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Proof of Theorem 4

We first present two lemmas that are essential to the proof of Theorem 4, which concern the

concentration of the empirical covariance matrix Ĉ around its population version C and the

score vector
1

n
X̂T (y − X̂β0) =

1

n
X̂Tη − 1

n
X̂T (X̂−X)β0

around zero. These lemmas can be viewed as generalizations of Lemma A.3 and inequality

(A.15), respectively. For ease of presentation, we condition on the event of probability 1−π0

that the two error bounds in Condition (C4) hold, and incorporate the probability π0 into

the result by the union bound.

Lemma S.1. Under Conditions (C4)–(C6), if µ0 > 0 and the first-stage error bounds e1

and e2 satisfy

s(2Le1 + e2) ≤
α

(4− α)φ
∧ (µ0/2)

2

s
, (S.1)

then with probability at least 1− π0, the following inequalities holds:

∥(ĈSS)
−1∥∞ ≤ 4− α

2(2− α)
φ, (S.2)

∥ĈScS(ĈSS)
−1∥∞ ≤

{(
1− α

2

) ρ′(0+)

ρ′µ(b0/2)

}
∧ (2cnν), (S.3)

and

Λmin(ĈSS) > µτ0. (S.4)

Proof. It follows from the arguments in the proof of Lemma A.1 and Condition (C4) that

max
1≤i,j≤p

1

n
|x̂T

i x̂j − (Zγ0i)
TZγ0j| ≤ 2Le1 + e2.
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Consequently, by the assumption (S.1),

φ∥ĈSS −CSS∥∞ ≤ φs(2Le1 + e2) ≤
α

4− α
(S.5)

and

φ∥ĈScS −CScS∥∞ ≤ α

4− α
. (S.6)

Then inequality (S.2) follows as in the proof of Lemma A.3.

To show inequality (S.3), by (S.2), (S.5), (S.6), and Condition (C6), we have

∥ĈScS(ĈSS)
−1 −CScS(CSS)

−1∥∞
≤ ∥ĈScS −CScS∥∞∥(ĈSS)

−1∥∞ + ∥CScS(CSS)
−1∥∞∥ĈSS −CSS∥∞∥(ĈSS)

−1∥∞

≤ α

(4− α)φ

4− α

2(2− α)
φ+

[{
(1− α)

ρ′(0+)

ρ′µ(b0/2)

}
∧ (cnν)

]
α

(4− α)φ

4− α

2(2− α)
φ

≤ α

2(2− α)
+

{
α(1− α)

2(2− α)

ρ′(0+)

ρ′µ(b0/2)

}
∧
( c
2
nν

)
≤

{
α

2

ρ′(0+)

ρ′µ(b0/2)

}
∧ (cnν),

where we have used the inequalities ρ′(0+)/ρ′µ(b0/2) ≥ 1 and α/{2(2− α)} ≤ 1/2 ≤ cnν/2.

This, along with Condition (C6), implies (S.3).

Finally, it follows from the Hoffman–Wielandt inequality (Horn and Johnson 1985) and

the assumption (S.1) that

|Λmin(ĈSS)− Λmin(CSS)|2 ≤ ∥ĈSS −CSS∥2F ≤ s2(2Le1 + e2) ≤
(µ0

2

)2

.

In view of the definition of µ0, inequality (S.4) follows. This completes the proof of the

lemma.

Lemma S.2. Under Conditions (C4)–(C6), if the first-stage error bounds satisfy e1 = O(1)

and e2 = O(1), then there exist constants c0, c1, c2 > 0 such that, if we choose

µ ≥ C0n
ν

√
log p+ log q

n
∨ e2,

where C0 = c0Lmax(σp+1,Mσmax,M), then with probability at least 1 − π0 − c1(pq)
−c2, it

holds that ∥∥∥∥ 1nX̂Tη − 1

n
X̂T (X̂−X)β0

∥∥∥∥
∞

<
α

6cnν
µρ′(0+). (S.7)

Proof. As in the proof of Lemma A.2, we write n−1X̂Tη−n−1X̂T (X̂−X)β0 = T1+ · · ·+T6.

Letting t0 = αµρ′(0+)/(6cnν), we bound the six terms similarly as follows:

P

(
∥T1∥∞ ≥ t0

6

)
≤ P

(∥∥∥∥ 1nZTη

∥∥∥∥
∞

≥ t0
6e1

)
≤ q exp

{
− n

2σ2
p+1

(
t0
6e1

)2
}
,
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P

(
∥T2∥∞ ≥ t0

6

)
≤ P

(∥∥∥∥ 1nZTη

∥∥∥∥
∞

≥ t0
6L

)
≤ q exp

{
− n

2σ2
p+1

(
t0
6L

)2
}
,

P

(
∥T3∥∞ ≥ t0

6

)
≤ P

(
max

1≤i≤q, 1≤j≤p

∣∣∣∣ 1nzTi εj
∣∣∣∣
∞

≥ t0
6Me1

)
≤ pq exp

{
− n

2σ2
max

(
t0

6Me1

)2
}
,

P

(
∥T4∥∞ ≥ t0

6

)
≤ P

(
max

1≤i≤q, 1≤j≤p

∣∣∣∣ 1nzTi εj
∣∣∣∣
∞

≥ t0
6LM

)
≤ pq exp

{
− n

2σ2
max

(
t0

6LM

)2
}
,

∥T5∥∞ ≤ M max
1≤i,j≤p

1

n
∥Z(γ̂i − γ0i)∥2∥Z(γ̂j − γ0j)∥2 ≤ Me2,

and

∥T6∥∞ ≤ LM max
1≤j≤p

1√
n
∥Z(γ̂j − γ0j)∥2 ≤ LM

√
e2.

Combining these bounds and in view of the assumptions e1 = O(1) and e2 = O(1), there

exist constants c0, c1, c2 > 0 such that, if we choose

µ ≥ C0n
ν

√
log p+ log q

n
∨ e2,

where C0 = c0Lmax(σp+1,Mσmax,M), then with probability at least 1− π0 − c1(pq)
−c2 , the

desired inequality holds. The completes the proof of the lemma.

Proof of Theorem 4. One can easily show that β̂ ∈ Rp is a strict local minimizer of problem

(4) if the following conditions hold:

1

n
X̂T

Ŝ
(y − X̂β̂) = µρ′µ(|β̂Ŝ|) ◦ sgn(β̂Ŝ), (S.8)∥∥∥∥ 1nX̂T

Ŝc(y − X̂β̂)

∥∥∥∥
∞

< µρ′(0+), (S.9)

and

Λmin(ĈŜŜ) > µτ(ρµ; β̂Ŝ), (S.10)

where ◦ denotes the Hadamard (entrywise) product, and | · |, ρ′µ(·), and sgn(·) are applied

componentwise. It suffices to find a β̂ ∈ Rp with the desired properties such that conditions

(S.8)–(S.10) hold. Let β̂Sc = 0. The idea of the proof is to first determine β̂S from (S.8),

and then show that thus obtained β̂ also satisfies (S.9) and (S.10).

From now on, we condition on the event of probability at least 1 − π0 − c1(pq)
−c2 that

the inequalities in Lemmas S.1 and S.2 hold. Using similar arguments to those in the proof

of Theorem 3, (S.8) with Ŝ replaced by S can be written in the form

β̂S − β0S = (ĈSS)
−1

{
1

n
X̂T

Sη − 1

n
X̂T

S (X̂S −XS)β0S − µρ′µ(|β̂S|) ◦ sgn(β̂S)

}
. (S.11)

Define the function f : Rs → Rs by f(θ) = β0S+(ĈSS)
−1{n−1X̂T

Sη−n−1X̂T
S (X̂S−XS)β0S−

µρ′µ(|θ|) ◦ sgn(θ)}, and let K denote the hypercube {θ ∈ Rs : ∥θ − β0S∥∞ ≤ 7φµρ′(0+)/4}.
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It follows from (S.2), (S.7), and Condition (C4) that, for θ ∈ K,

∥f(θ)− β0S∥∞ ≤ ∥(ĈSS)
−1∥∞

{∥∥∥∥ 1nX̂T
Sη − 1

n
X̂T

S (X̂S −XS)β0S

∥∥∥∥
∞
+ µρ′(0+)

}
≤ 4− α

2(2− α)
φ
{ α

6cnν
µρ′(0+) + µρ′(0+)

}
≤ 3

2
φ

{
1

6
µρ′(0+) + µρ′(0+)

}
=

7

4
φµρ′(0+),

that is, f(K) ⊂ K. Also, the last inequality and the assumption (14) imply that for θ ∈ K,

∥θ − β0S∥∞ ≤ b0/2, and hence sgn(θ) = sgn(β0S). Thus, in view of Condition (C4), f is

a continuous function on the convex, compact hypercube K. An application of Brouwer’s

fixed point theorem yields that equation (S.11) has a solution β̂S in K. Moreover, sgn(β̂S) =

sgn(β0S), so that Ŝ = S. Therefore, we have found a β̂ that satisfies the desired properties

and (S.8).

To verify that β̂ satisfies (S.9), by substituting (S.11), we write

1

n
X̂T

Sc(y − X̂β̂) =
1

n
X̂T

Scη − 1

n
X̂T

Sc(X̂S −XS)β0S

− ĈScS(ĈSS)
−1

{
1

n
X̂T

Sη − 1

n
X̂T

S (X̂S −XS)β0S − µρ′µ(|β̂S|) ◦ sgn(β̂S)

}
.

Also, we have ∥β̂S∥∞ = ∥β̂0S +(β̂S −β0S)∥∞ ≥ ∥β̂0S∥∞−∥β̂S −β0S∥∞ ≥ b0− b0/2 = b0/2.

This, together with (S.3), (S.7), and Condition (C4), leads to∥∥∥∥ 1nX̂T
Sc(y − X̂β)

∥∥∥∥
∞

≤
∥∥∥∥ 1nX̂T

Scη − 1

n
X̂T

Sc(X̂S −XS)β0S

∥∥∥∥
∞
+ ∥ĈScS(ĈSS)

−1∥∞

×
{∥∥∥∥ 1nX̂T

Sη − 1

n
X̂T

S (X̂S −XS)β0S

∥∥∥∥
∞
+ µρ′µ(b0/2)

}
<

α

6cnν
µρ′(0+) + 2cnν · α

6cnν
µρ′(0+) +

(
1− α

2

) ρ′(0+)

ρ′µ(b0/2)
· µρ′µ(b0/2)

≤ α

6
µρ′(0+) +

α

3
µρ′(0+) +

(
1− α

2

)
µρ′(0+) = µρ′(0+).

Finally, it follows from (S.4) and the definition of τ0 that Λmin(ĈSS) > µτ0 ≥ µτ(ρµ; β̂S),

which verifies (S.10) and completes the proof.
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