Supplementary Material for “Regularization Methods
for High-Dimensional Instrumental Variables Regression

With an Application to Genetical Genomics”

Proof of Theorem 4

We first present two lemmas that are essential to the proof of Theorem 4, which concern the
concentration of the empirical covariance matrix C around its population version C and the
score vector
Xy - Xpy) = X' - XX - X)B,

around zero. These lemmas can be viewed as generalizations of Lemma A.3 and inequality
(A.15), respectively. For ease of presentation, we condition on the event of probability 1 —m
that the two error bounds in Condition (C4) hold, and incorporate the probability 7, into
the result by the union bound.

Lemma S.1. Under Conditions (C4)—-(C6), if uo > 0 and the first-stage error bounds e;

and ey satisfy
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Proof. 1t follows from the arguments in the proof of Lemma A.1 and Condition (C4) that
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Consequently, by the assumption (S.1),
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Then inequality (S.2) follows as in the proof of Lemma A.3.
To show inequality (S.3), by (S.2), (S.5), (S.6), and Condition (C6), we have
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where we have used the inequalities p'(0+)/p/,(bo/2) > 1 and a/{2(2 — a)} < 1/2 < en”/2.
This, along with Condition (C6), implies (S.3).

Finally, it follows from the Hoffman-Wielandt inequality (Horn and Johnson 1985) and
the assumption (S.1) that
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In view of the definition of pg, inequality (S.4) follows. This completes the proof of the

lemma.

Lemma S.2. Under Conditions (C4)—(C6), if the first-stage error bounds satisfy ey = O(1)

and ey = O(1), then there exist constants cg, c1,c2 > 0 such that, if we choose
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where Cy = coLmax(opi1, MOmax, M), then with probability at least 1 — o — c1(pq)~, it
holds that .
—XTn - =XT(X - X)8,

n n

'(0+). (8.7)

- «Q
~ bcn?

Proof. As in the proof of Lemma A.2, we write n ' X"n —n'XT(X = X)B, = Ty +- - - + T.
Letting to = aup’(0+)/(6¢n”), we bound the six terms similarly as follows:
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Combining these bounds and in view of the assumptions e; = O(1) and e; = O(1), there

exist constants cg, ¢, co > 0 such that, if we choose
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where Cy = coL max(oyi1, M omax, M), then with probability at least 1 — my — ¢1(pg) 2, the
desired inequality holds. The completes the proof of the lemma.

Proof of Theorem 4. One can easily show that B € RP? is a strict local minimizer of problem
(4) if the following conditions hold:
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where o denotes the Hadamard (entrywise) product, and |- |, p/,(-), and sgn(-) are applied
componentwise. It suffices to find a B € RP with the desired properties such that conditions
(S.8)—(S.10) hold. Let B¢ = 0. The idea of the proof is to first determine B¢ from (S.8),
and then show that thus obtained 3 also satisfies (S.9) and (S.10).

From now on, we condition on the event of probability at least 1 — 7wy — ¢1(pg)~* that
the inequalities in Lemmas S.1 and S.2 hold. Using similar arguments to those in the proof
of Theorem 3, (S.8) with 3 replaced by S can be written in the form
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Define the function f: R — R* by f(0) = Bys+ (Css) {n ' XIn—n"X%(Xs—Xs)Bys —
1, (16]) osgn(@)}, and let K denote the hypercube {8 € R*: [|0 — Bs|lo < Toopp'(0+)/4}.
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It follows from (S.2), (S.7), and Condition (C4) that, for 8 € I,
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that is, f(K) C K. Also, the last inequality and the assumption (14) imply that for 8 € I,
10 — Boslle < bo/2, and hence sgn(0) = sgn(Byg). Thus, in view of Condition (C4), f is
a continuous function on the convex, compact hypercube . An application of Brouwer’s
fixed point theorem yields that equation (S.11) has a solution B ¢ in K. Moreover, sgn(,/B\ g) =
sgn(Byg), so that S=4. Therefore, we have found a ,CA"I that satisfies the desired properties

and (S.8).

To verify that 3 satisfies (S.9), by substituting (S.11), we write
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Also, we have ||Bs|loc = [1Bos + (Bs = Bos)lloe > [1Boslloc = 185 = Boslloo > bo—bo/2 = by/2.
This, together with (S.3), (S.7), and Condition (C4), leads to
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Finally, it follows from (S.4) and the definition of 7y that Amin(asg) > pto > Pt (pu; BS),
which verifies (S.10) and completes the proof.
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