


Supplemental Fig. S-1 Additional Disk diffusion assay controls

Supplemental Fig. S-1: Disk diffusion assays were performed as described in the Materials & Methods. In brief, plates were inoculated and then challenged with tBOOH filter disks. Assays were kept either under anaerobic conditions (light grey bars) or given three hours of aerobic incubation prior to anaerobic overnight incubation. Zones of inhibition were measured in mm. This figure is a control that demonstrates the empty vector, pFD288, does not complement the Δdps and $\Delta dps \Delta bfr$ mutants.

Supplemental Figure S-2: Growth curve of $\Delta dps \Delta bfr$

Supplemental Figure S-2: The double $\Delta dps \Delta bfr$ mutant does not have a general growth defect. Cultures were subcultured from overnight stationary phase cultures and growth was measured for IB-101 and $\Delta dps \Delta bfr$ in BHIS under anaerobic conditions. Triplicate cultures for each strain were followed over two independent experiments. Averages of the six replicates are reported with standard deviation shown. Results indicate that the double mutant does not have a growth defect when compared to WT under normal anaerobic growth conditions.

Supplemental table S-1 Primers used in this study

Primer	5'-3' Sequence	Purpose
BfrsL-F	CAGTGGATCCCCTAAACCAAAAGAATTATGGC	Amplification of full length bfr gene used in
		complementation forward Primer
BfrsL-R	CAGTGAGCTCTGGGGGTATTTCCTCTTTCTA	Amplification of full length bfr gene used in
		complementation reverse primer
Bfr-1-For	CCCCATGTTACATAACC	Used to verify deletion of <i>bfr</i> gene in $\Delta dps \Delta bfr$ forward
		primer
Bfr-2-Rev	CGGTCACTGTAGCAAGCG	Used to verify deletion of <i>bfr</i> gene in $\Delta dps \Delta bfr$ reverse
		primer
AHPC-1-	GCCATCAGAATTCCTCCCATC	Amplification of N-terminal region of <i>ahpc</i> for deletion
<i>Eco</i> RI		construct forward primer
AHPC-2-	CCTGTACTTTGAATTCAGGC	Amplification of N-terminal region of <i>ahpc</i> for deletion
<i>Eco</i> RI		construct reverse primer
AHPC-3-	GGTCGGTAAGATCTAAACAGC	Amplification of C-terminal region of <i>ahpc</i> for deletion
BglII		construct forward primer
AHPC-4-	CCTTTCCAGCATGCTCTATC	Amplification of c-terminal region of <i>ahpc</i> for deletion
SphI		construct reverse primer

Strains	dps genes	GenBank Accession #	<i>dpsL/bfr</i> genes	GeneBank Accession #	ftnA genes	GeneBank Accession #
B. fragilis 638R	1	AAG02618	1	CBW23774	1	AAK29742
<i>B. caccae</i> ATCC 43185	1	EDM20674	1	EDM19603	1	EDM20344
B. ovatus ATCC 8433	1	EDO09702	1	EDO11031	1	EDO14102
<i>B. vulgatus</i> ATCC 8482	None	-	1	ABR41194	3	ABR41141 ABR40404 ABR41143
B. uniformis ATCC 8492	1	EDO55385	None	-	3	EDO51842 EDO55572 EDO55570
<i>B. thetaiotaomicron</i> ATCC 29148	1	AAO79820	1	AAO78928	3	AAO76480 AAO76214 AAO76216
P. merdae ATCC 43184	1	EDN86811	None	-	3	EDN87770 EDN84345 EDN84347
P. distasonis ATCC 8503	2	ABR42394 ABR42396	1	ABR43121	2	ABR41895 ABR42042

Supplemental Table S-2: Gene accession numbers for Ferritin homologs in the Bacteroides

Strain or plasmid	Phenotype and/or genotype ^a	Reference or source				
Bacteroides strains						
IB-101	B. fragilis 638R Clinical Isolate, Rif ^r	(1)				
IB 336	IB-101 $\Delta dps::tetQ$, Rif ^r Tet ^r	(2)				
IB-542	IB-336 $\Delta bfr::cfx$, Rif ^r Tet ^r Cfx ^r	This Study				
IB-574	IB-336 pFD288, Rif ^r , Tet ^r , Cfx ^r Erm ^r	This Study				
IB-575	IB-542 pFD288, Rif ^r , Tet ^r , Erm ^r	This Study				
IB-579	IB-101 pFD288, Rif ^r , Tet ^r , Erm ^r					
Plasmids						
pFD288	(Sp ^r),Erm ^r , oriT, pUC19:::pBI143 8.8-kb shuttle vector					
^a Erm ^r , erythromycin resistance; Cfx ^r , cefoxitin resistance; Rif ^r rifampicin resistance; Tet ^r ,						

^aErm^r, erythromycin resistance; Cfx^r, cefoxitin resistance; Rif^r rifampicin resistance; Tet^r, tetracycline resistance; Sp^r, spectinomycin resistance. For *Bacteroides-E. coli* shuttle vectors, parentheses indicate antibiotic resistance expression in *E. coli*.

1. **Privitera, G., A. Dublanchet, and M. Sebald.** 1979. Transfer of multiple antibiotic resistance between subspecies of Bacteroides fragilis. J. Infect. Dis. **139:**97-101.

2. Rocha, E. R., and C. J. Smith. 2004. Transcriptional regulation of the *Bacteroides fragilis* ferritin gene (ftnA) by redox stress. Microbiology. **150**:2125-2134.