 0.951 0.950 0.946 0.946 0.941 0.933

SD bp01 0.004 0.004 0.003 0.003 0.016 0.017 0.006 0.008

Coverage 0.93 0.93 0.80 0.78 0.95 0.94 0.37 0.14

Mean bs12 – – – – 0.281 0.280 0.289 0.309

SD bs12 – – – – 0.042 0.043 0.013 0.021

Coverage – – – – 0.91 0.91 0.69 0.85

The SCZ simulation model with s21 ¼ s12 ¼ 0:3, p01 ¼ 0.95 was used (see main
text for full details). Mean and standard deviation of parameter estimates and
coverage of 95% confidence interval are shown over 1,000 simulations. Monte
Carlo error for the mean is SD/O1000 and for coverage of 0.95 is 0.007. Abbre-
viations are as follows: W, weighted; U, unweighted.
of two parameters only, assuming the same genetic model

in the training and target samples, our method yielded

nearly unbiased results for both s21 and p01 with small vari-

ance, suggesting that it is expected to work very well in

practice. However, the coverage was lower than 95%,

suggesting that the analytic confidence intervals are too

narrow. This might result from our assumption that the

selection intervals make independent contributions to

the likelihood. To confirm this, we directly simulated c2

statistics from the analytic non-central distributions, inde-

pendently for each selection interval, and repeated the

estimation. The confidence intervals then indeed had

appropriate coverage (Table S3), confirming that the

assumption of independent contributions from each selec-

tion interval leads to confidence intervals that are too nar-

row. Nevertheless, this effect appears to be fairly small.

In the estimation of three parameters, the estimate of s21
had some upward bias and much larger variance; p01 had

greater variance compared to the two-parameter estima-

tion, but coverage close to 95%. Inspection of individual

simulations revealed that the estimated s21 is often close

to 0 or to 1, pulling the mean estimate toward 0.5. Gener-

ally, this suggests that the variability is too large to allow

reliable estimation of s21 when estimating p01 and s12 as

well, at least at these sample sizes. The estimates for s12,

however, showed nearly unbiased estimates and small vari-

ance, suggesting that our method is reliable for estimating

the genetic covariance when it is not assumed to equal the

variance. Coverage was slightly less accurate in the estima-

tion of three parameters, but generally close to the nomi-

nal level.

We conclude that for the estimation of s21 and p01, it is

preferable for the training and target samples to be from

the same trait population and to apply AVENGEME under
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the constraint s21 ¼ s12, whereas if the interest lies in the

estimation of the genetic covariance between traits, then

the unconstrained version of AVENGEME is more

appropriate.
Nested Intervals and Unweighted Scores

We wondered whether the sample sizes could be a reason

for the poorer performance of the three-parameter estima-

tion; in addition, we considered the effect of the score

weighting versus an unweighted score and whether the

p value selection intervals were disjoint or nested. We

therefore simulated under a scenario with parameters

derived from a large meta-analysis of schizophrenia26

(Methods; Table 1 rightmost column). The results are

shown in Table 3. For the two-parameter estimation,

disjoint intervals had the least bias and most accurate

coverage, although its variance was slightly greater than

for nested intervals. The reduced coverage of the confi-

dence intervals for nested intervals can be ascribed to

the dependence between intervals, which is greater for

nested intervals. The bias is possibly due to the imbalance

in the sample size between training and test set (reversing

the direction of estimation led to a reduction in bias, for

example for disjoint intervals, weighted score, mean

bs2
1 ¼ 0:291). Similar patterns were observed when esti-

mating three parameters, with the disjoint intervals

generally showing less bias and more accurate coverage

than the nested intervals, but with slightly increased vari-

ance. The choice of weights seems to be generally neutral,

although a slight increase in variance was observed for

unweighted scores. Taken together, these results suggest

that the weighted score with disjoint selection intervals

is the most reliable and accurate approach for use with

AVENGEME.
Sample Size and Number of Selection Intervals

We then performed bivariate simulations (see Methods) to

consider the effect of varying the sample size and the num-

ber of selection intervals. In Tables S4–S7, we show the per-

formance of AVENGEME in each direction. The results

confirm the poor ability to estimate s21 or s22, with mean

values mostly around 0.5 and high variance reflecting

the frequent estimates of 0 or 1. This applies across all

numbers of selection intervals, but there is a reduction in

variance as the number of intervals increases and a sub-

stantial reduction in bias and variance as the sample size

increases from 10K to 80K, whereas more bias persists for

the lower genetic variance (mean bs2
1 ¼ 0.362 and bs2

2 ¼
0.444 with 40 intervals and 80K total sample size). A

similar pattern was observed for p01 and p02, although

there was much less bias in general.

For the covariance s12, the estimation again worked

well, being nearly unbiased and with low variance regard-

less of sample size and number of selection intervals. We

again observed a general trend of improved bias and preci-

sion with more selection intervals and greater sample size.
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Table 4. Application of AVENGEME to Normally Distributed Traits
Simulated on Real Genotypes

Pruned Clumped Independent

r2 0.1 0.2 0.1 0.2 0.1 0.2

Mean bs2
1 0.173 0.281 0.297 0.389 0.297 0.300

SD bs2
1 0.041 0.053 0.042 0.05 0.039 0.046

Mean bp01 0.559 0.579 0.900 0.879 0.949 0.931

SD bp01 0.428 0.400 0.066 0.080 0.02 0.096

Terms are as follows: pruned, markers are randomly retained in the reduced
set; clumped, most strongly associated markers are greedily retained in the
reduced set; r2, threshold on residual pairwise LD within the reduced set; inde-
pendent, results for simulated markers with no LD between any pair. True
s21 ¼ 0:3, p01 ¼ 0.95.
Bidirectional Estimation

We applied the bidirectional method to the same bivariate

simulation data for total sample size of 80K. The results (Ta-

ble S8) showed consistently lower variance for each param-

eter compared to the unidirectional estimators, but with a

similar level of bias resulting in lower coverage of the con-

fidence intervals. The information gain from analyzing the

bidirectional data together is offset to some degree by the

increased number of parameters in the model. Further-

more, this analysis was considerably more time consuming

than the unidirectional analyses.

Similarly, when applying the bidirectional estimation to

data simulated under the SCZ model (Table 1, rightmost

column) and constraining s21 ¼ s22 ¼ s12 and p01 ¼ p02 in

the estimation, we obtained lower bias for s21 (mean bs2
1 ¼

0.286, bp01 ¼ 0.95), similar variance (SD ðbs2
1Þ ¼ 0.011, SD

ðbp01Þ ¼ 0.004), and greater coverage for s21 and less for

p01 ( ¼ 0.498 for s21, ¼ 0.760 for p01) compared to the uni-

directional analyses (first column of Table 3), although the

differences were very small.

We performed a sensitivity analysis to compare the per-

formance of the bidirectional estimation with different

initial parameter values for the numerical optimization

and the results were virtually unchanged, with just a slight

change in bias, variance, and coverage. A similar analysis

conducted for the complex diseases in Table 1 also revealed

that the estimate of covariance was robust to the choice of

initial parameter values.
Linkage Disequilibrium

We simulated a normally distributed trait on 15,769 sub-

jects in the WTCCC (see Methods). Using reduced marker

sets with pairwise r2 constrained to <0.1 and <0.2, we

estimated s21 ¼ s22 ¼ s12 and p01 ¼ p02 when (1) the

markers were pruned without regard to their association

and (2) the markers were clumped by greedily retaining

the most strongly associated markers. Table 4 shows that

for r2 < 0.1, AVENGEME is unbiased in estimating s21
when clumping is used but has a small downward bias

in p01. Pruning, however, incurs a strong downward bias

in both s21 and p01. For r
2 < 0.2, clumping over-estimates

s21 and under-estimates p01 owing to the residual LD.
The Amer
Pruning reduces, but does not eliminate, these biases.

These results suggest in practice using a clumping algo-

rithm with pairwise r2 < 0.1 as the least-biased approach

with AVENGEME.

Comparison with Related Methods

We analyzed our bivariate simulations for total sample size

10K using the bivariate GREML implemented in GCTA.27

The mean bs12 was 0.265 with standard deviation 0.032,

which compared to the results in Table S4 shows that in

this case the GREML estimate has greater bias but less vari-

ance than AVENGEME.

We also applied the method by So et al.15 to the SCZ

simulation (Table 1, rightmost column). Although their

method appeared unbiased in the simulation they per-

formed in which p01 ¼ p02 ¼ 0.995, in our setting it

yielded seriously biased results for s21 with a mean estimate

of 0.189 compared to the true value of 0.3.

Having established the good operating characteristics of

AVENGEME, we applied our method to some published as-

sociation results for polygenic scores. For the four diseases

from Stahl et al.13, our estimates were systematically lower

than the ones obtained by their ABPA method (Table 5),

and for s21 our confidence intervals excluded their esti-

mates. These results were surprising because the two

methods are conceptually similar, and our simulations

had shown that under themodels inferred by ABPA, AVEN-

GEME achieved nearly unbiased estimation. LD is unlikely

to affect these results because the markers were clumped to

r2 < 0.1. We speculate that the differences might arise from

ABPA’s use of prior distributions, and we return to this

point in the Discussion. Compared to results fromGREML,

our estimates for s21 were lower, with non-overlapping con-

fidence intervals, for rheumatoid arthritis and type 2 dia-

betes, whereas the results were similar for celiac disease

and myocardial infarction.

We applied AVENGEME to three waves of SCZ meta-an-

alyses (Table 5). The genetic variance s21 was similar in the

ISC and PGC1 data, but decreased in the PGC2 data. The

proportion of null markers decreased in PGC1 and PGC2

compared to ISC. This might reflect increased heterogene-

ity: as more studies contribute to the meta-analyses,

increased genetic heterogeneity could decrease the propor-

tion of null markers, whereas increased environmental

heterogeneity could decrease the genetic variance, which

on the liability scale is expressed relative to the total vari-

ance. GREML has been applied to the ISC and PGC1

data;32 for the former, the estimate is similar to ours,

whereas it is significantly lower in the latter. ABPA has

been applied to an expanded PGC1 analysis,31 yielding a

significantly higher estimate of s21 than ours.

We finally applied AVENGEME to estimate genetic

covariance between psychiatric traits by using published

summary data.33 These data included five pairs from four

disorders: schizophrenia, bipolar disorder, major depres-

sive disorder, and autistic spectrum disorder (other combi-

nations, for which only two selection intervals were
ican Journal of Human Genetics 97, 250–259, August 6, 2015 255



Table 5. Genetic Model Parameters Estimated by AVENGEME, ABPA,13,31 and GREML13,32

RA CD MI T2D SCZ ISC SCZ PGC1 SCZ PGC2

AVENGEME bs2
1 .13 (.09–.17) .28 (.21–.35) .34 (.24–.45) .30 (.23–.37) .31 (.28–.34) .31 (.29–.33) .24 (.24–.25)

ABPA bs2
1 .18 (.11–.25) .44 (.34–.54) .48 (.32–.64) .49 (.39–.59) – .50 (.45–.54)a –

GREML bs2
1 .32 (.25–.39) .33 (.25–.41) .41 (.28–.54) .51 (.38–.64) .33 (.27–.39) .23 (.21–.25) –

AVENGEME bp01 .946 (.887–.975) .969 (.950–.982) .965 (.933–.982) .954 (.929–.971) .953 (.940–.963) .867 (.841–.887) .852(.835–.867)

ABPA bp01 .973 (.953–.993) .972 (.954–.990) .980 (.965–.995) .962 (.941–.983) – .936 (.922–.952)a –

95% confidence intervals given in parentheses, those for ABPA converted from the reported 50% credible intervals by assuming normally distributed posteriors
and those for GREML from the reported standard error by assuming normally distributed estimators.
aIncludes an additional Swedish case/control study.
reported, were excluded because our method requires at

least three). The method of Dudbridge14 has previously

been shown to agree well with GREML for these data,34

but in estimating the genetic covariance it assumes that

s21 and p01 are known exactly. Here we estimated all three

parameters simultaneously. The results are presented in Ta-

ble 6 and show that the estimates from AVENGEME are of

similar magnitude to those from GREML but are consis-

tently larger and have narrower confidence intervals.

This difference might arise from LD, because here the

markers were clumped to r2 < 0.25, which according to

Table 5 might create an upward bias in AVENGEME.
Discussion

The method we have proposed allows simultaneous esti-

mation of the additive variance explained by a set of ge-

netic markers, the proportion of markers affecting the trait

of interest, and the genetic covariance between two traits.

It does so by solving analytic expressions to obtain

maximum likelihood estimates and profile likelihood con-

fidence intervals and is consequently very fast. Further-

more, the polygenic score tests required by our method

can be rapidly calculated from summary statistics for indi-

vidual markers, allowing application to very large datasets

and results from published literature. Our simulations

show that ourmethod enjoys good bias and coverage prop-

erties in spite of its assumption that the tests from different

selection intervals are independent. Although we pre-

sented results only for case/control designs here, they

represent the most challenging scenarios for polygenic

modeling and we have observed results of comparable or

greater accuracy for quantitative traits (data not shown).

AVENGEME has a number of advantages compared to

currently available methods. In comparison with GREML

it can deal with very large sample sizes and obtain esti-

mates much more rapidly, and it additionally estimates

the proportion of null markers. Compared to ABPA, it

does not require Monte Carlo sampling nor simulation of

genome-wide data and is therefore much faster;

AVENGEME also extends to estimate the covariance be-

tween related traits. Compared to the method of So
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et al.15 and other empirical Bayes methods, it appears to

be less biased and can simultaneously estimate up to five

model parameters. Compared to the LD-scoring approach,

it can estimate the proportion of null markers and does not

require calculation of LD between pairs of markers.

One limitation of our approach is the need for two inde-

pendent datasets, which is often not available when com-

mon controls are used; in contrast, GREML can estimate a

bivariate model from a single sample and LD scoring is

robust to overlapping samples. We assume that population

structure has been entirely adjusted for in the target sample,

and might over-estimate chip heritability if this is not the

case, whereas GREML and LD-scoring adjust for structure

explicitly in their calculations. Our method also assumes

that markers are uncorrelated. In practice this is approxi-

mately ensured by a LD-pruning step that is also commonly

conducted for othermethods.Wehave shown that if the re-

sidual LD between pruned markers is not too high, say r2 <

0.1, then AVENGEME retains its unbiased properties if a

‘‘clumping’’ algorithm is used, but can otherwise overesti-

mate the genetic variance. In contrast, LD scoring explicitly

uses LD to estimate the variance explained. The similarity

of estimates obtained by that approach to those of ours

and other current methods suggests that this problem is

currently not too severe, but asmarker densities increase to-

ward whole-genome coverage, it will become more impor-

tant to include all markers and account for LD. Our

methods can be extended to allow correlation between

markers, and this will be pursued in a subsequent paper.

A limitation is that unless very large sample sizes are used,

estimation of the chip heritability in the training sample is

unstable if it is jointly estimated with the covariance with

the testing sample. Therefore, if the variance is of particular

interest, we recommend analyzing the same trait in both

samples, either by splitting a single sample in two or by

drawing two samples from the same trait population.

Then good performance in estimating the variance can be

achieved by constraining it to equal the covariance.

The unidirectional estimation provides good estimates

in all situations we considered. The bidirectional estima-

tion can also be applied, providing a less variable estimate

than the unidirectional estimators, with a similar degree of

bias. However, the bidirectional analysis is more time
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Table 6. Genetic Covariance Estimates for Five Pairs of Four
Psychiatric Traits

AVENGEME bs12 GREML bs12

BPD-SCZ 0.199 (0.186–0.209) 0.151 (0.131–0.171)

MDD-BPD 0.134 (0.120–0.148) 0.102 (0.077–0.127)

SCZ-MDD 0.165 (0.153–0.177) 0.087 (0.065–0.110)

SCZ-ASD 0.050 (0.038–0.059) 0.03 (0.008–0.052)

ASD-BPD 0.042 (0.030–0.055) 0.008 (�0.017–0.033)

Abbreviations are as follows: BPD, bipolar disorder; SCZ, schizophrenia; MDD,
major depressive disorder; ASD, autistic spectrum disorder. AVENGEME esti-
mates are from bidirectional analysis. GREML confidence intervals derived
from published standard errors35 assuming normally distributed estimators.
consuming than the unidirectional, and because its reduc-

tion in variance is rather small, we do not find a compel-

ling reason to prefer it to the unidirectional.

We recommend using disjoint selection intervals,

whereas the influence of the weighting seemed limited in

the situations we considered. However, the use of nested

intervals still provides good estimates if the number of in-

tervals is sufficiently large (say ten) and appears to work

well for the covariance across sample sizes, number, and

type of intervals. Nested intervals seem more appealing

for obtaining significant tests of association between poly-

genic scores and a trait of interest, and to date have been

reported more often than disjoint intervals. However, for

the estimation of the underlying genetic model, we suggest

that results for disjoint intervals should also be made avail-

able. The current fashion for using around ten intervals ap-

pears to be sufficient for obtaining accurate estimates;

although precision increases as more intervals are used,

the gains diminish rapidly beyond that number.

Our method was generally found to produce under-

coverage of confidence intervals. This is due both to some

bias in the estimation, though this was generally small,

and the assumption of independent tests from each inter-

val. We have observed that our profile likelihood intervals

closely match the empirical distribution of parameter esti-

mates in our simulations. The under-coverage is therefore

more likely to arise from the slight bias in our estimator

rather than from the calculation of its variance. Our experi-

ence is that, in this application, anapproximately valid con-

fidence interval is generally sufficient for practitioners.

AVENGEME requires numerical optimization to estimate

parameters, and this can be sensitive to the algorithm used

and the initial estimates provided. We have used the

default settings of the optim() function in R (Nelder-

Mead non-linear optimization) and in the simulations pro-

vided the true parameter values as the initial estimates.

This was to obtain, as far as possible, the ideal results

from truly maximizing the likelihood. We found that

slight variations can result from different starting values

(our default values are 0.5 for all parameters), but the con-

clusions remain the same. In practice we suggest using a

range of plausible starting values to identify the solution

with the maximum likelihood.
The Amer
AVENGEME is conceptually similar to ABPA,13 both

methods seeking the genetic model that best fits the

observed results of polygenic score tests using multiple se-

lection intervals. The main difference is that AVENGEME

uses analytic formulae to construct an explicit likelihood,

whereas ABPA uses approximate Bayesian computation

withMonte Carlo sampling. In the application to the com-

plex diseases in Table 1, we obtained lower estimates for all

parameters and the reason for this might be the effect of

the prior distributions used by ABPA. Their prior for p01

is uniform on the log scale and therefore heavily favors

values of p01 close to 1. On the other hand, their prior

for s21 is beta distributed on a relative scale and does not

have a natural correspondence to maximum likelihood.

Furthermore, if the true distribution of effects departs

from the assumed model (for example, as a mixture of

normal distributions8,9), then the two methods might

diverge further. Our approach might benefit from

imposing prior distributions on the parameters and per-

forming Bayesian estimation, particularly for improving

the precision of estimating s21 jointly with s12. This is a

promising subject for future work.

Our approach provides a fast and accurate method for

estimating the genetic model parameters underlying

large-scale association studies. It is particularly applicable

to summary statistics for individual markers, often made

freely available online by research consortia. Therefore, it

will greatly facilitate the estimation of genetic covariance,

especially between traits that have been studied by

different consortia and for which combined analysis of in-

dividual-level data is logistically challenging. The rapid

estimation of genetic models at arbitrarily large sample

sizes suggests that our approach will prove useful as the

sizes of consortium and biobank studies begin to approach

millions of subjects.
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L.P., et al.; DIAGRAMþ Consortium; MAGIC Consortium;

GLGC Investigators; MuTHER Consortium; DIAGRAM Con-

sortium; GIANT Consortium; Global B Pgen Consortium; Pro-

cardis Consortium; MAGIC investigators; GLGC Consortium

(2012). Novel loci for adiponectin levels and their influence

on type 2 diabetes and metabolic traits: a multi-ethnic meta-

analysis of 45,891 individuals. PLoS Genet. 8, e1002607.

26. Schizophrenia Working Group of the Psychiatric Genomics

Consortium (2014). Biological insights from 108 schizo-

phrenia-associated genetic loci. Nature 511, 421–427.

27. Lee, S.H., Yang, J., Goddard, M.E., Visscher, P.M., and Wray,

N.R. (2012). Estimation of pleiotropy between complex dis-

eases using single-nucleotide polymorphism-derived genomic

relationships and restricted maximum likelihood. Bioinfor-

matics 28, 2540–2542.

28. Bulik-Sullivan, B.K., Loh, P.R., Finucane, H.K., Ripke, S., Yang,

J., Patterson, N., Daly, M.J., Price, A.L., and Neale, B.M.;

Schizophrenia Working Group of the Psychiatric Genomics

Consortium (2015). LD Score regression distinguishes con-

founding from polygenicity in genome-wide association

studies. Nat. Genet. 47, 291–295.

29. Wellcome Trust Case Control Consortium (2007). Genome-

wide association study of 14,000 cases of seven common dis-

eases and 3,000 shared controls. Nature 447, 661–678.

30. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira,

M.A., Bender, D., Maller, J., Sklar, P., de Bakker, P.I., Daly,

M.J., and Sham, P.C. (2007). PLINK: a tool set for whole-

genome association and population-based linkage analyses.

Am. J. Hum. Genet. 81, 559–575.
, 2015

http://refhub.elsevier.com/S0002-9297(15)00241-4/sref1
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref1
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref1
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref2
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref2
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref3
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref3
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref3
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref4
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref4
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref4
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref4
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref4
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref5
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref5
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref5
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref6
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref6
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref6
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref6
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref7
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref7
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref7
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref7
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref7
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref8
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref8
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref8
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref9
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref9
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref9
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref10
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref10
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref10
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref11
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref11
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref11
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref11
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref11
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref11
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref11
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref12
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref12
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref12
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref12
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref12
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref13
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref13
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref13
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref13
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref13
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref13
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref14
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref14
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref15
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref15
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref15
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref15
http://dx.doi.org/10.1101/014498
http://dx.doi.org/10.1101/014498
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref17
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref17
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref18
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref18
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref19
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref19
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref19
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref20
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref20
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref21
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref21
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref21
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref22
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref22
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref23
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref23
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref23
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref23
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref23
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref24
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref24
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref24
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref24
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref24
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref24
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref24
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref24
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref25
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref25
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref25
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref25
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref25
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref25
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref25
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref25
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref25
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref25
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref26
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref26
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref26
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref27
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref27
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref27
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref27
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref27
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref28
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref28
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref28
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref28
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref28
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref28
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref29
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref29
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref29
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref30
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref30
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref30
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref30
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref30


31. Ripke, S., O’Dushlaine, C., Chambert, K., Moran, J.L., Kähler,

A.K., Akterin, S., Bergen, S.E., Collins, A.L., Crowley, J.J.,

Fromer, M., et al.; Multicenter Genetic Studies of Schizo-

phrenia Consortium; Psychosis Endophenotypes Interna-

tional Consortium; Wellcome Trust Case Control Consortium

2 (2013). Genome-wide association analysis identifies 13 new

risk loci for schizophrenia. Nat. Genet. 45, 1150–1159.

32. Lee, S.H., DeCandia, T.R., Ripke, S., Yang, J., Sullivan, P.F., God-

dard, M.E., Keller, M.C., Visscher, P.M., and Wray, N.R.;

Schizophrenia Psychiatric Genome-Wide Association Study

Consortium (PGC-SCZ); International Schizophrenia Con-

sortium (ISC); Molecular Genetics of Schizophrenia Collabo-

ration (MGS) (2012). Estimating the proportion of variation

in susceptibility to schizophrenia captured by common

SNPs. Nat. Genet. 44, 247–250.
The Amer
33. Cross-Disorder Group of the Psychiatric Genomics Con-

sortium (2013). Identification of risk loci with shared effects

on five major psychiatric disorders: a genome-wide analysis.

Lancet 381, 1371–1379.

34. Wray, N.R., Lee, S.H., Mehta, D., Vinkhuyzen, A.A., Dud-

bridge, F., and Middeldorp, C.M. (2014). Research review:

Polygenic methods and their application to psychiatric traits.

J. Child Psychol. Psychiatry 55, 1068–1087.

35. Lee, S.H., Ripke, S., Neale, B.M., Faraone, S.V., Purcell, S.M.,

Perlis, R.H., Mowry, B.J., Thapar, A., Goddard, M.E., Witte,

J.S., et al.; Cross-Disorder Group of the Psychiatric Genomics

Consortium; International Inflammatory Bowel Disease

Genetics Consortium (IIBDGC) (2013). Genetic relationship

between five psychiatric disorders estimated from genome-

wide SNPs. Nat. Genet. 45, 984–994.
ican Journal of Human Genetics 97, 250–259, August 6, 2015 259

http://refhub.elsevier.com/S0002-9297(15)00241-4/sref31
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref31
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref31
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref31
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref31
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref31
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref31
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref32
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref32
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref32
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref32
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref32
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref32
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref32
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref32
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref33
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref33
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref33
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref33
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref34
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref34
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref34
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref34
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref35
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref35
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref35
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref35
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref35
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref35
http://refhub.elsevier.com/S0002-9297(15)00241-4/sref35


The American Journal of Human Genetics 

Supplemental Data 

A Fast Method that Uses Polygenic Scores to Estimate  

the Variance Explained by Genome-wide Marker Panels  

and the Proportion of Variants Affecting a Trait 

Luigi Palla and Frank Dudbridge 



 Association between score and disease 
(Stahl et al., 2012) 

 Association between score and 
disease (Schizophrenia Working 

Group of the Psychiatric 
Genomics Consortium, 2014) 

P-value 
interval 

RA CD MI T2D P-value 
interval 

SCZ-ISC SCZ-
PGC1 

SCZ-
PGC2 

[0,10-4] 910-6 210-16 110-6 110-19 [0,510-

8] 

- 210-4
 110-23

 

(10-4,10-

3] 
0.03 0.001 0.05 110-4

 [0,10-6] 310-4
 410-5

 410-36
 

(10-

3,0.01] 
510-4

 810-6
 610-5

 710-10
 [0,10-4] 210-10 910-12

 210-71
 

(0.01,0.0
5] 

210-6
 510-9

 510-6
 310-7

 [0,10-3] 210-16 210-29
 810-103

 

(0.05,0.1
] 

0.1 0.003 0.005 810-5
 [0,0.01] 110-18 310-48

 210-138
 

(0.1,0.2] 0.2 0.001 0.2 0.02 [0,0.05] 110-22 110-63
 110-164

 

(0.2,0.3] 0.5 0.003 0.2 0.1 [0,0.1] 610-26 710-70
 610-166

 

(0.3,0.4] 0.01 0.06 0.01 0.2 [0,0.2] 110-27 810-74
 410-164

 

(0.4,0.5] 0.03 0.08 0.3 0.02 [0,0.5] 110-26 110-73
 810-159

 

     [0,1] 610-27 210-74
 210-157

 

 

Table S1: P-value selection intervals and P-values for association between the corresponding 

polygenic scores and each of the diseases presented in Table 1.  RA, rheumatoid arthritis; CD, 

celiac disease; MI, myocardial infarction; T2D, type II diabetes; SCZ, schizophrenia.  ISC, 

International Schizophrenia Consortium; PGC, Psychiatric Genomics Consortium.   

  



Criterion Threshold PLINK2 flag 

Pairwise relatedness 0.025 --rel-cutoff 0.025 

Subject missingness 0.03 --mind 0.03 

Subject heterozygosity <0.23 or >0.3 --het 

Genotype call rate 0.01 --geno 0.01 

Hardy-Weinberg P-value in 
combined NBS+58C 

5e-7 --hwe 5e-7 

Minor allele frequency 0.01 --maf 0.01 
 

Table S2: Quality control criteria used in analysis of WTCCC data. 

  



 

 

Estimation of 
2

1 , 01  Estimation of 
2

1 , 01 , 12  

RA CD MI T2D  RA CD MI T2D 

True 
2

1  0.180 0.440 0.480 0.490 0.180 0.440 0.480 0.490 

Mean 
2

1̂  0.181 0.441 0.485 0.492 0.370 0.607 0.652 0.619 

SD 2

1̂  0.018 0.029 0.043 0.030 0.335 0.323 0.327 0.318 

Coverage 0.95 0.95 0.95 0.96 0.40 0.91 0.90 0.93 

         

True  0.972 0.972 0.979 0.961 0.958 0.972 0.979 0.961 

Mean 01̂  0.972 0.972 0.980 0.962 0.960 0.967 0.976 0.957 

SD 01̂  0.0049 0.0033 0.0031 0.0041 0.028 0.014 0.009 0.017 

Coverage 0.95 0.95 0.96 0.96 0.95 0.93 0.93 0.94 

         

True 12  - - - - 0.180 0.440 0.480 0.490 

Mean 12̂  - - - - 0.200 0.454 0.500 0.514 

SD 12̂  - - - - 0.036 0.040 0.050 0.068 

Coverage - - - - 0.96 0.98 0.98 0.998 

 

Table S3: Application of AVENGEME to independently simulated 2  statistics for each selection 

interval, for 4 genetic models shown in Table 1.  Mean and standard deviation of parameter 
estimates and coverage of 95% confidence interval are shown over 1000 simulations. Monte Carlo 

error for the mean is SD/1000 and for coverage of 0.95 is 0.007.   

 

  



 3 Intervals 5 Intervals 10 Intervals 20 Intervals 40 Intervals 

Mean 2

1̂

(0.3) 

0.532 0.459 0.448 0.405 0.302 

SD 2

1̂  0.45 0.435 0.430 0.413 0.364 

Coverage 1 0.996 0.994 0.997 0.997 

Mean 01̂  

(0.95) 

0.912 0.926 0.930 0.938 0.953 

SD 01̂  0.085 0.076 0.069 0.062 0.053 

Coverage 1 0.991 0.992 0.989 0.991 

Mean 12̂

(0.294) 

0.288 0.286 0.287 0.288 0.296 

SD 12̂  0.038 0.039 0.038 0.038 0.037 

Coverage 0.97 0.959 0.955 0.961 0.964 

      

Mean 2

2̂  

(0.45) 

0.534 0.484 0.502 0.451 0.351 

SD 2

2̂  0.446 0.428 0.429 0.420 0.387 

Coverage 1 0.987 0.992 0.991 0.989 

Mean 02̂  

(0.94) 

0.928 0.935 0.933 0.939 0.952 

SD 02̂  0.062 0.058 0.058 0.056 0.050 

Coverage     1   0.986 0.985 0.985 0.988 

Mean 12̂

(0.294) 

0.286   0.285 0.287 0.288 0.295 

SD 12̂  0.037 0.038 0.038 0.038 0.036 

Coverage 0.97 0.957 0.956 0.963 0.968 

Table S4 : Unidirectional AVENGEME performance for estimating three parameters (true values in 

parentheses), under the bivariate simulation with N1=N2=5000 (see main text).  Estimation in each 

direction is shown.  Monte Carlo error for the mean is SD/1000 and for coverage of 0.95 is 0.007.  

The P-value selection thresholds, for disjoint intervals, are as follows:  

3 intervals: 0, 10-3, 0.2, 1; 

 5 intervals: 0, 10-6, 10-3, 0.05, 0.2, 1;  

10 intervals: 0, 510-8, 10-6, 10-4, 10-3, 0.01, 0.05, 0.1, 0.2, 0.5, 1;  

20 intervals: 0, 10-8, 510-8, 10-7, 10-6, 10-5, 10-4, 510-4, 10-3, 0.005, 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 

0.2, 0.3, 0.5, 0.75, 1;  

40 intervals: 0, 510-9, 10-8, 2.510-8, 510-8, 7.510-8, 10-7, 510-7, 10-6, 510-6, 10-5, 510-5, 10-4, 

2.510-4, 510-4, 7.510-4, 10-3, 2.510-3, 510-3, 7.510-3, 0.01, 0.0175, 0.025, 0.0375, 0.05, 0.0625, 

0.075, 0.0875, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25, 0.3, 0.4, 0.5, 0.625, 0.75, 0.875, 1. 

  



 

 3 Intervals 5 Intervals 10 Intervals 20 Intervals 40 Intervals 

Mean 2

1̂

(0.3) 

0.456 0.357 0.436 0.442 0.432 

SD 2

1̂  0.414 0.321 0.378 0.385 0.392 

Coverage 1 0.95 0.882 0.852 0.842 

Mean 01̂  

(0.95) 

0.937 0.946 0.939 0.939 0.941 

SD 01̂  0.051 0.041 0.045 0.045 0.045 

Coverage 1 0.971 0.914 0.909 0.904 

Mean 12̂

(0.294) 

0.290 0.286 0.291 0.291 0.292 

SD 12̂  0.029 0.026 0.029 0.030 0.031 

Coverage 0.996 0.960 0.933 0.935 0.938 

      

Mean 2

2̂  

(0.45) 

0.504 0.521 0.532 0.583 0.584 

SD 2

2̂  0.421 0.330 0.353 0.361 0.373 

Coverage 1 0.960 0.917 0.917 0.908 

Mean 02̂  

(0.94) 

0.938 0.932 0.932 0.928 0.929 

SD 02̂  0.046 0.034 0.036 0.037 0.038 

Coverage     1  0.963 0.924 0.928 0.926 

Mean 12̂

(0.294) 

0.286 0.289 0.291 0.295 0.296 

SD 12̂  0.030 0.026 0.028 0.030 0.031 

Coverage 0.996 0.979 0.953 0.954 0.955 

Table S5 : Unidirectional AVENGEME performance for estimating three parameters (true values in 

parentheses), under the bivariate simulation with N1=N2=10000 (see main text).  Estimation in each 

direction is shown.  The Monte Carlo errors and P-value selection thresholds are as in 

Supplementary Table 2. 

  



 

 3 Intervals 5 Intervals 10 Intervals 20 Intervals 40 Intervals 

Mean 2

1̂

(0.3) 

0.445 0.493 0.434 0.409 0.435 

SD 2

1̂  0.385 0.298 0.274 0.258 0.260 

Coverage 0.994 0.625 0.591 0.614 0.629 

Mean 01̂  

(0.95) 

0.938 0.930 0.935 0.938 0.935 

SD 01̂  0.042 0.032 0.031 0.029 0.029 

Coverage 0.993 0.626 0.606 0.627 0.637 

Mean 12̂

(0.294) 

0.294 0.305 0.301 0.298 0.304 

SD 12̂  0.051 0.042 0.043 0.042 0.043 

Coverage 0.980 0.789 0.667 0.691 0.692 

      

Mean 2

2̂  

(0.45) 

0.516 0.501 0.451 0.431 0.428 

SD 2

2̂  0.407 0.269 0.254 0.245 0.238 

Coverage 0.989 0.699 0.676 0.664 0.683 

Mean 02̂  

(0.94) 

0.936 0.933 0.938 0.940 0.940 

SD 02̂  0.040 0.026 0.026 0.026 0.025 

Coverage     0.992     0.725 0.691 0.694 0.706 

Mean 12̂

(0.294) 

0.284  0.288 0.283 0.281 0.281 

SD 12̂  0.054 0.038 0.040 0.040 0.040 

Coverage 0.984 0.808 0.694 0.690 0.698 

Table S6 : Unidirectional AVENGEME performance for estimating three parameters (true values in 

parentheses), under the bivariate simulation with N1=N2=20000 (see main text).  Estimation in each 

direction is shown.  The Monte Carlo errors and P-value selection thresholds are as in 

Supplementary Table 2. 

  



 3 Intervals 5 Intervals 10 Intervals   20 Intervals 40 Intervals 

Mean 2

1̂

(0.3) 

0.526 0.420 0.386 0.370 0.362 

SD 2

1̂  0.410 0.111 0.098 0.094 0.091 

Coverage 0.978 0.436 0.505 0.576 0.596 

Mean 01̂  

(0.95) 

0.927 0.932 0.936 0.939 0.940 

SD 01̂  0.044 0.013 0.012 0.012 0.012 

Coverage 0.986 0.352 0.443 0.530 0.552 

Mean 12̂

(0.294) 

0.306 0.307 0.304 0.302 0.302 

SD 12̂  0.090 0.028 0.027 0.027 0.027 

Coverage 0.965 0.768 0.689 0.701 0.697 

      

Mean 2

2̂  

(0.45) 

0.541 0.513 0.472 0.452 0.444 

SD 2

2̂  0.421 0.140 0.131 0.126 0.124 

Coverage 0.979 0.711 0.690 0.701 0.685 

Mean 02̂  

(0.94) 

0.932 0.929 0.934 0.936 0.937 

SD 02̂  0.042 0.015 0.014 0.014 0.014 

Coverage     0.984     0.679 0.706 0.728 0.731 

Mean 12̂

(0.294) 

0.276 0.293 0.288 0.286 0.285 

SD 12̂  0.087 0.030 0.030 0.030 0.030 

Coverage 0.971 0.848 0.731 0.691 0.685 

Table S7 : Unidirectional AVENGEME performance for estimating three parameters (true values in 

parentheses), under the bivariate simulation with N1=N2=40000 (see main text).  Estimation in each 

direction is shown.  The Monte Carlo errors and P-value selection thresholds are as in 

Supplementary Table 2. 

  



 5 Intervals 10 Intervals   20 Intervals 40 Intervals 

Mean 2

1̂

(0.3) 

0.398 0.364 0.347 0.340 

SD 2

1̂  0.083 0.075 0.072 0.069 

Coverage 0.385 0.522 0.579 0.606 

Mean 01̂  

(0.95) 

0.935 0.939 0.942 0.942 

SD 01̂  0.010 0.010 0.009 0.009 

Coverage 0.295 0.450 0.544 0.574 

Mean 2

2̂  

(0.45) 

0.563 0.526 0.507 0.499 

SD 2

2̂  0.104 0.097 0.094 0.092 

Coverage 0.472 0.569 0.622 0.64 

Mean 02̂  

(0.94) 

0.926 0.930 0.932 0.932 

SD 02̂  0.011 0.010 0.010 0.010 

Coverage        0.386         0.512     0.585        0.608 

Mean 12̂

(0.294) 

       0.307     0.304     0.302        0.301 

SD 12̂         0.022         0.022     0.022        0.022 

Coverage        0.771         0.686     0.695        0.701 

Table S8 : Bidirectional AVENGEME performance for estimating five parameters (true values in 

parentheses), under the bivariate simulation with N1=N2=40000 (see main text).  The Monte Carlo 

errors and P-value selection thresholds are as in Supplementary Table 2.  No results for 3 intervals 

are shown as the number of intervals must be at least equal to the number of estimated parameters, 

in this case 5. 
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