

Κ

Figure S1 related to figure 1. IL-36y effect on CD8⁺ T cells. (A) Naïve CD4⁺ and CD8⁺ T (CD44⁻ CD62L⁺) cells were purified from spleen cells of C57BL/6 mice by FACS sorting. T cells were then stimulated in the Th1 condition for the time indicated. (96h +3h indicates that T cells were cultured for 96 h and subsequently re-stimulated with anti-CD3 for 3 h). Total RNA was subjected quantitative RT-PCR analysis (A) and RT-PCR (B) for IL-36R. RQ (relative quantification values) were calculated based on ΔΔCT method. (C and D) Naïve pmel-1 CD8⁺ T cells were stimulated with plate-bound 5 µg/ml CD3 and 2.5 µg/ml CD28 mAbs in the presence or absence of IL-36y at various concentrations as indicated. (C) Cell sizes (FSC) were determined by flow cytometry at 72 h.(D) The level of IL-2 and IFN-y at 24 h after stimulation was measured by ELISA. (E to H) Naïve CD8⁺ T cells were stimulated with plate-bound 5 µg/ml CD3 and 2.5 µg/ml CD28 mAbs in the presence or absence of mouse IL-36γ at various concentrations as indicated. CD25 mAbs (clone PC61, 20 µg/ml) were added to cultures to block IL-2 signaling. (E) Cell sizes (FSC) were determined by flow cytometry at 72 h. IL-2 (F) or IFN-y (G) secretion was determined by ELISA at 24 h. (H) Proliferation was determined by the CFSE-dilution assay at 72 h. Data are shown as mean ± SEM. *** p < 0.001, ** p <0.01, * p<0.05. two-tailed unpaired Student's t-test. (I- L) Naïve CD8⁺ T cells were isolated from WT or Myd88^{-/-} B6 mice. They were subsequently stimulated with plate-bound 5 µg/ml CD3 and 2.5 µg/ml CD28 mAbs in the presence or absence of 100 ng/ml IL-36y for 72 h. (I) Cell sizes (FSC) were determined by flow cytometry. (J) IL-2 and (K) IFN-y production was determined by ELISA. Data are shown as mean ± SEM. ** p < 0.01 two-tailed unpaired Student's t-test. (L) Proliferation was determined by the CFSE-dilution assay.

Figure S2 related to figure 2. IL-36R is expressed in NK and \gamma\delta T cells. Naïve CD8⁺ T (CD44⁻ CD62L⁺), NK (DX5⁺) and $\gamma\delta$ T cells were purified from spleen cells of C57BL/6 mice by FACS sorting. T cells were then stimulated in the Th1 condition for 96 h. NK cells were cultured in the presence of IL-2 for 72 h and $\gamma\delta$ T cells were stimulated with CD3 mAbs and IL-2 for 72 h. Total RNA was purified and subjected to (A) quantitative RT-PCR analysis for IL-36R. RQ (relative quantification values) were calculated based on $\Delta\Delta$ CT method. Data are shown as mean ± SEM. Data are shown as mean ± SEM. (B) RT-PCR analysis.

Α

Figure S3 related to figure 3. Analysis of IL36_γ-expressing cell lines.

(A) The growth of IL-36 γ transfectants were comparable to the control cells. 4 × 10⁴ 4T1-vec, 4T1-IL-36 γ B16-vec or B16-IL-36 γ , cells were seeded into 24 wells with triplicates. The cells were cultured for 2 days, the number of live cells was determined by live cell counting after cells were stained with Trypan blue. Data (mean ±SEM) are representative of three independent experiments. (B) Detection of IL-36 γ protein by Western blot. Supernatants were harvested from B16-vec or B16-IL-36 γ cell culture and concentrated 10 times. Cell lysates were made from B16-vec or B16-IL-36 γ cells. Western blot was performed using rabbit anti-IL1F9 antibody ((aa5-149) LS-C294790; LifeSpan Biosciences, Inc.)

Ε

Figure S4 related to Figure 4. Tumoral expression of IL-36y influence antitumor immune responses. 1×10^5 B16-vector or B16-IL-36y cells were injected i.d. into B6 mice. On day 24, tumors were resected and processed to generate single cell suspensions. (A) Representative flow cytometric plots and percentages of CD4⁺ Ki67⁺ populations from the CD8⁺ in tumor microenvironment are shown. (B) Representative flow cytometric plots and percentages of CD4⁺ and Treg cells in the tumor microenvironment are shown. (C) Representative flow cytometric analysis of CD11b⁺ sub-populations and percentages of CD11b⁺ sub-populations of CD45⁺ immune cells and percentages of MHC class II expression on three CD11b⁺ sub-populations. (D) Tumors were resected and total RNA was extracted and subjected to RT-QPCR analysis. RQ (relative quantification values) were calculated based on $\Delta\Delta$ CT method. Results are shown as mean ± SEM of four independent experiments. One tumor was used in each experiment. *p < 0.05 and ** p <0.01, two-tailed unpaired Student's t-test. (E) Tumor antigenspecific CD8⁺ T cell responses were enhanced by IL-36y. 1x10⁵ 4T1-vector or 4T1-IL-36y cells were injected into the mammary fat pad of BALB/c mice. 30 days after inoculation, CD8⁺ T cells were purified from the spleens of these mice and re-stimulated with irradiated 4T1 cells for 72h in the presence of irradiated APC. The level of IFN- γ was then measured by ELISA. Results are shown as mean ± SEM of three independent experiments. One pair of mice were used in each experiment. *p < 0.05, two-tailed unpaired Student's t-test.

Figure S5 related to figure 5. Analysis of TIL in WT and IL-36R -/- mice. 1x10⁵ B16-vector (B16-vec) or B16-IL-36y cells were injected intradermally into WT and IL-36R -/- mice. The tumors were resected on day 17 and TIL were subjected to the flow cytometric analysis. (A) Representative flow cytometric analysis of CD4, CD8 T cells among CD45⁺ TIL. (B) Percentages of the CD4⁺ and CD8⁺ T cells within the CD45⁺ TIL. (C) Representative flow cytometric analysis of NK and γδ T cells among CD45⁺ TIL. (D) Representative flow cytometric analysis of IFN-y⁺ T cells among CD4⁺ and CD8⁺ TIL.

Α

- 1. Cutaneous Melanoma (45)
- 2. Melanoma Precursor (18)

Figure S6 related to figure 8. IL-36γ expression in melanoma and melanoma precursor. The data is generated after search oncomine database (www.oncomine.com) (Rhodes et al., 2004). The result is based on Talantov D et al's paper titled: Novel genes associated with malignant melanoma but not benign melanocytic lesions (Talantov et al., 2005).

Supplemental experimental procedures:

List of RT-QPCR primers

Genes	Forward	Reverse
IL-36R	AAACACCTAGCAAAAGCCCAG	AGACTGCCCGATTTTCCTATG
IFN-γ	CCTGCGGCCTAGCTCTGAG	GCCATGAGGAAGAGCTGCA
IL-12p35	CAATCACGCTACCTCCTCTTT	CAGTGCAGGAATAATGTTTC
Granzyme B	CCACTCTCGACCCTACATGG	GGCCCCCAAAGTGACATTTATT
IL-17α	CTCCAGAAGGCCCTCAGACTAC	GGGTCTTCATTGCGGTGG
IL-1β	CTGAACTCAACTGTGAAATG	CGAGATTTGAAGCTGGATGC
IL-23p19	TGGCATCGAGAAACTGTGAGA	TCAGTTCGTATTGGTAGTCCTGTTA
ΤΝΕα	ATGAGCACAGAAAGCATGATC	TACAGGCTTGTCACTCGAATT
IL-10	TGTCAAATTCATTCATGGCCT	ATCGATTTCTCCCCTGTGAA
β-actin	GAAATCGTGCGTGACATCAAA	TGTAGTTTCATGGATGCCACAG

Supplemental reference

Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pandey, A., and Chinnaiyan, A. M. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia (New York, NY) *6*, 1-6.

Talantov, D., Mazumder, A., Yu, J. X., Briggs, T., Jiang, Y., Backus, J., Atkins, D., and Wang, Y. (2005). Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clinical cancer research : an official journal of the American Association for Cancer Research *11*, 7234-7242.