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Appendix

A.1 Derivation of Λ

If we consider the parametric submodel,

pr(Y = y,S = s,Z = z; β,γ,η1,η2)

=

∫
pr(Y = y | S,Z, ε; β,γ)fε(ε | s, z,η2)fS,Z(s, z; η1)dµ(ε),

the nuisance score vectors with respect to η1 and η2 are ∂logfS,Z(s, z; η1)/∂η1 and E{∂logfε(ε |
s, z,η2)/∂η2 | Y,S,Z} respectively. The former has the property

E{∂logfS,Z(s, z; η1)/∂η1} = 0,

and ∂logfε(ε | s, z,η2)/∂η2 satisfies

E{∂logfε(ε | s, z,η2)/∂η2 | S,Z} = 0,

E[{∂logfε(ε | s, z,η2)/∂η2}εT | S,Z] = 0.

The last equation comes from the condition that E(ε | S,Z) = 0. This completes the

nuisance tangent space derivation for a parametric submodel. Since the nuisance tangent

space of our original model is the mean square closure of the nuisance tangent space of all

parametric submodels, the conjecture for the desired nuisance tangent space is the direct
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sum of two subspaces Λ1 and Λ2, where

Λ1 = {f(S,Z) : f ∈ Rp, E(f) = 0, E(fTf) <∞}
Λ2 = [E{f(ε,S,Z) | Y,S,Z} : f ∈ Rp, E(f | S,Z) = 0, E(εfT | S,Z) = 0, E(fTf) <∞].

In the second part of the proof, we must show that for any bounded random functions

f1(S,Z) ∈ Λ1 and E{f2(ε,S,Z) | Y,S,Z} ∈ Λ2, they are the nuisance score vectors of a

particular parametric submodel. When the true models for fS,Z(s, z) and fε(ε | s, z) are

f0(s, z) and f0(ε | s, z) respectively, we define new functions with the aid of f1(S,Z) and

f2(ε,S,Z) such that

fS,Z(s, z; η1) = f0(s, z){1 + ηT
1 f1(S,Z)}

fε(ε | s, z,η2) = f0(ε | s, z)[1 + ηT
2 f2(ε,S,Z)].

η1 and η2 must be sufficiently small such that

1 + ηT
1 f1(S,Z) ≥ 0, and 1 + ηT

2 f2(ε,S,Z) ≥ 0.

Both fS,Z(s, z; η1) and fε(ε | s, z,η2) are valid probability density function because they are

positive and their integration from negative infinity to infinity are 1, as can be seen below.

∫ ∫
fS,Z(s, z; η1)dµ(s, z) =

∫ ∫
f0(s, z)dµ(s, z) +

∫ ∫
f0(s, z)ηT

1 f1(S,Z)dµ(s, z)

= 1 + ηT
1E{f1(S,Z)} = 1,∫

fε(ε | s, z,η2)dµ(ε) =

∫
f0(ε | s, z)dµ(ε) +

∫
f0(ε | s, z)ηT

2 f2(ε,S,Z)dµ(ε)

= 1 + ηT
2E{f2(ε,S,Z) | S,Z} = 1.

Moreover,

∫
fε(ε | s, z,η2)εTdµ(ε) =

∫
f0(ε | s, z)εTdµ(ε) +

∫
f0(ε | s, z)ηT

2 f2(ε,S,Z)εTdµ(ε)

= 0 + ηT
2E{f2(ε,S,Z)εT | S,Z} = 0.

So the density for ε given S and Z also satisfies E(ε | S,Z) = 0. One the other hand, the
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score vectors for the parametric submodel are

Sη1 =
∂logfS,Z(s, z; η1)

∂η1

= f1(S,Z),

Sη2 =

∫
∂logfε(ε | s, z,η2)

∂η2

fε(ε | Y = y, s, z)dµ(ε) = E{f2(ε,S,Z) | Y,S,Z}.

This leads to the result.

A.2 Derivation of Λ⊥

Using the form of the nuisance tangent space, it can be shown that

Λ = [E{f(ε,S,Z) | Y,S,Z} : f ∈ Rp, E(εfT | S,Z) = 0, E(fTf) <∞].

Therefore, any element g(Y,S,Z) ∈ Λ⊥ must satisfy

0 = E[gT(Y,S,Z)E{f(ε,S,Z) | Y,S,Z}]
= E[E{gT(Y,S,Z)f(ε,S,Z) | ε,S,Z}]
= E[E{gT(Y,S,Z) | ε,S,Z}f(ε,S,Z)]

for any f(ε,S,Z) such that E(εfT | S,Z) = 0. Therefore, E{g(Y,S,Z) | ε,S,Z} must have

the form a(S,Z)ε such that E(aTa) <∞. This yields the desired result.

A.3 Proof of Theorem 1

Note that even under a possibly incorrect working model, we have

E{ S∗eff(Yi,Si,Zi,θ)}
= E[E{ S∗eff(Yi,Si,Zi,θ) | ε,S,Z}]
= E(E[ S∗θ(Y,S,Z)− E∗{b(ε,S,Z) | Y,S,Z} | ε,S,Z])

= E
(
E
[
S∗θ(Y,S,Z)εT − E∗{b(ε,S,Z) | Y,S,Z}εT | S,Z

] {
E∗(εεT | S,Z)

}−1
ε
)

= 0,

which implies that the corresponding estimator θ is consistent. In the above display, the

second equality is due to the construction of Seff , the third equality is because b satisfies

the integral equation (7), and the last equality is because E(ε | S,Z) = 0. Standard Taylor
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expansion then yields the desired result. Namely,

n−1/2

n∑
i=1

S∗eff(Yi,Si,Zi, θ̂) = n−1/2

n∑
i=1

S∗eff(Yi,Si,Zi,θ)

+ n−1/2 ∂

∂θT

{
n∑
i=1

S∗eff(Yi,Si,Zi,θ)

}
(θ̂ − θ) + op(1).

The left side of the equation is zero by observing since θ̂ is the solution of the estimating

equation. It implies,

√
n(θ̂ − θ)

=

{
− 1

n

n∑
i=1

∂

∂θT
S∗eff(Yi,Si,Zi,θ)

}−1{
1√
n

n∑
i=1

S∗eff(Yi,Si,Zi,θ)

}
+ op(1)

= −A−1

{
1√
n

n∑
i=1

S∗eff(Yi,Si,Zi,θ)

}
+ op(1).

The asymptotic result in Theorem 1 is deduced by implementing the central limit theorem.

Furthermore, if the true model fε(ε | S,Z) is used, the variance will achieve the minimum

semiparametric bound because

E

{
∂

∂θT
Seff(Yi,Si,Zi)

}
= −E

{
Seff(Yi,Si,Zi) ST

θ (Yi,Si,Zi)
}

= −E
{
Seff(Yi,Si,Zi) ST

eff(Yi,Si,Zi)
}
.

The last equation is true since Seff is the projection of Sθ onto the space Λ⊥. It means

that A = −B, and the variance becomes B = [E{ Seff(Y,S,Z)⊗2}]−1
.

A.4 Proof of Theorem 2

Consider the joint estimating equation

n∑
i=1

S∗eff(Yi,Si,Zi,θ,α) = 0

n∑
i=1

Sα(Yi,Si,Zi,α) = 0
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for estimating α,θ simultaneous, the Taylor expansion yields

√
n

 θ̂ − θ

α̂−α

 = −

 1

n

n∑
i=1

 ∂
∂θT S∗eff

∂
∂αT S∗eff

∂
∂θT Sα

∂
∂αT Sα


−1 1√

n

n∑
i=1

 S∗eff

Sα

+ op(1)

= −

 A A1

0 A2

−1 1√
n

n∑
i=1

 S∗eff

Sα

+ op(1).

It indicates the normal limiting distribution with variance

 A A1

0 A2

−1 B BT
1

B1 B2

 A A1

0 A2

−T

,

by the central limit theorem. The (1, 1)th cell of the resulting matrix by expanding the

above expression is V = A−1B(A−1)T + Vα where

Vα = A−1
{
A1A

−1
2 B2(A1A

−1
2 )T −A1A

−1
2 B1 − (A1A

−1
2 B1)T

}
(A−1)T.

When f ∗ε(ε | S,Z) = fε(ε | S,Z), −A = B. And the resulting estimation variance is

minimized.
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