## 1. Detailed SomaticSeq Results

Table 1 summarizes what training data were used for each study in the paper.

1.1. **DREAM Challenge.** The cross validation results for DREAM Challenge are presented in Table 2. We also investigated SomaticSeq's accuracy in challenging regions (e.g., regions of low mappability, low complexity, etc). DREAM Challenge simulated only 25 mutations in regions ENCODE considered to be unmappable (in the wgEncodeDacMapabilityConsensusExcludable.bed file from UCSC). 24 out of those 25 mutations were captured by the combined five callers, and a total of 2,939 false positives were called. Thus, before any filtering, the union of 5 call sets had a  $F_1$  scores of 1.61% (recall of 96.0% and precision of 0.81%). After 10 cross-validations by SomaticSeq, the  $F_1$  scores for DREAM Challenge's settings A, B, C, and D were 96.7%, 94.4%, 94.0%, and 84.3%. Their recalls were 93.6%, 94.4%, 93.6%, and 77.6%. Their precisions were 100%, 94.4%, 94.4%, and 92.4%. These results were comparable to rest of the data sets in Table 2, but keep in mind that only 25 mutations were simulated in those regions, and did not necessarily represent the reality. In general, SomaticSeq is not expected to perform too well in low mappability regions in its current implementation, because all the callers it has incorporated depend on short read mapping as a precursor to variant calling.

1.2. *in silico* titration. The cross validation results for *in silico* titration are presented in Table 3. SomaticSeq\* (one asterisk) results in Table 3 were obtained as follows: for each of the 6 *in silico* settings, we randomly split them into two halves. We combined one half of them into a single data set for training. Then, we used that trained classifier to predict mutation status for each of the other halves of the 6 *in silico* settings. We ensured that the training and target data did not overlap. We then reversed the training/testing in the other direction, and averaged the two results. The results from this method were equally good or better than cross validation. This was likely due to the fact that, with 6 times the amount of training data in this method versus cross validation, a more accurate trained model was built. The extra data from the different *in silico* settings differed only in the number of variant reads, and this small discrepancy in the number of variant reads did not disrupt the accuracy of the trained model.

SomaticSeq<sup>\*\*</sup> (two asterisks) results in Table 3 were trained from the combined DREAM Settings A and B. Keep in mind that the DREAM Challenge and *in silico* titration data were a gross mismatch in terms of sequencing characteristics. DREAM Challenge contained synthetic mutations, where the tumor and normal reads came from a single experiment (reads randomly split into the designated tumor and normal, with synthetic mutation spiked into the tumor). The *in silico* titration's tumor and normal came from two different human genomes sequenced at two different sequencing centers. The results were less accurate than cross validation, but still substantively more accurate than any individual tool. This implies that the DREAM Challenge data is sufficiently realistic, that the model trained from DREAM Challenge substantially improved prediction results over any individual tool.

1.3. **SomaticSpike titration.** The detailed cross validation results for SomaticSpike are presented in Tables 4 to 8.

## 2. Additional SomaticSeq Analyses

2.1. Simple consensus. A simple consensus is to take the intersections of multiple callers (i.e., mutation calls agreed upon by multiple tools), and label calls with at least N number of tools as high confidence calls. This simple approach improved accuracy over individual callers as well, but paled in comparison with SomaticSeq, and was less robust over different types of data. The  $F_1$  score, sensitivity, and precision for every combination of somatic SNV call consensus are summarized in Tables 9, 10, and 11. Tables 12 shows the sensitivity of the real data with this consensus approach.

2.2. Reduced number of tools incorporated. The bulk of the computing resources used in SomaticSeq is running the individual tools it has incorporated. While the addition of each tool adds to our combined sensitivity, there are enough features in our model so that our precisions are not overly dependent on any of the tools. Fig. 1 shows how the  $F_1$  score scales with the number of tools for SNVs. The gain in accuracy is more pronounced in the most challenging data sets, but the addition of each tool shows diminishing return. Tables 13, 14, and 15 detail the  $F_1$  score, recall, and precision of SomaticSeq incorporating every possible combination of tools.

2.2.1. Negative predictive values (NPV). Negative predictive value (NPV) is the fraction of true negative calls over all negative calls. Since the rate of somatic mutation is typically around 1 out of a million, NPV over the whole genome is close to 1 for all sensible somatic mutation callers. However, we calculated our NPV not over the entire genome, but over the union of call sets. This evaluates SomaticSeq's ability to filter out false positives from the call set. Results are shown in Table 16.

2.3. Reduced feature sets. SomaticSeq used up to 72 features to discriminate true somatic mutations from the data sets. All features have some predictive values, but some have much greater predictive values than others. We have already listed the top 18 features in the Method section of the main text, and also tested the algorithm with only the top 5, 10, and 20 features (Table 17). The prediction accuracies improve with more features, but diminish after about 20 most valuable features (Fig. 2). The top 5 features were strand bias odd ratio, normal read depth, tumor mapping quality, MuTect classification, and variant reverse read counts (should be the same weight as forward read counts, but in choosing top 5, only one made the cut). The next 5 top features rounding up the top 10 were variant forward read counts, VarDict classification, VarDict's somatic score, normal mapping quality, and JointSNVMix2 classification. Fig. 3 visualizes the breakdown of true somatic mutations vs. false positives for some features of different importance in the Stage 3 of DREAM Challenge.

The classifier from a trained model is an ensemble of decision trees with different relative weights. The number of decision trees is the number of iterations during training. Decision trees in the beginning are more heavily weighted than decision trees at the end. The decision tree shown in the main manuscript is also represented as Fig. 4. if\_MuTect, if\_VarDict, if\_JointSNVMix2 are classifications by these tools, and hold binary values of 0 or 1. if\_dbsnp represents membership in dbSNP, and also holds binary values of 0 and 1. VarScan2\_Score is the Phred-scaled Fisher's exact test p-value reported by VarScan2. SomaticSeq has in essence reclassified VarScan2's calls in this tree to have a more strict p-value cut off. T\_MQ is tumor mapping quality which ranges from 0 to 60 for BWA aligned reads.

Some features were turned off in certain cases, e.g., all features related to dbSNP were turned off for *in silico* titration and SomaticSpike analysis, because most virtual somatic mutations in those two data sets were in dbSNP, but in reality mutation candidates in dbSNP tend to be germline variant false positives. Features related to SomaticSniper and JointSNVMix2 were effectively turned off for INDEL analyses because these two tools do not call INDELs. Indel length was effectively turned off for SNV because it's always zero.

2.4. Reduced size of training sets. Tables 18 and 19 (Fig. 5 and 6) shows SomaticSeq accuracy as a function of the size of training set. The prediction accuracy improved with increasing size, but reached diminishing return when there were about 200 true positives in the training set. A call set typically has more false positive than true positives, thus we recommend the size of training set should be large enough to include at least 100 true positives. If in rare cases when the number of true positives outnumbers false positives, the size of the training set should include at least 100 false positives instead.

## 3. Data Availability

For the DREAM Somatic Mutation Challenge data, GeneTorrent is required to download the BAM files. GeneTorrent is available at UCSC: https://cghub.ucsc.edu/software/downloads.html. The public key for DREAM Challenge is located at http://dream.annailabs.com/dream\_public.pem. Specifically, we have used Stage 2 and Stage 3 data from DREAM Challenge in this paper. The URL's of the data for GeneTorrent are:

- Stage 2 Normal: https://dream.annailabs.com/cghub/data/analysis/download/ 865fa3d6-2024-47cf-bf66-c258f8c0efcf
- Stage 2 Tumor: https://dream.annailabs.com/cghub/data/analysis/download/ 7cf8416e-6055-4a0e-86ee-b719db9fbc16
- Stage 3 Normal: https://dream.annailabs.com/cghub/data/analysis/download/ b19d76a0-a487-4c50-8f9c-3b4d5e53239d

| Test Set                         | Training Set             | Validation Method               |  |  |  |  |  |
|----------------------------------|--------------------------|---------------------------------|--|--|--|--|--|
| Original DREAM Challenge         | Modified DREAM Challenge | Compare to ground truth         |  |  |  |  |  |
| Stage 3                          | Stage 2                  |                                 |  |  |  |  |  |
| Modified DREAM Challenge         | Half of the Test Data    | Cross validation with ground    |  |  |  |  |  |
| Stage 3                          |                          | truth                           |  |  |  |  |  |
| in silico Titration and Somatic- | Half of the Test Data    | Cross validation with con-      |  |  |  |  |  |
| Spike                            |                          | structed truth set              |  |  |  |  |  |
| COLO-829                         | Original DREAM Challenge | Compare to experimentally vali- |  |  |  |  |  |
|                                  | Stage 3                  | dated mutations                 |  |  |  |  |  |
| CLL1                             | Original DREAM Challenge | Compare to experimentally vali  |  |  |  |  |  |
|                                  | Stage 3                  | dated mutations                 |  |  |  |  |  |

TABLE 1. Specifying what training data are used for each test data set in this study, and what data is used for validation.

• Stage 3 Tumor:

https://dream.annailabs.com/cghub/data/analysis/download/ 8fe6fc33-2daf-4393-929f-7c3493d04bef

For our *in silico* titration, the two genomes can be downloaded at the following locations:

- NA12878 (virtual normal):
  - ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR194/ERR194147
- NS12911 (virtual tumor):

http://www.ncbi.nlm.nih.gov/sra/SRX1016818

For SomaticSpike:

• NA12878 (virtual normal):

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20120117\_ceu\_ trio\_b37\_decoy/. The file names are CEUTrio.HiSeq.WGS.jaffe.b37\_decoy.NA12878.chr\*. clean.dedup.recal.20120117.bam.

• NA12891 (virtual tumor):

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20120117\_ceu\_ trio\_b37\_decoy/. The file name is CEUTrio.HiSeq.WGS.b37\_decoy.NA12891.clean.dedup. recal.20120117.bam.

For the real data, they are downloaded from European Genome Archive (EGA).

• CLL1:

https://www.ebi.ac.uk/ega/datasets/EGAD00001000023

• COLO829:

https://www.ebi.ac.uk/ega/studies/EGAS0000000052

| DREAM          |       | Re    | call  |       |       | Prec  | ision |       |       | $F_1 S$ | core  |       |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|
| SNV            | А     | В     | С     | D     | A     | В     | С     | D     | А     | В       | С     | D     |
| MuTect         | 0.931 | 0.721 | 0.849 | 0.648 | 0.684 | 0.627 | 0.664 | 0.601 | 0.789 | 0.671   | 0.745 | 0.624 |
| VarScan        | 0.711 | 0.689 | 0.503 | 0.468 | 0.245 | 0.239 | 0.186 | 0.176 | 0.364 | 0.354   | 0.272 | 0.255 |
| VarScan+Filter | 0.666 | 0.648 | 0.459 | 0.432 | 0.502 | 0.496 | 0.411 | 0.396 | 0.573 | 0.562   | 0.434 | 0.413 |
| SomaticSniper  | 0.776 | 0.755 | 0.542 | 0.524 | 0.493 | 0.486 | 0.404 | 0.396 | 0.603 | 0.591   | 0.463 | 0.451 |
| Sniper+Filter  | 0.746 | 0.726 | 0.519 | 0.503 | 0.797 | 0.792 | 0.731 | 0.725 | 0.770 | 0.758   | 0.607 | 0.594 |
| JointSNVMix    | 0.899 | 0.839 | 0.692 | 0.638 | 0.404 | 0.388 | 0.343 | 0.325 | 0.558 | 0.530   | 0.459 | 0.431 |
| VarDict        | 0.883 | 0.726 | 0.731 | 0.555 | 0.567 | 0.518 | 0.520 | 0.451 | 0.690 | 0.605   | 0.607 | 0.498 |
| Union of Tools | 0.961 | 0.942 | 0.892 | 0.851 | 0.138 | 0.135 | 0.129 | 0.124 | 0.241 | 0.237   | 0.226 | 0.216 |
| SomaticSeq     | 0.937 | 0.923 | 0.875 | 0.832 | 0.992 | 0.997 | 0.996 | 0.994 | 0.964 | 0.958   | 0.932 | 0.905 |
| INDEL          |       |       |       |       |       |       |       |       |       |         |       |       |
| Indelocator    | 0.170 | 0.088 | 0.037 | 0.018 | 0.248 | 0.146 | 0.067 | 0.033 | 0.202 | 0.110   | 0.048 | 0.023 |
| VarScan        | 0.375 | 0.361 | 0.202 | 0.186 | 0.154 | 0.149 | 0.089 | 0.083 | 0.218 | 0.211   | 0.124 | 0.115 |
| VarScan+Filter | 0.127 | 0.123 | 0.069 | 0.065 | 0.238 | 0.233 | 0.146 | 0.139 | 0.165 | 0.161   | 0.094 | 0.089 |
| VarDict        | 0.753 | 0.640 | 0.616 | 0.490 | 0.667 | 0.630 | 0.621 | 0.565 | 0.707 | 0.635   | 0.619 | 0.525 |
| Union of Tools | 0.847 | 0.791 | 0.762 | 0.667 | 0.212 | 0.201 | 0.195 | 0.175 | 0.339 | 0.320   | 0.310 | 0.277 |
| SomaticSeq     | 0.807 | 0.776 | 0.754 | 0.656 | 0.952 | 0.985 | 0.986 | 0.985 | 0.874 | 0.868   | 0.855 | 0.788 |

4

TABLE 2. VarScan+Filter and Sniper+Filter contains a subset of calls where the authorrecommended false positive filters are applied to the original call sets. Setting A: Stage 3 data straight up. Setting B: the matched normal is contaminated with 5% tumor. Setting C: the tumor is contaminated with 30% normal, in which case variant allele frequencies of 35%, 23%, and 14% are present in the tumor sample. Setting D: combination of C and D, i.e., the normal is contaminated with 5% tumor, and tumor is contaminated with 30% normal. The ensemble contained all calls from VarScan2 and SomaticSniper (without false positive filter), plus with VarDict's internal filters relaxed.

|           |      | 2.5%             | 0.244  | 0.024   | 0.048            | 0.084         | 0.173           | 0.121       | 0.296   | 0.097          | 0.805      | 0.826                   | 0.387                    |       | 0.000       | 0.018   | 0.014            | 0.165   | 0.082          | 0.562      | 0.574                   | 0.256                    |            |                          |              |              |             |   |
|-----------|------|------------------|--------|---------|------------------|---------------|-----------------|-------------|---------|----------------|------------|-------------------------|--------------------------|-------|-------------|---------|------------------|---------|----------------|------------|-------------------------|--------------------------|------------|--------------------------|--------------|--------------|-------------|---|
|           | 15%  | 0%               | 0.331  | 0.026   | 0.053            | 0.087         | 0.177           | 0.133       | 0.363   | 0.106          | 0.823      | 0.822                   | 0.532                    |       | 0.001       | 0.020   | 0.015            | 0.311   | 0.123          | 0.786      | 0.746                   | 0.559                    |            |                          |              |              |             |   |
| ore       |      | 2.5%             | 0.302  | 0.185   | 0.342            | 0.280         | 0.508           | 0.172       | 0.341   | 0.114          | 0.942      | 0.965                   | 0.640                    |       | 0.017       | 0.182   | 0.143            | 0.296   | 0.134          | 0.793      | 0.819                   | 0.438                    | $VAF_N$    | cer are                  | rained       | ta size      | l, with     |   |
| $F_1 S_1$ | 25%  | 0%               | 0.389  | 0.187   | 0.345            | 0.283         | 0.512           | 0.184       | 0.442   | 0.115          | 0.946      | 0.957                   | 0.691                    |       | 0.064       | 0.184   | 0.144            | 0.393   | 0.139          | 0.844      | 0.877                   | 0.652                    | mance.     | oer+Filt                 | . The t      | the da       | ombinec     |   |
|           |      | 2.5%             | 0.312  | 0.291   | 0.514            | 0.342         | 0.604           | 0.179       | 0.359   | 0.116          | 0.952      | 0.973                   | 0.696                    |       | 0.382       | 0.390   | 0.309            | 0.319   | 0.154          | 0.910      | 0.923                   | 0.531                    | c perfor   | and Snip                 | applied      | 6 times      | and B c     |   |
|           | 50%  | 0%               | 0.400  | 0.291   | 0.514            | 0.344         | 0.607           | 0.189       | 0.448   | 0.116          | 0.955      | 0.955                   | 0.707                    |       | 0.729       | 0.390   | 0.309            | 0.408   | 0.155          | 0.912      | 0.912                   | 0.642                    | realistic  | -Filter a                | filters      | ich has      | ings A 8    | ) |
|           |      | 2.5%             | 0.157  | 0.014   | 0.039            | 0.053         | 0.156           | 0.067       | 0.143   | 0.051          | 0.978      | 1.000                   | 0.351                    |       | 0.000       | 0.012   | 0.012            | 0.114   | 0.044          | 0.951      | 0.997                   | 0.532                    | a more     | $\operatorname{trScan}+$ | positive     | alf, wh      | ith setti   |   |
|           | 15%  | 0%               | 0.210  | 0.016   | 0.043            | 0.054         | 0.160           | 0.073       | 0.255   | 0.056          | 0.959      | 1.000                   | 0.450                    |       | 0.001       | 0.013   | 0.014            | 0.208   | 0.067          | 0.917      | 0.998                   | 0.750                    | to get     | rely. $V_{\mathcal{E}}$  | d false      | it into h    | lenge w     | ) |
| sion      |      | 2.5%             | 0.192  | 0.109   | 0.251            | 0.171         | 0.400           | 0.095       | 0.241   | 0.060          | 0.985      | 1.000                   | 0.515                    |       | 0.029       | 0.118   | 0.121            | 0.199   | 0.067          | 0.940      | 0.998                   | 0.685                    | in order   | espectiv                 | nmende       | mly spli     | M Chal      |   |
| Precis    | 25%  | 0%               | 0.244  | 0.111   | 0.253            | 0.172         | 0.402           | 0.101       | 0.305   | 0.061          | 0.978      | 1.000                   | 0.543                    |       | 0.101       | 0.119   | 0.121            | 0.259   | 0.075          | 0.971      | 0.998                   | 0.789                    | million    | umor, r                  | or-recon     | rando        | DREA        |   |
|           |      | 2.5%             | 0.198  | 0.170   | 0.360            | 0.207         | 0.458           | 0.099       | 0.252   | 0.061          | 0.969      | 1.000                   | 0.546                    |       | 0.448       | 0.244   | 0.245            | 0.213   | 0.084          | 0.961      | 0.998                   | 0.737                    | 1 in a     | d the T                  | ch auth      | titration    | * is the    |   |
|           | 50%  | 0%               | 0.250  | 0.170   | 0.360            | 0.208         | 0.460           | 0.104       | 0.308   | 0.061          | 0.963      | 1.000                   | 0.552                    |       | 0.663       | 0.245   | 0.245            | 0.268   | 0.084          | 0.966      | 0.998                   | 0.785                    | ed to be   | mal and                  | /ely, wit    | v silico     | uticSeq*    | I |
|           |      | 2.5%             | 0.551  | 0.070   | 0.064            | 0.212         | 0.193           | 0.619       | 0.307   | 0.830          | 0.684      | 0.703                   | 0.432                    |       | 0.000       | 0.036   | 0.016            | 0.299   | 0.497          | 0.399      | 0.403                   | 0.169                    | s enforce  | the Nor                  | espectiv     | of the $ir$  | or Soma     |   |
|           | 15%  | 0%               | 0.787  | 0.078   | 0.071            | 0.219         | 0.199           | 0.680       | 0.629   | 0.917          | 0.721      | 0.698                   | 0.651                    |       | 0.000       | 0.041   | 0.018            | 0.612   | 0.765          | 0.688      | 0.596                   | 0.445                    | cation is  | cies of                  | utput, 1     | ttings c     | model fe    |   |
| all       |      | 2.5%             | 0.706  | 0.599   | 0.534            | 0.783         | 0.698           | 0.904       | 0.583   | 0.985          | 0.903      | 0.932                   | 0.846                    |       | 0.012       | 0.399   | 0.176            | 0.579   | 0.764          | 0.668      | 0.695                   | 0.322                    | atic mu    | frequen                  | niper o      | -<br>ined se | rained 1    |   |
| Rec       | 25%  | 0%               | 0.957  | 0.606   | 0.541            | 0.791         | 0.705           | 0.968       | 0.805   | 0.995          | 0.917      | 0.917                   | 0.949                    |       | 0.046       | 0.403   | 0.177            | 0.815   | 0.871          | 0.747      | 0.782                   | 0.556                    | of som     | it allele                | omaticS      | he com       | 1. The t    |   |
|           |      | 2.5%             | 0.734  | 1.000   | 0.896            | 0.992         | 0.885           | 0.943       | 0.620   | 1.000          | 0.936      | 0.947                   | 0.960                    |       | 0.334       | 0.961   | 0.417            | 0.631   | 0.976          | 0.864      | 0.858                   | 0.416                    | bability   | r varian                 | and Sc       | eq* is t]    | lidation    | , |
|           | 50%  | 0%               | 0.991  | 1.000   | 0.896            | 1.000         | 0.892           | 1.000       | 0.819   | 1.000          | 0.947      | 0.915                   | 0.983                    |       | 0.810       | 0.963   | 0.417            | 0.852   | 0.979          | 0.864      | 0.839                   | 0.542                    | rior pro   | tand for                 | arScan2      | maticS       | cross va    | į |
| TYPE      | VAFT | VAF <sub>N</sub> | MuTect | VarScan | VarScan + Filter | SomaticSniper | Sniper + Filter | JointSNVMix | VarDict | Union of Tools | SomaticSeq | SomaticSeq <sup>*</sup> | SomaticSeq <sup>**</sup> | INDEL | Indelocator | VarScan | VarScan + Filter | VarDict | Union of Tools | SomaticSeq | SomaticSeq <sup>*</sup> | SomaticSeq <sup>**</sup> | TABLE 3. P | and $VAF_T$ s            | subsets of V | model for Sc | used during |   |

| 10X            |       | Re     | call  |       |       | Prec  | ision |          |             | $F_1 S$ | Score |       |
|----------------|-------|--------|-------|-------|-------|-------|-------|----------|-------------|---------|-------|-------|
| VAF            | 5%    | 10%    | 20%   | 40%   | 5%    | 10%   | 20%   | 40%      | 5%          | 10%     | 20%   | 40%   |
| MuTect         | 0.028 | 0.137  | 0.457 | 0.830 | 0.079 | 0.297 | 0.584 | 0.719    | 0.041       | 0.188   | 0.513 | 0.770 |
| VarScan        | 0.031 | 0.129  | 0.481 | 0.876 | 0.001 | 0.005 | 0.019 | 0.035    | 0.002       | 0.010   | 0.037 | 0.066 |
| VarScan+Filter | 0.009 | 0.059  | 0.279 | 0.619 | 0.010 | 0.061 | 0.233 | 0.403    | 0.009       | 0.060   | 0.254 | 0.488 |
| SomaticSniper  | 0.008 | 0.079  | 0.386 | 0.850 | 0.003 | 0.030 | 0.133 | 0.252    | 0.004       | 0.044   | 0.198 | 0.389 |
| Sniper+Filter  | 0.006 | 0.051  | 0.259 | 0.610 | 0.010 | 0.086 | 0.325 | 0.531    | 0.007       | 0.064   | 0.288 | 0.568 |
| JointSNVMix    | 0.006 | 0.070  | 0.395 | 0.882 | 0.001 | 0.017 | 0.088 | 0.177    | 0.002       | 0.027   | 0.144 | 0.294 |
| VarDict        | 0.022 | 0.122  | 0.418 | 0.737 | 0.004 | 0.023 | 0.074 | 0.123    | 0.007       | 0.038   | 0.125 | 0.211 |
| Union of Tools | 0.064 | 0.227  | 0.613 | 0.936 | 0.002 | 0.007 | 0.018 | 0.027    | 0.004       | 0.013   | 0.035 | 0.053 |
| SomaticSeq     | 0.014 | 0.140  | 0.487 | 0.857 | 0.722 | 0.889 | 0.952 | 0.988    | 0.028       | 0.242   | 0.645 | 0.918 |
| There 4        | 0 1   | · a ·1 | m     |       | · 1   | . 1   | 10V T | <u>.</u> | 1 1 1 1 1 1 | C       | · . · |       |

TABLE 4. SomaticSpike. Tumor sequencing depth = 10X. Prior probability of somatic mutation is enforced to be 1 in a million in order to get a more realistic performance.

| 20X            |       | Re    | call  |       |       | Prec  | ision |       |       | $F_1 S$ | Score |       |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|
| VAF            | 5%    | 10%   | 20%   | 40%   | 5%    | 10%   | 20%   | 40%   | 5%    | 10%     | 20%   | 40%   |
| MuTect         | 0.141 | 0.426 | 0.811 | 0.959 | 0.135 | 0.321 | 0.473 | 0.515 | 0.138 | 0.366   | 0.598 | 0.670 |
| VarScan        | 0.006 | 0.080 | 0.533 | 0.976 | 0.001 | 0.007 | 0.042 | 0.074 | 0.001 | 0.012   | 0.078 | 0.138 |
| VarScan+Filter | 0.004 | 0.065 | 0.419 | 0.806 | 0.002 | 0.041 | 0.218 | 0.349 | 0.003 | 0.050   | 0.287 | 0.487 |
| SomaticSniper  | 0.009 | 0.131 | 0.628 | 0.976 | 0.002 | 0.034 | 0.143 | 0.206 | 0.004 | 0.054   | 0.233 | 0.340 |
| Sniper+Filter  | 0.007 | 0.104 | 0.492 | 0.809 | 0.008 | 0.099 | 0.344 | 0.463 | 0.008 | 0.101   | 0.405 | 0.589 |
| JointSNVMix    | 0.016 | 0.331 | 0.847 | 0.983 | 0.002 | 0.041 | 0.098 | 0.111 | 0.004 | 0.072   | 0.175 | 0.200 |
| VarDict        | 0.044 | 0.224 | 0.640 | 0.812 | 0.006 | 0.031 | 0.084 | 0.104 | 0.011 | 0.055   | 0.149 | 0.185 |
| Union of Tools | 0.174 | 0.514 | 0.902 | 0.992 | 0.005 | 0.015 | 0.026 | 0.029 | 0.010 | 0.029   | 0.051 | 0.056 |
| SomaticSeq     | 0.115 | 0.395 | 0.816 | 0.977 | 0.860 | 0.932 | 0.971 | 0.996 | 0.203 | 0.555   | 0.887 | 0.986 |

TABLE 5. SomaticSpike. Tumor sequencing depth = 20X. Prior probability of somatic

mutation is enforced to be 1 in a million in order to get a more realistic performance.

| 30X            |       | Re    | call  |       |       | Prec  | ision |       |       | $F_1 S$ | core  |       |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|
| VAF            | 5%    | 10%   | 20%   | 40%   | 5%    | 10%   | 20%   | 40%   | 5%    | 10%     | 20%   | 40%   |
| MuTect         | 0.265 | 0.649 | 0.911 | 0.982 | 0.152 | 0.306 | 0.382 | 0.400 | 0.194 | 0.416   | 0.538 | 0.568 |
| VarScan        | 0.002 | 0.043 | 0.539 | 0.991 | 0.000 | 0.005 | 0.055 | 0.096 | 0.000 | 0.008   | 0.100 | 0.176 |
| VarScan+Filter | 0.002 | 0.038 | 0.442 | 0.822 | 0.001 | 0.022 | 0.205 | 0.324 | 0.001 | 0.028   | 0.280 | 0.465 |
| SomaticSniper  | 0.010 | 0.150 | 0.750 | 0.992 | 0.002 | 0.035 | 0.153 | 0.193 | 0.004 | 0.056   | 0.254 | 0.323 |
| Sniper+Filter  | 0.007 | 0.128 | 0.611 | 0.823 | 0.006 | 0.102 | 0.351 | 0.422 | 0.007 | 0.113   | 0.446 | 0.557 |
| JointSNVMix    | 0.025 | 0.580 | 0.947 | 0.992 | 0.002 | 0.051 | 0.081 | 0.084 | 0.004 | 0.094   | 0.149 | 0.155 |
| VarDict        | 0.059 | 0.312 | 0.735 | 0.826 | 0.008 | 0.040 | 0.088 | 0.098 | 0.014 | 0.070   | 0.158 | 0.175 |
| Union of Tools | 0.302 | 0.727 | 0.968 | 0.998 | 0.008 | 0.019 | 0.025 | 0.025 | 0.015 | 0.036   | 0.048 | 0.049 |
| SomaticSeq     | 0.213 | 0.615 | 0.911 | 0.988 | 0.861 | 0.946 | 0.981 | 0.998 | 0.342 | 0.745   | 0.945 | 0.993 |

TABLE 6. SomaticSpike. Tumor sequencing depth = 30X. Prior probability of somatic mutation is enforced to be 1 in a million in order to get a more realistic performance.

6

| 40X            |       | Re     | call  |       |       | Prec  | ision  |          |            | $F_1 S$ | Score |       |
|----------------|-------|--------|-------|-------|-------|-------|--------|----------|------------|---------|-------|-------|
| VAF            | 5%    | 10%    | 20%   | 40%   | 5%    | 10%   | 20%    | 40%      | 5%         | 10%     | 20%   | 40%   |
| MuTect         | 0.328 | 0.752  | 0.953 | 0.985 | 0.150 | 0.288 | 0.339  | 0.347    | 0.206      | 0.417   | 0.500 | 0.513 |
| VarScan        | 0.001 | 0.029  | 0.551 | 0.995 | 0.000 | 0.004 | 0.064  | 0.110    | 0.000      | 0.006   | 0.115 | 0.198 |
| VarScan+Filter | 0.001 | 0.027  | 0.452 | 0.837 | 0.000 | 0.014 | 0.198  | 0.314    | 0.000      | 0.019   | 0.278 | 0.457 |
| SomaticSniper  | 0.005 | 0.158  | 0.825 | 0.996 | 0.001 | 0.036 | 0.164  | 0.191    | 0.002      | 0.059   | 0.273 | 0.321 |
| Sniper+Filter  | 0.005 | 0.136  | 0.685 | 0.838 | 0.004 | 0.099 | 0.356  | 0.404    | 0.004      | 0.115   | 0.469 | 0.545 |
| JointSNVMix    | 0.022 | 0.744  | 0.975 | 0.992 | 0.002 | 0.053 | 0.069  | 0.070    | 0.003      | 0.100   | 0.129 | 0.131 |
| VarDict        | 0.050 | 0.363  | 0.778 | 0.850 | 0.007 | 0.049 | 0.100  | 0.108    | 0.012      | 0.087   | 0.177 | 0.192 |
| Union of Tools | 0.357 | 0.826  | 0.989 | 0.999 | 0.009 | 0.021 | 0.025  | 0.025    | 0.018      | 0.041   | 0.049 | 0.049 |
| SomaticSeq     | 0.268 | 0.724  | 0.941 | 0.990 | 0.858 | 0.960 | 0.985  | 0.999    | 0.409      | 0.826   | 0.962 | 0.994 |
| m m            | 0     | · a ·1 | m     |       | · 1   | 4.1   | 4037 T | <b>`</b> | 1 1 1 11.4 | c       |       |       |

TABLE 7. SomaticSpike. Tumor sequencing depth = 40X. Prior probability of somatic mutation is enforced to be 1 in a million in order to get a more realistic performance.

| 50X            |       | Re    | call  |       |       | Prec  | ision |       |       | $F_1 S$ | core  |       |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|
| VAF            | 5%    | 10%   | 20%   | 40%   | 5%    | 10%   | 20%   | 40%   | 5%    | 10%     | 20%   | 40%   |
| MuTect         | 0.388 | 0.817 | 0.967 | 0.989 | 0.159 | 0.286 | 0.321 | 0.326 | 0.226 | 0.423   | 0.482 | 0.490 |
| VarScan        | 0.000 | 0.015 | 0.582 | 0.997 | 0.000 | 0.002 | 0.073 | 0.119 | 0.000 | 0.004   | 0.130 | 0.213 |
| VarScan+Filter | 0.000 | 0.012 | 0.492 | 0.829 | 0.000 | 0.007 | 0.207 | 0.306 | 0.000 | 0.009   | 0.292 | 0.447 |
| SomaticSniper  | 0.005 | 0.138 | 0.869 | 0.997 | 0.001 | 0.032 | 0.175 | 0.195 | 0.002 | 0.052   | 0.291 | 0.326 |
| Sniper+Filter  | 0.005 | 0.120 | 0.736 | 0.829 | 0.004 | 0.086 | 0.367 | 0.395 | 0.004 | 0.101   | 0.490 | 0.535 |
| JointSNVMix    | 0.020 | 0.864 | 0.987 | 0.993 | 0.001 | 0.055 | 0.063 | 0.063 | 0.002 | 0.104   | 0.118 | 0.119 |
| VarDict        | 0.059 | 0.380 | 0.808 | 0.848 | 0.009 | 0.054 | 0.109 | 0.114 | 0.015 | 0.095   | 0.192 | 0.201 |
| Union of Tools | 0.418 | 0.895 | 0.994 | 0.998 | 0.011 | 0.023 | 0.026 | 0.026 | 0.022 | 0.046   | 0.051 | 0.051 |
| SomaticSeq     | 0.324 | 0.708 | 0.946 | 0.993 | 0.873 | 0.968 | 0.988 | 1.000 | 0.472 | 0.881   | 0.966 | 0.996 |

TABLE 8. SomaticSpike. Tumor sequencing depth = 50X. Prior probability of somatic mutation is enforced to be 1 in a million in order to get a more realistic performance.

| Consensus      | DC3A  | DC3B  | DC3C  | DC3D  | $N_0T_{50}$ | $N_{2.5}T_{50}$ | $N_0T_{25}$ | $N_{2.5}T_{25}$ | $N_0T_{15}$ | $N_{2.5}T_{15}$ |
|----------------|-------|-------|-------|-------|-------------|-----------------|-------------|-----------------|-------------|-----------------|
| MV             | 0.787 | 0.648 | 0.626 | 0.477 | 0.698       | 0.569           | 0.488       | 0.364           | 0.079       | 0.035           |
| MJ             | 0.889 | 0.764 | 0.760 | 0.620 | 0.593       | 0.476           | 0.571       | 0.452           | 0.428       | 0.307           |
| MS             | 0.842 | 0.709 | 0.672 | 0.525 | 0.656       | 0.531           | 0.553       | 0.427           | 0.191       | 0.111           |
| MD             | 0.899 | 0.772 | 0.844 | 0.699 | 0.527       | 0.410           | 0.514       | 0.396           | 0.441       | 0.292           |
| VJ             | 0.677 | 0.637 | 0.528 | 0.480 | 0.344       | 0.328           | 0.224       | 0.205           | 0.032       | 0.023           |
| VS             | 0.665 | 0.645 | 0.511 | 0.482 | 0.411       | 0.409           | 0.271       | 0.266           | 0.039       | 0.035           |
| VD             | 0.796 | 0.703 | 0.634 | 0.524 | 0.693       | 0.565           | 0.487       | 0.363           | 0.078       | 0.035           |
| JS             | 0.724 | 0.691 | 0.568 | 0.532 | 0.390       | 0.372           | 0.322       | 0.301           | 0.101       | 0.084           |
| JD             | 0.908 | 0.821 | 0.780 | 0.677 | 0.606       | 0.487           | 0.591       | 0.469           | 0.453       | 0.315           |
| SD             | 0.848 | 0.764 | 0.679 | 0.580 | 0.635       | 0.513           | 0.538       | 0.413           | 0.185       | 0.106           |
| MVJ            | 0.788 | 0.649 | 0.625 | 0.475 | 0.700       | 0.571           | 0.489       | 0.365           | 0.079       | 0.036           |
| MVS            | 0.782 | 0.640 | 0.611 | 0.460 | 0.724       | 0.592           | 0.508       | 0.380           | 0.082       | 0.037           |
| MVD            | 0.810 | 0.667 | 0.645 | 0.490 | 0.813       | 0.661           | 0.585       | 0.431           | 0.099       | 0.042           |
| MJS            | 0.838 | 0.705 | 0.669 | 0.522 | 0.685       | 0.557           | 0.579       | 0.449           | 0.203       | 0.118           |
| MJD            | 0.925 | 0.795 | 0.794 | 0.647 | 0.743       | 0.597           | 0.717       | 0.568           | 0.551       | 0.380           |
| MSD            | 0.862 | 0.725 | 0.690 | 0.536 | 0.746       | 0.600           | 0.637       | 0.486           | 0.229       | 0.128           |
| VJS            | 0.715 | 0.674 | 0.553 | 0.506 | 0.429       | 0.409           | 0.283       | 0.261           | 0.041       | 0.030           |
| VJD            | 0.800 | 0.700 | 0.636 | 0.520 | 0.697       | 0.568           | 0.490       | 0.365           | 0.079       | 0.035           |
| VSD            | 0.786 | 0.692 | 0.617 | 0.506 | 0.714       | 0.583           | 0.503       | 0.375           | 0.081       | 0.036           |
| JSD            | 0.851 | 0.759 | 0.682 | 0.576 | 0.670       | 0.544           | 0.571       | 0.440           | 0.199       | 0.114           |
| MVJS           | 0.778 | 0.637 | 0.608 | 0.458 | 0.725       | 0.593           | 0.509       | 0.381           | 0.082       | 0.037           |
| MVJD           | 0.805 | 0.661 | 0.639 | 0.485 | 0.814       | 0.662           | 0.586       | 0.432           | 0.099       | 0.043           |
| MVSD           | 0.792 | 0.647 | 0.621 | 0.465 | 0.822       | 0.670           | 0.592       | 0.437           | 0.100       | 0.043           |
| MJSD           | 0.857 | 0.721 | 0.686 | 0.533 | 0.782       | 0.633           | 0.670       | 0.514           | 0.245       | 0.138           |
| VJSD           | 0.785 | 0.685 | 0.616 | 0.501 | 0.715       | 0.584           | 0.504       | 0.376           | 0.081       | 0.036           |
| MVJSD          | 0.788 | 0.644 | 0.618 | 0.462 | 0.823       | 0.670           | 0.592       | 0.438           | 0.100       | 0.043           |
| $\geq 2$ tools | 0.672 | 0.651 | 0.623 | 0.584 | 0.247       | 0.246           | 0.244       | 0.235           | 0.208       | 0.157           |
| $\geq 3$ tools | 0.833 | 0.793 | 0.708 | 0.655 | 0.380       | 0.362           | 0.364       | 0.325           | 0.260       | 0.181           |
| $\geq 4$ tools | 0.860 | 0.765 | 0.696 | 0.581 | 0.610       | 0.501           | 0.513       | 0.399           | 0.174       | 0.099           |
| 5 tools        | 0.788 | 0.644 | 0.618 | 0.462 | 0.823       | 0.670           | 0.592       | 0.438           | 0.100       | 0.043           |
| SomaticSeq     | 0.964 | 0.958 | 0.932 | 0.905 | 0.955       | 0.952           | 0.946       | 0.942           | 0.823       | 0.805           |

TABLE 9.  $F_1$  scores of simple consensus. M: MuTect. V: VarScan2. J: JointSNVMix2. S: SomaticSniper. D: VarDict with relaxed filters. MJ represent all calls intersected by MuTect (M) and JointSNVMix2 (J). The first four columns represent the four DREAM Challenge Stage 3 (DC3) settings. The last six columns represent the six *in silico* titration settings. The subscripts denote the expected VAF (%) of the Normal (N) and Tumor (T).

| Consensus      | DC3A  | DC3B  | DC3C  | DC3D  | $N_0T_{50}$ | $N_{2.5}T_{50}$ | $N_0T_{25}$ | $N_{2.5}T_{25}$ | $N_0T_{15}$ | $N_{2.5}T_{15}$ |
|----------------|-------|-------|-------|-------|-------------|-----------------|-------------|-----------------|-------------|-----------------|
| MV             | 0.696 | 0.514 | 0.489 | 0.336 | 0.991       | 0.734           | 0.596       | 0.411           | 0.076       | 0.033           |
| MJ             | 0.883 | 0.681 | 0.676 | 0.496 | 0.991       | 0.734           | 0.938       | 0.687           | 0.639       | 0.425           |
| MS             | 0.767 | 0.580 | 0.534 | 0.375 | 0.990       | 0.734           | 0.775       | 0.551           | 0.215       | 0.119           |
| MD             | 0.909 | 0.700 | 0.813 | 0.599 | 0.983       | 0.708           | 0.949       | 0.677           | 0.777       | 0.468           |
| VJ             | 0.694 | 0.633 | 0.486 | 0.428 | 1.000       | 0.943           | 0.606       | 0.550           | 0.078       | 0.056           |
| VS             | 0.671 | 0.642 | 0.461 | 0.427 | 1.000       | 0.992           | 0.605       | 0.593           | 0.077       | 0.069           |
| VD             | 0.696 | 0.571 | 0.489 | 0.374 | 0.988       | 0.733           | 0.600       | 0.413           | 0.076       | 0.033           |
| JS             | 0.768 | 0.714 | 0.536 | 0.491 | 1.000       | 0.942           | 0.791       | 0.730           | 0.219       | 0.180           |
| JD             | 0.887 | 0.741 | 0.682 | 0.545 | 0.988       | 0.733           | 0.954       | 0.697           | 0.667       | 0.425           |
| SD             | 0.769 | 0.645 | 0.537 | 0.427 | 0.988       | 0.733           | 0.783       | 0.553           | 0.216       | 0.119           |
| MVJ            | 0.685 | 0.506 | 0.478 | 0.328 | 0.991       | 0.734           | 0.596       | 0.411           | 0.076       | 0.033           |
| MVS            | 0.663 | 0.487 | 0.455 | 0.309 | 0.990       | 0.734           | 0.594       | 0.410           | 0.075       | 0.033           |
| MVD            | 0.687 | 0.505 | 0.481 | 0.327 | 0.983       | 0.708           | 0.592       | 0.394           | 0.075       | 0.031           |
| MJS            | 0.759 | 0.574 | 0.529 | 0.372 | 0.990       | 0.734           | 0.775       | 0.551           | 0.215       | 0.119           |
| MJD            | 0.872 | 0.669 | 0.668 | 0.485 | 0.983       | 0.708           | 0.931       | 0.660           | 0.632       | 0.391           |
| MSD            | 0.762 | 0.573 | 0.530 | 0.369 | 0.983       | 0.708           | 0.771       | 0.530           | 0.214       | 0.113           |
| VJS            | 0.665 | 0.608 | 0.458 | 0.405 | 1.000       | 0.942           | 0.605       | 0.549           | 0.077       | 0.056           |
| VJD            | 0.686 | 0.555 | 0.481 | 0.362 | 0.988       | 0.733           | 0.599       | 0.412           | 0.076       | 0.033           |
| VSD            | 0.665 | 0.543 | 0.458 | 0.348 | 0.988       | 0.733           | 0.598       | 0.411           | 0.075       | 0.032           |
| JSD            | 0.761 | 0.630 | 0.532 | 0.416 | 0.988       | 0.733           | 0.783       | 0.553           | 0.216       | 0.119           |
| MVJS           | 0.658 | 0.483 | 0.451 | 0.306 | 0.990       | 0.734           | 0.594       | 0.410           | 0.075       | 0.033           |
| MVJD           | 0.678 | 0.498 | 0.474 | 0.322 | 0.983       | 0.708           | 0.592       | 0.394           | 0.075       | 0.031           |
| MVSD           | 0.659 | 0.481 | 0.453 | 0.304 | 0.983       | 0.708           | 0.591       | 0.394           | 0.074       | 0.031           |
| MJSD           | 0.755 | 0.568 | 0.526 | 0.366 | 0.983       | 0.708           | 0.771       | 0.530           | 0.214       | 0.113           |
| VJSD           | 0.659 | 0.532 | 0.454 | 0.341 | 0.988       | 0.733           | 0.598       | 0.411           | 0.075       | 0.032           |
| MVJSD          | 0.654 | 0.477 | 0.449 | 0.302 | 0.983       | 0.708           | 0.591       | 0.394           | 0.074       | 0.031           |
| $\geq 2$ tools | 0.940 | 0.898 | 0.841 | 0.766 | 1.000       | 0.992           | 0.984       | 0.941           | 0.821       | 0.606           |
| $\geq 3$ tools | 0.901 | 0.830 | 0.691 | 0.615 | 1.000       | 0.943           | 0.950       | 0.826           | 0.637       | 0.423           |
| $\geq 4$ tools | 0.795 | 0.652 | 0.561 | 0.431 | 0.995       | 0.758           | 0.783       | 0.564           | 0.216       | 0.118           |
| 5 tools        | 0.654 | 0.477 | 0.449 | 0.302 | 0.983       | 0.708           | 0.591       | 0.394           | 0.074       | 0.031           |
| SomaticSeq     | 0.937 | 0.923 | 0.875 | 0.832 | 0.947       | 0.936           | 0.917       | 0.903           | 0.721       | 0.684           |

TABLE 10. Sensitivity of a simple consensus approach. M: MuTect. V: VarScan2. J: JointSNVMix2. S: SomaticSniper. D: VarDict with relaxed filters. MJ represent all calls intersected by MuTect (M) and JointSNVMix2 (J). The first four columns represent the four DREAM Challenge Stage 3 (DC3) settings. The last six columns represent the six *in silico* titration settings. The subscripts denote the expected VAF (%) of the Normal (N) and Tumor (T).

| Consensus      | DC3A  | DC3B  | DC3C  | DC3D  | $N_0T_{50}$ | $N_{2.5}T_{50}$ | $N_0T_{25}$ | $N_{2.5}T_{25}$ | $N_0T_{15}$ | $N_{2.5}T_{15}$ |
|----------------|-------|-------|-------|-------|-------------|-----------------|-------------|-----------------|-------------|-----------------|
| MV             | 0.905 | 0.875 | 0.869 | 0.821 | 0.539       | 0.464           | 0.413       | 0.327           | 0.082       | 0.038           |
| MJ             | 0.896 | 0.869 | 0.868 | 0.828 | 0.423       | 0.353           | 0.410       | 0.337           | 0.322       | 0.240           |
| MS             | 0.933 | 0.914 | 0.907 | 0.873 | 0.491       | 0.416           | 0.430       | 0.349           | 0.173       | 0.104           |
| MD             | 0.889 | 0.860 | 0.877 | 0.840 | 0.360       | 0.289           | 0.352       | 0.280           | 0.308       | 0.212           |
| VJ             | 0.661 | 0.640 | 0.578 | 0.546 | 0.208       | 0.198           | 0.137       | 0.126           | 0.020       | 0.015           |
| VS             | 0.659 | 0.649 | 0.571 | 0.552 | 0.259       | 0.257           | 0.174       | 0.172           | 0.026       | 0.023           |
| VD             | 0.929 | 0.914 | 0.902 | 0.875 | 0.534       | 0.459           | 0.410       | 0.324           | 0.081       | 0.037           |
| JS             | 0.685 | 0.669 | 0.603 | 0.582 | 0.242       | 0.232           | 0.202       | 0.189           | 0.065       | 0.055           |
| JD             | 0.931 | 0.919 | 0.912 | 0.893 | 0.437       | 0.365           | 0.428       | 0.353           | 0.343       | 0.250           |
| SD             | 0.946 | 0.936 | 0.924 | 0.906 | 0.468       | 0.394           | 0.410       | 0.330           | 0.161       | 0.095           |
| MVJ            | 0.928 | 0.905 | 0.900 | 0.861 | 0.541       | 0.467           | 0.415       | 0.329           | 0.083       | 0.038           |
| MVS            | 0.952 | 0.936 | 0.931 | 0.902 | 0.571       | 0.496           | 0.444       | 0.355           | 0.091       | 0.042           |
| MVD            | 0.987 | 0.982 | 0.981 | 0.973 | 0.693       | 0.620           | 0.577       | 0.476           | 0.147       | 0.067           |
| MJS            | 0.935 | 0.916 | 0.910 | 0.876 | 0.523       | 0.449           | 0.462       | 0.379           | 0.192       | 0.117           |
| MJD            | 0.983 | 0.979 | 0.979 | 0.971 | 0.597       | 0.516           | 0.584       | 0.498           | 0.488       | 0.371           |
| MSD            | 0.990 | 0.987 | 0.986 | 0.980 | 0.601       | 0.521           | 0.542       | 0.448           | 0.247       | 0.148           |
| VJS            | 0.772 | 0.756 | 0.700 | 0.674 | 0.273       | 0.261           | 0.185       | 0.171           | 0.028       | 0.021           |
| VJD            | 0.958 | 0.948 | 0.941 | 0.923 | 0.539       | 0.464           | 0.415       | 0.327           | 0.082       | 0.037           |
| VSD            | 0.962 | 0.954 | 0.946 | 0.930 | 0.558       | 0.484           | 0.433       | 0.345           | 0.087       | 0.040           |
| JSD            | 0.964 | 0.957 | 0.949 | 0.936 | 0.507       | 0.433           | 0.449       | 0.366           | 0.184       | 0.110           |
| MVJS           | 0.953 | 0.937 | 0.933 | 0.904 | 0.572       | 0.497           | 0.445       | 0.356           | 0.092       | 0.042           |
| MVJD           | 0.989 | 0.984 | 0.984 | 0.976 | 0.695       | 0.622           | 0.579       | 0.478           | 0.148       | 0.067           |
| MVSD           | 0.992 | 0.989 | 0.989 | 0.983 | 0.707       | 0.635           | 0.592       | 0.492           | 0.154       | 0.070           |
| MJSD           | 0.991 | 0.988 | 0.987 | 0.981 | 0.650       | 0.572           | 0.593       | 0.500           | 0.287       | 0.176           |
| VJSD           | 0.970 | 0.963 | 0.957 | 0.944 | 0.560       | 0.486           | 0.435       | 0.347           | 0.088       | 0.040           |
| MVJSD          | 0.992 | 0.990 | 0.989 | 0.984 | 0.708       | 0.636           | 0.593       | 0.493           | 0.154       | 0.070           |
| $\geq 2$ tools | 0.522 | 0.511 | 0.495 | 0.471 | 0.141       | 0.140           | 0.139       | 0.134           | 0.119       | 0.091           |
| $\geq 3$ tools | 0.774 | 0.759 | 0.725 | 0.701 | 0.235       | 0.224           | 0.226       | 0.202           | 0.163       | 0.115           |
| $\geq 4$ tools | 0.938 | 0.925 | 0.914 | 0.891 | 0.440       | 0.375           | 0.382       | 0.308           | 0.146       | 0.085           |
| 5 tools        | 0.992 | 0.990 | 0.989 | 0.984 | 0.708       | 0.636           | 0.593       | 0.493           | 0.154       | 0.070           |
| SomaticSeq     | 0.992 | 0.997 | 0.996 | 0.994 | 0.963       | 0.969           | 0.978       | 0.985           | 0.959       | 0.978           |

TABLE 11. Precision of simple consensus approach. M: MuTect. V: VarScan2. J: JointSNVMix2. S: SomaticSniper. D: VarDict with relaxed filters. MJ represent all calls intersected by MuTect (M) and JointSNVMix2 (J). The first four columns represent the four DREAM Challenge Stage 3 (DC3) settings. The last six columns represent the six *in silico* titration settings. The subscripts denote the expected VAF (%) of the Normal (N) and Tumor (T).

|                | C      | LL1     | COI    | LO829   |
|----------------|--------|---------|--------|---------|
| Consensus      | Recall | # Calls | Recall | # Calls |
| MV             | 0.865  | 2,323   | 0.985  | 37,106  |
| MJ             | 0.883  | 3,363   | 0.993  | 39,898  |
| MS             | 0.888  | 2,503   | 0.993  | 37,495  |
| MD             | 0.877  | 3,669   | 0.866  | 38,059  |
| VJ             | 0.866  | 5,386   | 0.987  | 43,963  |
| VS             | 0.880  | 6,872   | 0.987  | 45,072  |
| VD             | 0.854  | 2,731   | 0.859  | 35,900  |
| JS             | 0.889  | 7,061   | 0.996  | 44,313  |
| JD             | 0.872  | 3,444   | 0.868  | 38,034  |
| SD             | 0.874  | 2,821   | 0.868  | 36,102  |
| MVJ            | 0.855  | 2,149   | 0.985  | 36,851  |
| MVS            | 0.864  | 2,098   | 0.985  | 36,619  |
| MVD            | 0.849  | 1,845   | 0.857  | 34,327  |
| MJS            | 0.877  | 2,416   | 0.993  | 37,376  |
| MJD            | 0.868  | 2,230   | 0.866  | 35,751  |
| MSD            | 0.871  | 1,952   | 0.866  | 34,740  |
| VJS            | 0.865  | 4,470   | 0.987  | 41,038  |
| VJD            | 0.846  | 2,271   | 0.859  | 35,331  |
| VSD            | 0.851  | 2,327   | 0.859  | 35,180  |
| JSD            | 0.866  | 2,483   | 0.868  | 35,799  |
| MVJS           | 0.855  | 2,042   | 0.985  | 36,537  |
| MVJD           | 0.842  | 1,782   | 0.857  | 34,223  |
| MVSD           | 0.848  | 1,779   | 0.857  | 34,139  |
| MJSD           | 0.863  | 1,913   | 0.866  | 34,673  |
| VJSD           | 0.845  | 2,117   | 0.859  | 34,988  |
| MVJSD          | 0.842  | 1,749   | 0.857  | 34,086  |
| $\geq 2$ tools | 0.916  | 13,594  | 0.996  | 57,254  |
| $\geq 3$ tools | 0.904  | 5,836   | 0.996  | 43,848  |
| $\geq 4$ tools | 0.886  | 2,637   | 0.996  | 38,216  |
| 5 tools        | 0.842  | 1,749   | 0.857  | 34,086  |
| SomaticSeq     | 0.892  | 2,320   | 0.996  | 37,452  |

SomaticSeq0.8922,3200.99637,452TABLE 12. Sensitivity and call set size of prediction of CLL1 (chronic lymphocytic leukemia)and COLO829 (melanoma) based on a simple consensus.

| SNV   | DC3A  | DC3B  | DC3C  | DC3D  | $N_0T_{50}$ | $N_{2.5}T_{50}$ | $N_0T_{25}$ | $N_{2.5}T_{25}$ | $N_0T_{15}$ | $N_{2.5}T_{15}$ |
|-------|-------|-------|-------|-------|-------------|-----------------|-------------|-----------------|-------------|-----------------|
| М     | 0.951 | 0.827 | 0.899 | 0.760 | 0.928       | 0.790           | 0.887       | 0.738           | 0.722       | 0.569           |
| V     | 0.811 | 0.792 | 0.649 | 0.612 | 0.922       | 0.938           | 0.699       | 0.693           | 0.096       | 0.098           |
| J     | 0.937 | 0.895 | 0.801 | 0.760 | 0.932       | 0.915           | 0.907       | 0.882           | 0.729       | 0.700           |
| S     | 0.867 | 0.850 | 0.694 | 0.680 | 0.931       | 0.940           | 0.836       | 0.848           | 0.319       | 0.325           |
| D     | 0.954 | 0.886 | 0.918 | 0.809 | 0.941       | 0.794           | 0.925       | 0.769           | 0.814       | 0.583           |
| MV    | 0.950 | 0.921 | 0.900 | 0.840 | 0.939       | 0.945           | 0.905       | 0.866           | 0.716       | 0.612           |
| MJ    | 0.958 | 0.920 | 0.903 | 0.851 | 0.931       | 0.914           | 0.906       | 0.879           | 0.768       | 0.747           |
| MS    | 0.952 | 0.928 | 0.898 | 0.860 | 0.941       | 0.941           | 0.903       | 0.902           | 0.724       | 0.662           |
| MD    | 0.964 | 0.890 | 0.933 | 0.843 | 0.948       | 0.813           | 0.927       | 0.793           | 0.807       | 0.649           |
| VJ    | 0.935 | 0.915 | 0.804 | 0.777 | 0.937       | 0.936           | 0.906       | 0.902           | 0.745       | 0.718           |
| VS    | 0.880 | 0.865 | 0.713 | 0.701 | 0.941       | 0.944           | 0.844       | 0.845           | 0.335       | 0.328           |
| VD    | 0.953 | 0.943 | 0.921 | 0.869 | 0.950       | 0.946           | 0.927       | 0.900           | 0.813       | 0.615           |
| JS    | 0.935 | 0.920 | 0.805 | 0.784 | 0.935       | 0.944           | 0.919       | 0.917           | 0.753       | 0.732           |
| JD    | 0.956 | 0.939 | 0.916 | 0.870 | 0.942       | 0.917           | 0.943       | 0.913           | 0.819       | 0.759           |
| SD    | 0.956 | 0.947 | 0.915 | 0.875 | 0.947       | 0.947           | 0.939       | 0.928           | 0.804       | 0.679           |
| MVJ   | 0.956 | 0.931 | 0.900 | 0.864 | 0.945       | 0.947           | 0.926       | 0.915           | 0.779       | 0.760           |
| MVS   | 0.951 | 0.931 | 0.900 | 0.858 | 0.950       | 0.950           | 0.901       | 0.902           | 0.721       | 0.658           |
| MVD   | 0.962 | 0.950 | 0.932 | 0.890 | 0.952       | 0.955           | 0.929       | 0.901           | 0.809       | 0.686           |
| MJS   | 0.958 | 0.936 | 0.903 | 0.867 | 0.937       | 0.944           | 0.928       | 0.915           | 0.778       | 0.775           |
| MJD   | 0.960 | 0.941 | 0.931 | 0.891 | 0.951       | 0.931           | 0.940       | 0.916           | 0.829       | 0.783           |
| MSD   | 0.963 | 0.947 | 0.931 | 0.898 | 0.951       | 0.955           | 0.934       | 0.923           | 0.808       | 0.716           |
| VJS   | 0.939 | 0.923 | 0.805 | 0.789 | 0.933       | 0.949           | 0.927       | 0.927           | 0.757       | 0.738           |
| VJD   | 0.956 | 0.951 | 0.923 | 0.884 | 0.951       | 0.952           | 0.942       | 0.937           | 0.822       | 0.769           |
| VSD   | 0.955 | 0.950 | 0.918 | 0.875 | 0.950       | 0.955           | 0.937       | 0.925           | 0.818       | 0.668           |
| JSD   | 0.957 | 0.951 | 0.921 | 0.885 | 0.945       | 0.948           | 0.938       | 0.950           | 0.819       | 0.780           |
| MVJS  | 0.958 | 0.938 | 0.899 | 0.869 | 0.943       | 0.947           | 0.929       | 0.932           | 0.781       | 0.781           |
| MVJD  | 0.963 | 0.955 | 0.931 | 0.901 | 0.948       | 0.958           | 0.937       | 0.934           | 0.824       | 0.793           |
| MVSD  | 0.964 | 0.958 | 0.931 | 0.899 | 0.949       | 0.955           | 0.929       | 0.932           | 0.810       | 0.724           |
| MJSD  | 0.962 | 0.952 | 0.927 | 0.902 | 0.950       | 0.952           | 0.942       | 0.947           | 0.825       | 0.807           |
| VJSD  | 0.956 | 0.957 | 0.920 | 0.885 | 0.947       | 0.957           | 0.946       | 0.944           | 0.826       | 0.778           |
| MVJSD | 0.964 | 0.958 | 0.932 | 0.905 | 0.955       | 0.952           | 0.946       | 0.942           | 0.823       | 0.805           |
| INDEL |       |       |       |       |             |                 |             |                 |             |                 |
| М     | 0.266 | 0.135 | 0.048 | 0.013 | 0.831       | 0.393           | 0.051       | 0.002           | 0.000       | 0.000           |
| V     | 0.489 | 0.472 | 0.279 | 0.268 | 0.906       | 0.897           | 0.517       | 0.520           | 0.052       | 0.045           |
| D     | 0.877 | 0.833 | 0.852 | 0.762 | 0.834       | 0.697           | 0.830       | 0.681           | 0.737       | 0.532           |
| MV    | 0.506 | 0.487 | 0.284 | 0.264 | 0.908       | 0.901           | 0.509       | 0.519           | 0.739       | 0.046           |
| MD    | 0.878 | 0.834 | 0.852 | 0.760 | 0.857       | 0.711           | 0.834       | 0.680           | 0.748       | 0.533           |
| VD    | 0.875 | 0.869 | 0.848 | 0.786 | 0.910       | 0.891           | 0.850       | 0.793           | 0.738       | 0.556           |
| MVD   | 0.874 | 0.868 | 0.855 | 0.788 | 0.912       | 0.910           | 0.844       | 0.793           | 0.786       | 0.562           |

TABLE 13. F1 scores of every possible combination of individual callers, followed by the same machine learning algorithm. M: MuTect/Indelocator. V: VarScan2. J: JointSNVMix2. S: SomaticSniper. D: VarDict with relaxed filters. MJ represent all calls intersected by MuTect (M) and JointSNVMix2 (J). The first four columns represent the four DREAM Challenge Stage 3 (DC3) settings. The last six columns represent the six *in silico* titration settings. The subscripts denote the expected VAF (%) of the Normal (N) and Tumor (T).

| SNV   | DC3A  | DC3B  | DC3C  | DC3D  | N <sub>0</sub> T <sub>50</sub> | $N_{2.5}T_{50}$ | $N_0T_{25}$ | $N_{2.5}T_{25}$ | $N_0T_{15}$ | $N_{2.5}T_{15}$ |
|-------|-------|-------|-------|-------|--------------------------------|-----------------|-------------|-----------------|-------------|-----------------|
| М     | 0.917 | 0.714 | 0.835 | 0.626 | 0.913                          | 0.676           | 0.834       | 0.605           | 0.606       | 0.412           |
| V     | 0.689 | 0.664 | 0.484 | 0.445 | 0.911                          | 0.927           | 0.558       | 0.544           | 0.051       | 0.052           |
| J     | 0.889 | 0.818 | 0.674 | 0.620 | 0.911                          | 0.873           | 0.870       | 0.820           | 0.594       | 0.551           |
| S     | 0.770 | 0.744 | 0.534 | 0.517 | 0.911                          | 0.920           | 0.737       | 0.749           | 0.191       | 0.195           |
| D     | 0.918 | 0.795 | 0.849 | 0.680 | 0.928                          | 0.681           | 0.889       | 0.636           | 0.717       | 0.420           |
| MV    | 0.918 | 0.869 | 0.834 | 0.742 | 0.918                          | 0.930           | 0.858       | 0.785           | 0.598       | 0.457           |
| MJ    | 0.930 | 0.862 | 0.839 | 0.758 | 0.914                          | 0.873           | 0.869       | 0.813           | 0.652       | 0.616           |
| MS    | 0.922 | 0.877 | 0.832 | 0.772 | 0.925                          | 0.921           | 0.848       | 0.840           | 0.603       | 0.513           |
| MD    | 0.938 | 0.804 | 0.877 | 0.730 | 0.935                          | 0.704           | 0.893       | 0.668           | 0.710       | 0.490           |
| VJ    | 0.887 | 0.857 | 0.679 | 0.644 | 0.921                          | 0.917           | 0.872       | 0.857           | 0.609       | 0.574           |
| VS    | 0.792 | 0.772 | 0.559 | 0.543 | 0.933                          | 0.926           | 0.744       | 0.743           | 0.202       | 0.197           |
| VD    | 0.916 | 0.894 | 0.854 | 0.770 | 0.941                          | 0.929           | 0.888       | 0.830           | 0.715       | 0.452           |
| JS    | 0.887 | 0.862 | 0.680 | 0.652 | 0.925                          | 0.927           | 0.879       | 0.869           | 0.618       | 0.589           |
| JD    | 0.922 | 0.886 | 0.846 | 0.772 | 0.926                          | 0.872           | 0.913       | 0.854           | 0.716       | 0.621           |
| SD    | 0.923 | 0.901 | 0.843 | 0.780 | 0.937                          | 0.926           | 0.904       | 0.877           | 0.703       | 0.524           |
| MVJ   | 0.926 | 0.884 | 0.834 | 0.778 | 0.933                          | 0.932           | 0.893       | 0.871           | 0.665       | 0.629           |
| MVS   | 0.919 | 0.885 | 0.835 | 0.769 | 0.942                          | 0.934           | 0.843       | 0.840           | 0.605       | 0.510           |
| MVD   | 0.934 | 0.908 | 0.876 | 0.805 | 0.943                          | 0.941           | 0.893       | 0.833           | 0.712       | 0.534           |
| MJS   | 0.930 | 0.889 | 0.842 | 0.783 | 0.921                          | 0.922           | 0.892       | 0.862           | 0.661       | 0.649           |
| MJD   | 0.930 | 0.890 | 0.875 | 0.807 | 0.940                          | 0.895           | 0.909       | 0.855           | 0.732       | 0.651           |
| MSD   | 0.935 | 0.901 | 0.874 | 0.819 | 0.939                          | 0.938           | 0.896       | 0.872           | 0.709       | 0.571           |
| VJS   | 0.895 | 0.870 | 0.680 | 0.659 | 0.918                          | 0.936           | 0.891       | 0.884           | 0.622       | 0.594           |
| VJD   | 0.922 | 0.909 | 0.858 | 0.794 | 0.942                          | 0.939           | 0.911       | 0.895           | 0.720       | 0.633           |
| VSD   | 0.920 | 0.908 | 0.849 | 0.779 | 0.938                          | 0.943           | 0.903       | 0.875           | 0.726       | 0.513           |
| JSD   | 0.924 | 0.909 | 0.854 | 0.795 | 0.930                          | 0.928           | 0.899       | 0.917           | 0.717       | 0.648           |
| MVJS  | 0.931 | 0.896 | 0.831 | 0.787 | 0.930                          | 0.931           | 0.890       | 0.891           | 0.666       | 0.655           |
| MVJD  | 0.935 | 0.916 | 0.874 | 0.824 | 0.932                          | 0.945           | 0.903       | 0.891           | 0.725       | 0.667           |
| MVSD  | 0.938 | 0.922 | 0.874 | 0.820 | 0.938                          | 0.939           | 0.886       | 0.884           | 0.712       | 0.580           |
| MJSD  | 0.934 | 0.910 | 0.868 | 0.825 | 0.940                          | 0.932           | 0.906       | 0.915           | 0.725       | 0.685           |
| VJSD  | 0.922 | 0.920 | 0.852 | 0.796 | 0.939                          | 0.946           | 0.914       | 0.904           | 0.727       | 0.644           |
| MVJSD | 0.937 | 0.923 | 0.875 | 0.832 | 0.947                          | 0.936           | 0.917       | 0.903           | 0.721       | 0.684           |
| INDEL |       | L     |       |       |                                |                 |             |                 |             |                 |
| М     | 0.156 | 0.073 | 0.025 | 0.007 | 0.766                          | 0.261           | 0.026       | 0.001           | 0.000       | 0.000           |
| V     | 0.334 | 0.318 | 0.165 | 0.157 | 0.861                          | 0.845           | 0.354       | 0.356           | 0.027       | 0.023           |
| D     | 0.814 | 0.722 | 0.750 | 0.622 | 0.775                          | 0.563           | 0.735       | 0.529           | 0.610       | 0.370           |
| MV    | 0.350 | 0.330 | 0.168 | 0.154 | 0.861                          | 0.850           | 0.348       | 0.356           | 0.610       | 0.024           |
| MD    | 0.815 | 0.723 | 0.751 | 0.619 | 0.788                          | 0.570           | 0.741       | 0.528           | 0.619       | 0.372           |
| VD    | 0.809 | 0.777 | 0.744 | 0.655 | 0.860                          | 0.837           | 0.756       | 0.668           | 0.609       | 0.393           |
| MVD   | 0.807 | 0.776 | 0.754 | 0.656 | 0.864                          | 0.864           | 0.747       | 0.668           | 0.688       | 0.399           |

TABLE 14. Recalls of every possible combination of individual callers, followed by the same machine learning algorithm. M: MuTect/Indelocator. V: VarScan2. J: JointSNVMix2. S: SomaticSniper. D: VarDict with relaxed filters. MJ represent all calls intersected by MuTect (M) and JointSNVMix2 (J). The first four columns represent the four DREAM Challenge Stage 3 (DC3) settings. The last six columns represent the six *in silico* titration settings. The subscripts denote the expected VAF (%) of the Normal (N) and Tumor (T).

| SNV   | DC3A  | DC3B  | DC3C  | DC3D  | $N_0T_{50}$ | $N_{2.5}T_{50}$ | $N_0T_{25}$ | $N_{2.5}T_{25}$ | $N_0T_{15}$ | $N_{2.5}T_{15}$ |
|-------|-------|-------|-------|-------|-------------|-----------------|-------------|-----------------|-------------|-----------------|
| М     | 0.987 | 0.983 | 0.974 | 0.966 | 0.943       | 0.949           | 0.948       | 0.946           | 0.894       | 0.919           |
| V     | 0.986 | 0.982 | 0.985 | 0.982 | 0.932       | 0.950           | 0.937       | 0.954           | 0.873       | 0.911           |
| J     | 0.990 | 0.988 | 0.985 | 0.982 | 0.953       | 0.962           | 0.948       | 0.955           | 0.942       | 0.961           |
| S     | 0.992 | 0.991 | 0.992 | 0.990 | 0.951       | 0.960           | 0.967       | 0.978           | 0.975       | 0.978           |
| D     | 0.993 | 0.999 | 1.000 | 0.999 | 0.953       | 0.952           | 0.964       | 0.972           | 0.941       | 0.954           |
| MV    | 0.986 | 0.980 | 0.977 | 0.968 | 0.961       | 0.961           | 0.958       | 0.966           | 0.894       | 0.929           |
| MJ    | 0.987 | 0.985 | 0.977 | 0.971 | 0.949       | 0.959           | 0.947       | 0.957           | 0.935       | 0.951           |
| MS    | 0.985 | 0.986 | 0.975 | 0.970 | 0.958       | 0.963           | 0.966       | 0.973           | 0.906       | 0.934           |
| MD    | 0.992 | 0.998 | 0.995 | 0.997 | 0.961       | 0.962           | 0.965       | 0.976           | 0.936       | 0.960           |
| VJ    | 0.988 | 0.982 | 0.984 | 0.980 | 0.953       | 0.957           | 0.943       | 0.952           | 0.958       | 0.960           |
| VS    | 0.989 | 0.985 | 0.987 | 0.986 | 0.950       | 0.963           | 0.975       | 0.980           | 0.982       | 0.985           |
| VD    | 0.993 | 0.998 | 0.999 | 0.998 | 0.959       | 0.963           | 0.969       | 0.983           | 0.941       | 0.964           |
| JS    | 0.988 | 0.987 | 0.986 | 0.984 | 0.946       | 0.962           | 0.962       | 0.971           | 0.962       | 0.969           |
| JD    | 0.992 | 0.998 | 0.999 | 0.997 | 0.959       | 0.966           | 0.974       | 0.981           | 0.957       | 0.978           |
| SD    | 0.992 | 0.998 | 1.000 | 0.998 | 0.957       | 0.970           | 0.977       | 0.986           | 0.940       | 0.965           |
| MVJ   | 0.987 | 0.983 | 0.976 | 0.971 | 0.957       | 0.963           | 0.962       | 0.965           | 0.941       | 0.961           |
| MVS   | 0.986 | 0.982 | 0.976 | 0.971 | 0.957       | 0.967           | 0.967       | 0.974           | 0.892       | 0.930           |
| MVD   | 0.991 | 0.996 | 0.995 | 0.996 | 0.962       | 0.970           | 0.969       | 0.981           | 0.937       | 0.960           |
| MJS   | 0.988 | 0.987 | 0.975 | 0.970 | 0.953       | 0.967           | 0.968       | 0.976           | 0.945       | 0.963           |
| MJD   | 0.993 | 0.997 | 0.996 | 0.994 | 0.962       | 0.970           | 0.973       | 0.987           | 0.956       | 0.981           |
| MSD   | 0.992 | 0.997 | 0.995 | 0.994 | 0.963       | 0.973           | 0.977       | 0.982           | 0.939       | 0.961           |
| VJS   | 0.987 | 0.984 | 0.984 | 0.983 | 0.947       | 0.962           | 0.966       | 0.976           | 0.968       | 0.974           |
| VJD   | 0.992 | 0.997 | 0.999 | 0.996 | 0.961       | 0.967           | 0.976       | 0.983           | 0.959       | 0.979           |
| VSD   | 0.992 | 0.997 | 0.999 | 0.997 | 0.961       | 0.968           | 0.974       | 0.982           | 0.939       | 0.960           |
| JSD   | 0.993 | 0.997 | 0.999 | 0.996 | 0.960       | 0.970           | 0.981       | 0.985           | 0.956       | 0.980           |
| MVJS  | 0.987 | 0.985 | 0.978 | 0.970 | 0.956       | 0.964           | 0.973       | 0.977           | 0.944       | 0.967           |
| MVJD  | 0.993 | 0.996 | 0.996 | 0.995 | 0.964       | 0.973           | 0.975       | 0.981           | 0.955       | 0.978           |
| MVSD  | 0.992 | 0.996 | 0.995 | 0.995 | 0.962       | 0.971           | 0.976       | 0.985           | 0.938       | 0.962           |
| MJSD  | 0.992 | 0.997 | 0.995 | 0.994 | 0.960       | 0.973           | 0.982       | 0.982           | 0.957       | 0.982           |
| VJSD  | 0.993 | 0.997 | 0.999 | 0.997 | 0.956       | 0.970           | 0.981       | 0.987           | 0.956       | 0.984           |
| MVJSD | 0.992 | 0.997 | 0.996 | 0.994 | 0.963       | 0.969           | 0.978       | 0.985           | 0.959       | 0.978           |
| INDEL |       |       |       |       |             |                 |             |                 |             |                 |
| М     | 0.906 | 0.857 | 0.834 | 0.674 | 0.908       | 0.801           | 0.838       | 0.964           | -           | -               |
| V     | 0.917 | 0.913 | 0.903 | 0.912 | 0.955       | 0.957           | 0.957       | 0.955           | 0.930       | 0.924           |
| D     | 0.951 | 0.984 | 0.986 | 0.984 | 0.904       | 0.914           | 0.955       | 0.957           | 0.933       | 0.950           |
| MV    | 0.915 | 0.922 | 0.902 | 0.906 | 0.960       | 0.959           | 0.949       | 0.956           | 0.939       | 0.937           |
| MD    | 0.953 | 0.986 | 0.986 | 0.986 | 0.941       | 0.944           | 0.955       | 0.974           | 0.944       | 0.939           |
| VD    | 0.954 | 0.985 | 0.985 | 0.983 | 0.967       | 0.951           | 0.971       | 0.977           | 0.936       | 0.950           |
| MVD   | 0.952 | 0.985 | 0.986 | 0.985 | 0.966       | 0.961           | 0.971       | 0.940           | 0.917       | 0.951           |

TABLE 15. Precisions of every possible combination of individual callers, followed by the same machine learning algorithm. M: MuTect/Indelocator. V: VarScan2. J: JointSNVMix2. S: SomaticSniper. D: VarDict with relaxed filters. MJ represent all calls intersected by MuTect (M) and JointSNVMix2 (J). The first four columns represent the four DREAM Challenge Stage 3 (DC3) settings. The last six columns represent the six *in silico* titration settings. The subscripts denote the expected VAF (%) of the Normal (N) and Tumor (T).

| M  0.99800  0.99633  0.99643  0.99676  0.99776  0.99829  0.99932  0.99953  0.99953    V  0.99840  0.99840  0.99841  0.99650  0.999680  0.99975  0.99820  0.99952  0.99963    S  0.99801  0.99901  0.99901  0.99971  0.99836  0.99820  0.99963  0.99976    NU  0.99801  0.99901  0.99974  0.99775  0.99832  0.99963  0.99976  0.99876  0.99820  0.99776  0.99832  0.99776  0.99832  0.99776  0.99841  0.99776  0.99776  0.99841  0.99776  0.99778  0.99841  0.99641  0.99741  0.99176  0.99776  0.99781  0.99841  0.99841  0.99841  0.99841  0.99841  0.99841  0.99841  0.99841  0.99841  0.99841  0.99841  0.99841  0.99841  0.99841  0.99841  0.99841  0.99841  0.99841  0.99841  0.99841  0.99841  0.99841  0.99841  0.99841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SNV    | DC3A    | DC3B    | DC3C     | DC3D    | N <sub>0</sub> T <sub>50</sub> | $N_{2.5}T_{50}$ | $N_0T_{25}$ | $N_{2.5}T_{25}$    | N <sub>0</sub> T <sub>15</sub> | $N_{2.5}T_{15}$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|---------|----------|---------|--------------------------------|-----------------|-------------|--------------------|--------------------------------|-----------------|
| V  0.99840  0.99880  0.99860  0.99660  0.99777  0.99820  0.99952  0.99981  0.99860  0.99771  0.99820  0.99981  0.99871  0.99870  0.99880  0.99970  0.99770  0.99783  0.99820  0.99970  0.99700  0.99700  0.99700  0.99700  0.99701  0.99781  0.99871  0.99675  0.99755  0.99763  0.99820  0.99970  0.99701  0.99711  0.99821  0.99971  0.99751  0.99820  0.99871  0.99711  0.99871  0.99711  0.99810  0.99711  0.99735  0.99751  0.99820  0.99814  0.99871  0.99751  0.99815  0.99814  0.99811  0.99811  0.99811  0.99811  0.99811  0.99813  0.99963  0.99972  0.99973  0.99973  0.99973  0.99973  0.99973  0.99973  0.99973  0.99973  0.99973  0.99973  0.99973  0.99973  0.99973  0.99973  0.99973  0.99973  0.99973  0.99973  0.99973  0.99973  0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | М      | 0.99800 | 0.99795 | 0.99633  | 0.99631 | 0.99643                        | 0.99762         | 0.99701     | 0.99776            | 0.99533                        | 0.99763         |
| J  0.99852  0.99840  0.99841  0.99070  0.99680  0.99987  0.99853    S  0.99881  0.99991  0.99994  0.99994  0.99944  0.99775  0.99783  0.99882  0.99976  0.99861    MU  0.99703  0.99673  0.99678  0.99755  0.99673  0.99763  0.99763  0.99763  0.99763  0.99763  0.99763  0.99763  0.99763  0.99763  0.99840  0.99764  0.99761  0.99763  0.99840  0.99844  0.99764    ND  0.99842  0.99841  0.99841  0.99876  0.99776  0.99766  0.99875  0.99964  0.99844  0.99844  0.99842  0.99844  0.99842  0.99844  0.99842  0.99844  0.99876  0.99876  0.99876  0.99976  0.99976  0.99981  0.99976  0.99976  0.99976  0.99976  0.99976  0.99976  0.99976  0.99976  0.99976  0.99976  0.99976  0.99976  0.99976  0.99977  0.99875  0.99977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V      | 0.99840 | 0.99800 | 0.99880  | 0.99861 | 0.99569                        | 0.99680         | 0.99757     | 0.99829            | 0.99952                        | 0.99967         |
| S  0.99887  0.99928  0.99928  0.99971  0.99838  0.99882  0.99978  0.999780  0.999701  0.99780  0.99770  0.99780  0.99770  0.99778  0.99780  0.99770  0.997780  0.99775  0.99675  0.99675  0.99675  0.99675  0.99675  0.99750  0.99710  0.99711  0.99671  0.99775  0.99675  0.99675  0.99750  0.99740  0.99771  0.99711  0.99671  0.99775  0.99850  0.99840  0.99744  0.99731  0.99671  0.99764  0.99765  0.99840  0.99975  0.99840  0.99841  0.99851  0.99871  0.99673  0.99766  0.99771  0.99770  0.99870  0.99870  0.99870  0.99870  0.99870  0.99870  0.99870  0.99870  0.99870  0.99870  0.99871  0.99870  0.99870  0.99870  0.99870  0.99970  0.99770  0.99870  0.99970  0.99770  0.99870  0.99770  0.99870  0.99770  0.99770  0.99770  0.99770  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | J      | 0.99852 | 0.99840 | 0.99834  | 0.99814 | 0.99709                        | 0.99775         | 0.99689     | 0.99747            | 0.99760                        | 0.99853         |
| D  0.9981  0.99991  0.99944  0.99776  0.99783  0.99780  0.99780  0.99780  0.99781  0.99673  0.99678  0.99756  0.99758  0.99750  0.99780  0.99770  0.99820  0.99770  0.99771    MJ  0.99810  0.99771  0.99771  0.99771  0.99761  0.99763  0.99765  0.99850  0.99764  0.99764  0.99764  0.99844  0.99844  0.99844  0.99844  0.99844  0.99844  0.99844  0.99844  0.99841  0.99876  0.99776  0.99776  0.99876  0.99975  0.99987  0.99841  0.99975  0.99987  0.99975  0.99981  0.99965  0.99971  0.99776  0.99811  0.99865  0.99977  0.99771  0.99810  0.99976  0.99976  0.99977  0.99771  0.99830  0.99965  0.99971  0.99771  0.99811  0.99860  0.99775  0.99811  0.99820  0.99770  0.99876  0.99770  0.99873  0.99771  0.99770  0.99771  0.99780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S      | 0.99897 | 0.99886 | 0.99928  | 0.99917 | 0.99695                        | 0.99751         | 0.99836     | 0.99892            | 0.99968                        | 0.99971         |
| MV  0.99780  0.99673  0.99678  0.99756  0.99756  0.99763  0.99710  0.99671    MJ  0.99801  0.99771  0.99671  0.99675  0.99685  0.99763  0.99763  0.99763  0.99763  0.99763  0.99764  0.99845  0.99754  0.99754  0.99754  0.99754  0.99754  0.99754  0.99754  0.99845  0.99854  0.99874  0.99844  0.99855  0.99976  0.99755  0.99976  0.99857  0.99975  0.99986  0.99857  0.99985  0.99975  0.99976  0.99813  0.99985  0.99976  0.99877  0.99876  0.99987  0.99887  0.99985  0.99976  0.99976  0.99876  0.99976  0.99876  0.99876  0.99976  0.99876  0.99976  0.99876  0.99977  0.99877  0.99875  0.99976  0.99876  0.99976  0.99876  0.99977  0.99876  0.99776  0.99876  0.99772  0.99876  0.99776  0.99876  0.99776  0.99876  0.99771  0.99876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D      | 0.99891 | 0.99991 | 0.99994  | 0.99994 | 0.99704                        | 0.99777         | 0.99783     | 0.99882            | 0.99705                        | 0.99869         |
| MJ  0.99871  0.99671  0.99672  0.99773  0.99773  0.99776  0.99776  0.99776  0.99783  0.99796  0.99880  0.99791  0.99671  0.99785  0.99880  0.99894  0.99976  0.99876  0.99881  0.99891  0.99967  0.99770  0.99770  0.99770  0.99770  0.99781  0.99881  0.99984  0.99984  0.99984  0.999876  0.99977  0.99767  0.99767  0.99765  0.99910  0.99975  0.99983  0.99985  0.99981  0.99985  0.99987  0.99983  0.99985  0.99971  0.99770  0.99771  0.99830  0.99842  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99971  0.99970  0.99870  0.99970  0.99870  0.99971  0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MV     | 0.99780 | 0.99703 | 0.99673  | 0.99588 | 0.99758                        | 0.99756         | 0.99758     | 0.99820            | 0.99540                        | 0.99771         |
| MS  0.99771  0.99701  0.99600  0.99735  0.99760  0.99805  0.99849  0.99540  0.99764    MD  0.99815  0.99941  0.99914  0.99971  0.99778  0.99849  0.99824  0.99844    VS  0.99815  0.99815  0.99815  0.99815  0.99827  0.99825  0.99973  0.99976  0.99771  0.99830    VD  0.99827  0.99815  0.99837  0.99827  0.99815  0.99837  0.99827  0.99827  0.99815  0.99837  0.99827  0.99815  0.99837  0.99827  0.99815  0.99837  0.99827  0.99815  0.99837  0.99816  0.99976  0.99761  0.99727  0.99727  0.99726  0.99727  0.99727  0.99727  0.99727  0.99727  0.99726  0.99747  0.99727  0.99726  0.99747  0.99726  0.99810  0.99826  0.99714    MVJ  0.99845  0.99937  0.99937  0.99937  0.99937  0.99936  0.99756  0.99824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MJ     | 0.99801 | 0.99781 | 0.99675  | 0.99632 | 0.99678                        | 0.99755         | 0.99685     | 0.99763            | 0.99705                        | 0.99795         |
| MD  0.99882  0.99967  0.99960  0.99730  0.99870  0.99789  0.99840  0.99684  0.99867    VJ  0.99815  0.99744  0.99814  0.99778  0.99774  0.99675  0.99975  0.99980  0.99882  0.99875  0.99975  0.99975  0.99975  0.99980  0.99882  0.99876  0.99970  0.99883  0.99965  0.99980  0.99862  0.99876  0.99970  0.99883  0.99965  0.99980  0.99862  0.99870  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99970  0.99975  0.99720  0.99850  0.99971  0.99770  0.99750  0.99720  0.99850  0.99961  0.99850  0.99975  0.99720  0.99875  0.99720  0.99850  0.99961  0.99850  0.99975  0.99720  0.99850  0.99961  0.99850  0.99950  0.99975  0.99720  0.99851  0.99961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MS     | 0.99772 | 0.99791 | 0.99641  | 0.99609 | 0.99735                        | 0.99767         | 0.99805     | 0.99849            | 0.99594                        | 0.99764         |
| VJ  0.99849  0.99744  0.99775  0.99767  0.99785  0.99718  0.99824  0.99840    VS  0.99849  0.99860  0.99876  0.99766  0.99876  0.99911  0.99975  0.99813  0.99901  0.99975  0.99883    JS  0.99827  0.99815  0.99827  0.99826  0.99771  0.99830  0.99974  0.99842  0.99812  0.99820  0.99970  0.99983  0.99974  0.99862  0.99971  0.99970  0.99987  0.99993  0.99974  0.99861  0.99970  0.99987  0.99993  0.99974  0.99861  0.99970  0.99977  0.99873  0.99985  0.99977  0.99875  0.99875  0.99875  0.99875  0.99875  0.99875  0.99876  0.99975  0.99871  0.99875  0.99876  0.99975  0.99876  0.99975  0.99876  0.99975  0.99876  0.99863  0.99776  0.99876  0.99863  0.99776  0.99876  0.99861  0.99861  0.99860  0.99776  0.99876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MD     | 0.99882 | 0.99967 | 0.99932  | 0.99960 | 0.99753                        | 0.99820         | 0.99789     | 0.99894            | 0.99684                        | 0.99867         |
| VS  0.99849  0.99850  0.99876  0.99777  0.99766  0.99875  0.99905  0.99971  0.99735  0.99876  0.99905  0.99971  0.99830  0.99945  0.99857  0.99827  0.99830  0.99845  0.99857  0.99837  0.99830  0.99841  0.99876  0.99917  0.99930  0.99974  0.99870  0.99917  0.99930  0.99974  0.99744  0.99876  0.99975  0.99975  0.99975  0.99975  0.99975  0.99976  0.99975  0.99720  0.99821  0.99860  0.99975  0.99860  0.99825  0.99924  0.99766  0.99820  0.99971  0.99830  0.99975  0.99880  0.99821  0.99861  0.99851  0.99834  0.99921  0.99914  0.99763  0.99833  0.99921  0.99914  0.99763  0.99830  0.99921  0.99921  0.99914  0.99923  0.99763  0.99832  0.99861  0.99850  0.99983  0.99921  0.99914  0.99913  0.99921  0.99914  0.99913  0.99914  0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VJ     | 0.99815 | 0.99744 | 0.99814  | 0.99778 | 0.99707                        | 0.99734         | 0.99658     | 0.99718            | 0.99824                        | 0.99844         |
| VD  0.9981  0.99963  0.99951  0.9973  0.99760  0.99813  0.99905  0.99870  0.99883    JD  0.99883  0.99865  0.99989  0.99962  0.99905  0.99844  0.99830  0.99905    SD  0.99876  0.99905  0.99903  0.9974  0.99740  0.99844  0.99802  0.99770  0.99770  0.99770  0.99770  0.99770  0.99770  0.99775  0.99775  0.99726  0.99786  0.99780  0.99727  0.99750  0.99727  0.99785  0.99610  0.99810  0.99820  0.99910  0.99880  0.99921  0.99786  0.99810  0.99820  0.99921  0.99761  0.99830  0.99771  0.99833  0.99821  0.99833  0.99821  0.99833  0.99821  0.99833  0.99810  0.99820  0.99911  0.99920  0.99776  0.99830  0.99850  0.99830  0.99851  0.99803  0.99851  0.99803  0.99812  0.99810  0.99976  0.99812  0.99813  0.99813  0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VS     | 0.99849 | 0.99805 | 0.99882  | 0.99876 | 0.99677                        | 0.99766         | 0.99875     | 0.99901            | 0.99975                        | 0.99980         |
| JS  0.99827  0.99815  0.99837  0.99828  0.99676  0.99710  0.99830  0.99842  0.99876    JD  0.99883  0.99975  0.99993  0.99974  0.99974  0.99975  0.99975  0.99975  0.99975  0.99975  0.99975  0.99975  0.99975  0.99975  0.99975  0.99975  0.99975  0.99975  0.99975  0.99975  0.99975  0.99975  0.99975  0.99975  0.99975  0.99975  0.99975  0.99975  0.99975  0.99960  0.99860  0.99863  0.99977  0.99811  0.99865  0.99863  0.99975  0.99983  0.99977  0.99835  0.99961  0.99820  0.99911  0.99875  0.99864  0.99835  0.99646  0.99864  0.99856  0.99664  0.99856  0.99664  0.99876  0.99976  0.99982  0.9911  0.99758  0.99864  0.99864  0.99864  0.99864  0.99864  0.99864  0.99964  0.99961  0.9987  0.99867  0.99861  0.99864  0.99964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VD     | 0.99891 | 0.99963 | 0.99985  | 0.99971 | 0.99735                        | 0.99769         | 0.99813     | 0.99905            | 0.99707                        | 0.99888         |
| JD  0.99883  0.99965  0.99982  0.99740  0.99842  0.99844  0.99820  0.99770  0.99979    SD  0.99876  0.99975  0.99993  0.99974  0.99724  0.99811  0.99862  0.99777  0.99777  0.99735  0.99655  0.99618  0.99776  0.99755  0.99726  0.99768  0.99851  0.99850  0.99751  0.99853  0.99774  0.99853  0.99850  0.99751  0.99850  0.99776  0.99850  0.99851  0.99957  0.99934  0.99750  0.99812  0.99851  0.99957  0.99914  0.99750  0.99813  0.99957  0.99854  0.99763  0.99855  0.99637  0.99850  0.99763  0.99835  0.99957  0.99854  0.99850  0.99763  0.99850  0.99857  0.99957  0.99970  0.99763  0.99850  0.99974  0.99850  0.99978  0.99980  0.99970  0.99855  0.99961  0.99876  0.99957  0.99970  0.99876  0.99961  0.99976  0.99981  0.99976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JS     | 0.99827 | 0.99815 | 0.99837  | 0.99828 | 0.99657                        | 0.99760         | 0.99771     | 0.99830            | 0.99842                        | 0.99878         |
| SD  0.99876  0.99975  0.99993  0.9974  0.99811  0.99862  0.9917  0.99770  0.99770  0.99771  0.99775  0.99735  0.99655  0.99665  0.99726  0.99780  0.99787  0.99755  0.99785  0.99750  0.99780  0.99855  0.99726  0.99780  0.99810  0.99855  0.99550  0.99850  0.99851  0.99850  0.99951  0.99850  0.99920  0.99770  0.99786  0.99880  0.99921  0.99763  0.99835  0.99920  0.99921  0.99763  0.99835  0.99920  0.99921  0.99763  0.99835  0.99920  0.99921  0.99763  0.99851  0.99850  0.99920  0.99921  0.99763  0.99851  0.99850  0.99920  0.99921  0.99770  0.99851  0.99850  0.99969  0.99851  0.99850  0.99920  0.99921  0.99761  0.99851  0.99860  0.99851  0.99860  0.99851  0.99860  0.99810  0.99851  0.99860  0.99812  0.99876  0.99971  0.997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JD     | 0.99883 | 0.99965 | 0.99989  | 0.99962 | 0.99744                        | 0.99802         | 0.99844     | 0.99892            | 0.99790                        | 0.99909         |
| MVJ  0.99800  0.99745  0.99665  0.99609  0.99726  0.99767  0.99755  0.99727  0.99832    MVS  0.99777  0.99735  0.99646  0.99933  0.99726  0.99700  0.99810  0.99852  0.99626  0.99812  0.99852  0.99637  0.99588  0.99707  0.99836  0.99924  0.99863  0.99971  0.99836  0.99924  0.99835  0.99924  0.99835  0.99924  0.99753  0.99835  0.99924  0.99753  0.99835  0.99835  0.99835  0.99920  0.99835  0.99835  0.99835  0.99835  0.99836  0.99950  0.99950  0.99950  0.99950  0.99950  0.99950  0.99950  0.99950  0.99952  0.99746  0.99840  0.99911  0.99786  0.99912  0.99786  0.99913  0.99786  0.99913  0.99776  0.99840  0.99911  0.99786  0.99913  0.99777  0.99843  0.99916  0.99775  0.99840  0.99911  0.99776  0.99821  0.99976  0.99913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SD     | 0.99876 | 0.99975 | 0.99993  | 0.99974 | 0.99724                        | 0.99811         | 0.99862     | 0.99917            | 0.99707                        | 0.99877         |
| MVS  0.99777  0.99735  0.99655  0.99618  0.99726  0.99790  0.99810  0.99855  0.99526  0.99749    MVD  0.99866  0.99943  0.99943  0.99755  0.99808  0.99883  0.99924  0.99971  0.99836  0.99924  0.99977  0.99936  0.99924  0.99977  0.99936  0.99924  0.99778  0.99924  0.99778  0.99924  0.99778  0.99924  0.99977  0.99835  0.99924  0.999778  0.99924  0.99978  0.99924  0.99924  0.99978  0.99924  0.99978  0.99924  0.99978  0.99924  0.99978  0.99926  0.99770  0.99875  0.99980  0.99985  0.99976  0.99976  0.99976  0.99981  0.99984  0.99981  0.99976  0.99976  0.99981  0.99984  0.99976  0.99976  0.99981  0.99976  0.99981  0.99976  0.99976  0.99981  0.99976  0.99981  0.99976  0.99981  0.99976  0.99981  0.99976  0.99981  0.99981 <td>MVJ</td> <td>0.99800</td> <td>0.99745</td> <td>0.99665</td> <td>0.99609</td> <td>0.99726</td> <td>0.99768</td> <td>0.99767</td> <td>0.99795</td> <td>0.99727</td> <td>0.99832</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MVJ    | 0.99800 | 0.99745 | 0.99665  | 0.99609 | 0.99726                        | 0.99768         | 0.99767     | 0.99795            | 0.99727                        | 0.99832         |
| MVD  0.99866  0.99946  0.99933  0.99943  0.99755  0.99808  0.99812  0.99891  0.99851  0.99855    MJD  0.99889  0.99957  0.99934  0.99920  0.99777  0.99880  0.99883  0.99978  0.99978  0.99978  0.99978  0.99978  0.99978  0.99920  0.99767  0.99830  0.99850  0.99850  0.99875  0.99920  0.99761  0.99830  0.99850  0.999850  0.99980  0.99952  0.99760  0.99733  0.99850  0.99970  0.99850  0.99970  0.99850  0.99970  0.99850  0.99970  0.99870  0.99970  0.99870  0.99970  0.99871  0.99970  0.99871  0.99970  0.99870  0.999710  0.99871  0.99871  0.99871  0.99871  0.99871  0.99871  0.99970  0.99970  0.99971  0.99871  0.99871  0.99970  0.99971  0.99871  0.99871  0.99871  0.99873  0.99913  0.99913  0.99712  0.99861  0.998910  0.99771 </td <td>MVS</td> <td>0.99777</td> <td>0.99735</td> <td>0.99655</td> <td>0.99618</td> <td>0.99726</td> <td>0.99790</td> <td>0.99810</td> <td>0.99855</td> <td>0.99526</td> <td>0.99749</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MVS    | 0.99777 | 0.99735 | 0.99655  | 0.99618 | 0.99726                        | 0.99790         | 0.99810     | 0.99855            | 0.99526                        | 0.99749         |
| MJS  0.99811  0.99805  0.99637  0.99580  0.99770  0.99766  0.99808  0.99863  0.99751  0.99920    MJD  0.99887  0.99957  0.99924  0.99770  0.99818  0.99835  0.99824  0.99778  0.99920    MSD  0.99877  0.99951  0.99922  0.99763  0.99861  0.99855  0.99969  0.99861    VJS  0.99878  0.99952  0.99951  0.99952  0.99760  0.99732  0.99851  0.99964    VJD  0.99876  0.99957  0.99952  0.99750  0.99794  0.99840  0.99840  0.99978  0.99912    VSD  0.99876  0.99957  0.99952  0.99774  0.99841  0.99976  0.99913    MVJS  0.99943  0.99940  0.99975  0.99811  0.99846  0.99977  0.99927    MVJD  0.99842  0.99930  0.99775  0.99841  0.99864  0.99977  0.99833    MJSD  0.99875  0.99934  0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MVD    | 0.99866 | 0.99946 | 0.99933  | 0.99943 | 0.99755                        | 0.99808         | 0.99812     | 0.99892            | 0.99691                        | 0.99855         |
| MJD  0.99889  0.99957  0.99934  0.9922  0.99757  0.99818  0.99835  0.99924  0.99757  0.99815  0.99929  0.99924  0.99763  0.99835  0.99855  0.99850  0.99850  0.99850  0.99850  0.99850  0.99850  0.99952  0.99763  0.99730  0.99852  0.99850  0.99951  0.99951  0.99951  0.99970  0.99730  0.99852  0.99951  0.99951  0.99951  0.99950  0.99970  0.99852  0.99951  0.99970  0.99850  0.99951  0.99951  0.99951  0.99951  0.99951  0.99951  0.99951  0.99951  0.99951  0.99850  0.99951  0.99840  0.99840  0.99841  0.99861  0.99857    MVJD  0.99833  0.99954  0.99951  0.99771  0.99841  0.99840  0.99910  0.99777  0.99963  0.99913  0.99841  0.99890  0.99777  0.99963  0.99913  0.99812  0.99841  0.99891  0.99914  0.99913  0.99813  0.99910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MJS    | 0.99811 | 0.99805 | 0.99637  | 0.99598 | 0.99707                        | 0.99796         | 0.99808     | 0.99863            | 0.99751                        | 0.99836         |
| MSD  0.99877  0.99951  0.99929  0.9924  0.99763  0.99831  0.99861  0.99895  0.99699  0.99850    VJS  0.99880  0.99758  0.99820  0.99811  0.99670  0.99733  0.99855  0.99864  0.99896    VJD  0.99876  0.99950  0.99952  0.99755  0.99740  0.99840  0.99841  0.99844  0.99961  0.99861    JSD  0.99876  0.99957  0.99952  0.99745  0.99844  0.99844  0.99911  0.99766  0.99913    JSD  0.99875  0.99946  0.99971  0.99844  0.99914  0.99844  0.99911  0.99777  0.99963    MVJD  0.99883  0.99943  0.99946  0.99971  0.99842  0.99812  0.99844  0.99812  0.99963  0.99747  0.99846  0.99910  0.99773  0.99830  0.99790  0.99919    VJSD  0.99882  0.99951  0.99915  0.99761  0.99840  0.99883  0.99970  0.99983 <td>MJD</td> <td>0.99889</td> <td>0.99957</td> <td>0.99934</td> <td>0.99922</td> <td>0.99757</td> <td>0.99818</td> <td>0.99835</td> <td>0.99924</td> <td>0.99778</td> <td>0.99920</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MJD    | 0.99889 | 0.99957 | 0.99934  | 0.99922 | 0.99757                        | 0.99818         | 0.99835     | 0.99924            | 0.99778                        | 0.99920         |
| VJS  0.99803  0.99758  0.99822  0.99811  0.99667  0.99762  0.99733  0.99855  0.99864  0.99996    VJD  0.99876  0.99950  0.99987  0.99952  0.99750  0.99790  0.99852  0.99901  0.99798  0.99912    VSD  0.99876  0.99957  0.99987  0.99952  0.99746  0.99840  0.99844  0.99844  0.99984  0.99976  0.99913    MVJS  0.99788  0.99970  0.99687  0.99954  0.99771  0.99841  0.99844  0.99844  0.99964  0.99771  0.99961  0.99771  0.99961  0.99771  0.99972  0.99771  0.99843  0.99944  0.99972  0.99771  0.99843  0.99981  0.99970  0.99875  0.99912  0.99770  0.99962  0.99733  0.99741  0.99843  0.99893  0.99770  0.99921  0.99783  0.99973  0.99833  0.99790  0.99973  0.99843  0.99821  0.99733  0.99833  0.99791  0.99833  0.9979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MSD    | 0.99877 | 0.99951 | 0.99929  | 0.99924 | 0.99763                        | 0.99833         | 0.99861     | 0.99895            | 0.99699                        | 0.99850         |
| VJD  0.99878  0.99950  0.99989  0.99952  0.99750  0.99790  0.99852  0.99911  0.99788  0.99912    VSD  0.99876  0.99957  0.99987  0.99952  0.99755  0.99744  0.99840  0.99844  0.99911  0.99786  0.99913    MVJS  0.99798  0.999770  0.99687  0.99954  0.99774  0.99844  0.99844  0.99744  0.99844  0.99744  0.99846  0.99777  0.99964  0.99975  0.99845  0.99977  0.99964  0.99975  0.99846  0.99977  0.999861  0.99977  0.99964  0.99977  0.99846  0.99977  0.99961  0.99964  0.99977  0.99846  0.99912  0.99694  0.99952  0.99951  0.99912  0.99641  0.99852  0.99915  0.99747  0.99846  0.99912  0.99694  0.99953  0.99919  VJSD  0.99887  0.99950  0.99916  0.99771  0.99884  0.99921  0.99777  0.99838  Seq-V  0.09762  0.99829 <td< td=""><td>VJS</td><td>0.99803</td><td>0.99758</td><td>0.99822</td><td>0.99811</td><td>0.99667</td><td>0.99762</td><td>0.99793</td><td>0.99855</td><td>0.99864</td><td>0.99896</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VJS    | 0.99803 | 0.99758 | 0.99822  | 0.99811 | 0.99667                        | 0.99762         | 0.99793     | 0.99855            | 0.99864                        | 0.99896         |
| VSD  0.99876  0.99957  0.99987  0.99956  0.99755  0.99794  0.99840  0.99844  0.99611  0.99861    JSD  0.99893  0.99952  0.99974  0.99812  0.99844  0.99911  0.99766  0.99913    MVJS  0.99798  0.99770  0.99687  0.99524  0.99774  0.99841  0.99864  0.99714  0.99841  0.99864  0.99714  0.99841  0.99864  0.99717  0.99902    MVJD  0.99883  0.99945  0.99930  0.99757  0.99817  0.99861  0.99912  0.99644  0.99852    MJSD  0.99875  0.99945  0.99915  0.99777  0.99881  0.99813  0.99910  0.99913    VJSD  0.99887  0.99950  0.99914  0.99814  0.99887  0.99913  0.99916  0.99711  0.99887  0.99913  0.99913  0.99913  0.99913  0.99913  0.99770  0.99883  0.99911  0.99783  0.99913  0.99730  0.99913  0.99757 <t< td=""><td>VJD</td><td>0.99878</td><td>0.99950</td><td>0.99989</td><td>0.99952</td><td>0.99750</td><td>0.99790</td><td>0.99852</td><td>0.99901</td><td>0.99798</td><td>0.99912</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VJD    | 0.99878 | 0.99950 | 0.99989  | 0.99952 | 0.99750                        | 0.99790         | 0.99852     | 0.99901            | 0.99798                        | 0.99912         |
| JSD  0.99893  0.99952  0.99974  0.99812  0.9984  0.99911  0.99766  0.99913    MVJS  0.99798  0.99770  0.99687  0.9954  0.99721  0.99774  0.99841  0.99864  0.99744  0.99857    MVJD  0.99883  0.99943  0.99946  0.99930  0.99775  0.99828  0.99846  0.99990  0.99777  0.99982    MVSD  0.99875  0.99945  0.99930  0.99976  0.99881  0.99880  0.999912  0.99984  0.99912  0.99882  0.99950  0.99933  0.99916  0.99771  0.99884  0.99912  0.99783  0.99930    VJSD  0.99882  0.99950  0.99933  0.9976  0.99804  0.99887  0.99913  0.99733  0.99930    MVJDD  0.99882  0.99950  0.99933  0.9976  0.99804  0.99887  0.99911  0.99777  0.99883    SSeq-V  0.06551  0.60608  0.66555  0.1593  0.16124  0.16131  0.6163<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VSD    | 0.99876 | 0.99957 | 0.99987  | 0.99956 | 0.99755                        | 0.99794         | 0.99840     | 0.99894            | 0.99691                        | 0.99861         |
| MVJS  0.99798  0.99770  0.99687  0.99594  0.99721  0.99774  0.99841  0.99864  0.99744  0.99857    MVJD  0.99883  0.99943  0.99946  0.99930  0.99775  0.99828  0.99846  0.99890  0.99777  0.99902    MVSD  0.99875  0.99945  0.99930  0.99926  0.99777  0.99811  0.99912  0.99694  0.99852    MJSD  0.99882  0.99951  0.99934  0.99915  0.99747  0.99834  0.99883  0.99700  0.99919    VJSD  0.99887  0.99950  0.99939  0.99916  0.99761  0.99804  0.99887  0.99977  0.99838    Sseq-M  0.06651  0.06619  0.0668  0.06555  0.15993  0.16036  0.16111  0.16144  0.16029  0.16131    Sseq-V  0.09762  0.09829  0.09181  0.17957  0.35654  0.35697  0.35762  0.35804  0.35600  0.35792    Sseq-D  0.09968  0.10035 </td <td>JSD</td> <td>0.99893</td> <td>0.99952</td> <td>0.99987</td> <td>0.99952</td> <td>0.99746</td> <td>0.99812</td> <td>0.99884</td> <td>0.99911</td> <td>0.99786</td> <td>0.99913</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JSD    | 0.99893 | 0.99952 | 0.99987  | 0.99952 | 0.99746                        | 0.99812         | 0.99884     | 0.99911            | 0.99786                        | 0.99913         |
| MVJD  0.99883  0.99943  0.99946  0.99930  0.99775  0.99828  0.99846  0.99890  0.99777  0.99902    MVSD  0.99875  0.99945  0.99930  0.99926  0.99777  0.99811  0.99861  0.99912  0.99694  0.99852    MJSD  0.99882  0.99951  0.99934  0.99915  0.99747  0.99834  0.99889  0.99939  0.99919    VJSD  0.99887  0.99950  0.99939  0.99916  0.99761  0.99887  0.99921  0.99777  0.99888    Seq-M  0.06651  0.06619  0.06608  0.66585  0.15993  0.16036  0.16144  0.16029  0.16131    Seq-V  0.09762  0.09829  0.99818  0.09755  0.09228  0.09222  0.09335  0.09221  0.09322    Sseq-V  0.09762  0.03019  0.17957  0.35654  0.35697  0.35762  0.35804  0.35690  0.35792    Sseq-S  0.02952  0.03019  0.02985  0.06612<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MVJS   | 0.99798 | 0.99770 | 0.99687  | 0.99594 | 0.99721                        | 0.99774         | 0.99841     | 0.99864            | 0.99744                        | 0.99857         |
| MVSD  0.99875  0.99945  0.99930  0.99926  0.99757  0.99817  0.99861  0.99912  0.99694  0.99852    MJSD  0.99882  0.99951  0.99934  0.99915  0.99747  0.99834  0.99889  0.99930  0.99919    VJSD  0.99887  0.99952  0.99939  0.99916  0.99721  0.99808  0.99887  0.9977  0.99888    SSeq-M  0.06551  0.06619  0.06608  0.06585  0.15993  0.16036  0.16101  0.16144  0.16029  0.16131    SSeq-V  0.09762  0.09829  0.09818  0.09755  0.09228  0.09222  0.09335  0.09221  0.09322    SSeq-J  0.17924  0.17991  0.17981  0.17957  0.35654  0.35697  0.35762  0.35804  0.35690  0.35792    SSeq-D  0.09968  0.10035  0.10025  0.10011  0.10473  0.10516  0.10523  0.10623  0.10509  0.10610    INDEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MVJD   | 0.99883 | 0.99943 | 0.99946  | 0.99930 | 0.99775                        | 0.99828         | 0.99846     | 0.99890            | 0.99777                        | 0.99902         |
| MJSD  0.99882  0.99951  0.99934  0.99917  0.99834  0.99889  0.99893  0.9970  0.99919    VJSD  0.99887  0.99952  0.99987  0.99956  0.99721  0.99808  0.99887  0.99921  0.99783  0.99930    MVJSD  0.99882  0.99950  0.99939  0.99916  0.99761  0.99804  0.99868  0.99911  0.99777  0.99898    SSeq-M  0.06551  0.06619  0.06608  0.06585  0.15993  0.16036  0.16101  0.16144  0.16029  0.16131    SSeq-V  0.09762  0.09829  0.09818  0.09795  0.09185  0.09228  0.09222  0.09335  0.09221  0.09322    SSeq-V  0.017924  0.17991  0.17981  0.17957  0.35654  0.35697  0.35762  0.35804  0.35690  0.35792    SSeq-D  0.09968  0.10035  0.10025  0.10011  0.10473  0.10516  0.10523  0.10603  0.10610    INDEL <td>MVSD</td> <td>0.99875</td> <td>0.99945</td> <td>0.99930</td> <td>0.99926</td> <td>0.99757</td> <td>0.99817</td> <td>0.99861</td> <td>0.99912</td> <td>0.99694</td> <td>0.99852</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MVSD   | 0.99875 | 0.99945 | 0.99930  | 0.99926 | 0.99757                        | 0.99817         | 0.99861     | 0.99912            | 0.99694                        | 0.99852         |
| VJSD  0.99887  0.99952  0.99987  0.99956  0.99721  0.99808  0.99887  0.99921  0.99783  0.99930    MVJSD  0.99882  0.99950  0.99939  0.99916  0.99761  0.99804  0.99868  0.99911  0.99777  0.99898    SSeq-M  0.06551  0.06619  0.06608  0.06585  0.15993  0.16036  0.16101  0.16144  0.16029  0.16131    SSeq-V  0.09762  0.09829  0.09818  0.09755  0.09228  0.09292  0.09335  0.09221  0.09322    SSeq-J  0.17924  0.17991  0.17981  0.17957  0.35654  0.35697  0.35762  0.35804  0.35690  0.35792    SSeq-D  0.02952  0.03019  0.03009  0.02985  0.06162  0.06270  0.06313  0.06198  0.06300    Sseq-D  0.09968  0.10035  0.10025  0.10001  0.10473  0.10516  0.10623  0.10509  0.10610    INDEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MJSD   | 0.99882 | 0.99951 | 0.99934  | 0.99915 | 0.99747                        | 0.99834         | 0.99889     | 0.99893            | 0.99790                        | 0.99919         |
| MVJSD  0.99882  0.99950  0.99939  0.99916  0.99761  0.99804  0.99868  0.99911  0.99797  0.99898    SSeq-M  0.06551  0.06619  0.06608  0.06585  0.15993  0.16036  0.16101  0.16144  0.16029  0.16131    SSeq-V  0.09762  0.09829  0.09818  0.09795  0.09185  0.09228  0.09292  0.09335  0.09221  0.09322    Sseq-J  0.17924  0.17991  0.17981  0.17957  0.35654  0.35697  0.35762  0.35804  0.35690  0.35792    Sseq-S  0.02952  0.03019  0.03009  0.02985  0.06162  0.06205  0.06270  0.06313  0.06198  0.06300    Sseq-D  0.09968  0.10025  0.10001  0.10473  0.10516  0.10623  0.10509  0.10610    INDEL      0.99844  0.99848  0.99953  1.00000  0.99891  0.99891    V  0.99055  0.99052<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VJSD   | 0.99887 | 0.99952 | 0.99987  | 0.99956 | 0.99721                        | 0.99808         | 0.99887     | 0.99921            | 0.99783                        | 0.99930         |
| SSeq-M  0.06551  0.06619  0.06608  0.06585  0.15993  0.16036  0.16101  0.16144  0.16029  0.16131    SSeq-V  0.09762  0.09829  0.09818  0.09795  0.09185  0.09228  0.09292  0.09335  0.09221  0.09322    SSeq-J  0.17924  0.17991  0.17991  0.17957  0.35654  0.35697  0.35762  0.35804  0.35690  0.35792    Sseq-S  0.02952  0.03019  0.03009  0.02985  0.06162  0.06205  0.06270  0.06313  0.06198  0.06300    Sseq-D  0.09968  0.10035  0.10025  0.10001  0.10473  0.10516  0.10623  0.10623  0.10509  0.10610    INDEL  U  U  U  U  U  U  U  U  U  U  U  U  U  U  U  U  U  U  U  U  U  U  U  U  U  U  U  U <thu< t<="" td=""><td>MVJSD</td><td>0.99882</td><td>0.99950</td><td>0.99939</td><td>0.99916</td><td>0.99761</td><td>0.99804</td><td>0.99868</td><td>0.99911</td><td>0.99797</td><td>0.99898</td></thu<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MVJSD  | 0.99882 | 0.99950 | 0.99939  | 0.99916 | 0.99761                        | 0.99804         | 0.99868     | 0.99911            | 0.99797                        | 0.99898         |
| SSeq-V  0.09762  0.09829  0.09818  0.09795  0.09185  0.09228  0.09292  0.09335  0.09221  0.09322    SSeq-J  0.17924  0.17991  0.17981  0.17957  0.35654  0.35697  0.35762  0.35804  0.35690  0.35792    SSeq-S  0.02952  0.03019  0.03009  0.02985  0.06162  0.06205  0.06270  0.06313  0.06198  0.06300    SSeq-D  0.09968  0.10035  0.10025  0.10001  0.10473  0.10516  0.10523  0.10509  0.10610    INDEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SSeq-M | 0.06551 | 0.06619 | 0.06608  | 0.06585 | 0.15993                        | 0.16036         | 0.16101     | 0.16144            | 0.16029                        | 0.16131         |
| SSeq-J  0.17924  0.17991  0.17981  0.17957  0.35654  0.35697  0.35762  0.35804  0.35690  0.35792    SSeq-S  0.02952  0.03019  0.03009  0.02985  0.06162  0.06205  0.06270  0.06313  0.06198  0.06300    SSeq-D  0.09968  0.10035  0.10025  0.10001  0.10473  0.10516  0.10580  0.10623  0.10509  0.10610    INDEL      0.99275  0.99397  0.99953  1.00000  0.99891  0.99891    V  0.99055  0.99052  0.99438  0.99221  0.99622  0.99648  0.99851  0.99844  0.99891  0.99892    V  0.99055  0.99052  0.99438  0.99238  0.99509  0.99678  0.99779  0.99982  0.99812    D  0.98688  0.99666  0.99671  0.99715  0.99662  0.99826  0.99848  0.99627  0.999853    MD  0.98766  0.99666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SSeq-V | 0.09762 | 0.09829 | 0.09818  | 0.09795 | 0.09185                        | 0.09228         | 0.09292     | 0.09335            | 0.09221                        | 0.09322         |
| SSeq-S  0.02952  0.03019  0.03009  0.02985  0.06162  0.06205  0.06270  0.06313  0.06198  0.06300    SSeq-D  0.09968  0.10035  0.10025  0.10001  0.10473  0.10516  0.10580  0.10623  0.10509  0.10610    INDEL      0.99490  0.99613  0.99844  0.99899  0.99275  0.99397  0.99953  1.00000  0.99891  0.99891    V  0.99055  0.99052  0.99438  0.99521  0.99622  0.99648  0.99851  0.99844  0.99567  0.99982    D  0.98688  0.99636  0.99656  0.99681  0.99238  0.99509  0.99678  0.99779  0.99982  0.99819    MV  0.98745  0.99666  0.99671  0.99715  0.99539  0.99683  0.99675  0.99870  0.99656  0.99775    VD  0.98766  0.99662  0.99648  0.99729  0.99602  0.99786  0.99852  0.99614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SSeq-J | 0.17924 | 0.17991 | 0.17981  | 0.17957 | 0.35654                        | 0.35697         | 0.35762     | 0.35804            | 0.35690                        | 0.35792         |
| SSeq-D  0.09968  0.10035  0.10025  0.10001  0.10473  0.10516  0.10580  0.10623  0.10509  0.10610    INDEL  M  0.99490  0.99613  0.99844  0.99899  0.99275  0.99397  0.99953  1.00000  0.99891  0.99891    V  0.99055  0.99052  0.99438  0.99521  0.99622  0.99648  0.99851  0.99844  0.99567  0.99982    D  0.98688  0.99636  0.99656  0.99681  0.99238  0.99509  0.99678  0.99779  0.99982  0.99819    MV  0.98884  0.99126  0.99421  0.99495  0.99661  0.99662  0.99826  0.99848  0.99627  0.99985    MD  0.98745  0.99666  0.99671  0.99715  0.99539  0.99675  0.99870  0.99656  0.99775    VD  0.98766  0.99626  0.99635  0.99648  0.99729  0.99602  0.99786  0.99851  0.99614  0.99806    S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SSeq-S | 0.02952 | 0.03019 | 0.03009  | 0.02985 | 0.06162                        | 0.06205         | 0.06270     | 0.06313            | 0.06198                        | 0.06300         |
| INDEL  Index  Index <th< td=""><td>SSeq-D</td><td>0.09968</td><td>0.10035</td><td>0.10025</td><td>0.10001</td><td>0.10473</td><td>0.10516</td><td>0.10580</td><td>0.10623</td><td>0.10509</td><td>0.10610</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SSeq-D | 0.09968 | 0.10035 | 0.10025  | 0.10001 | 0.10473                        | 0.10516         | 0.10580     | 0.10623            | 0.10509                        | 0.10610         |
| M  0.99490  0.99613  0.99844  0.99899  0.99275  0.99397  0.99953  1.00000  0.99891  0.99891    V  0.99055  0.99052  0.99438  0.99521  0.99622  0.99648  0.99851  0.99844  0.99567  0.99982    D  0.98688  0.99636  0.99656  0.99681  0.99238  0.99509  0.99678  0.99779  0.99982  0.99819    MV  0.988984  0.99126  0.99421  0.99495  0.99661  0.99662  0.99826  0.99848  0.99627  0.99985    MD  0.98745  0.99666  0.99671  0.99715  0.99539  0.99683  0.99675  0.99870  0.99656  0.99775    VD  0.98766  0.99626  0.99648  0.99729  0.99602  0.99786  0.99852  0.99614  0.99805    MVD  0.98738  0.99634  0.99694  0.99718  0.99672  0.99790  0.99603  0.99417  0.99806    SSeq-W  0.10093  0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INDEL  |         |         |          |         |                                |                 |             |                    |                                |                 |
| N  0.33436  0.33646  0.33647  0.33635  0.33647  0.33635  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.33637  0.39637  0.39844  0.99567  0.99882  0.99882  0.99883  0.99678  0.99779  0.99982  0.99885    MD  0.98745  0.99666  0.99671  0.99715  0.99539  0.99663  0.99675  0.99870  0.99656  0.99775    VD  0.98766  0.99635  0.99648  0.99729  0.99786  0.99852  0.99614  0.99805    MVD <td>M</td> <td>0.99490</td> <td>0.99613</td> <td>0 99844</td> <td>0 99899</td> <td>0 99275</td> <td>0.99397</td> <td>0 99953</td> <td>1.00000</td> <td>0.99891</td> <td>0.99891</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M      | 0.99490 | 0.99613 | 0 99844  | 0 99899 | 0 99275                        | 0.99397         | 0 99953     | 1.00000            | 0.99891                        | 0.99891         |
| V  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V      | 0.99055 | 0.99052 | 0.99438  | 0.99521 | 0.99622                        | 0.99648         | 0.99851     | 0.99844            | 0.99567                        | 0.99982         |
| D  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.000000  0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D      | 0.98688 | 0.99636 | 0.99656  | 0.99681 | 0.99238                        | 0.99509         | 0.99678     | 0.99779            | 0.99982                        | 0.99819         |
| MD  0.98745  0.99666  0.99671  0.99715  0.99539  0.99683  0.99675  0.99870  0.99656  0.99775    VD  0.98766  0.99626  0.99635  0.99648  0.99729  0.99602  0.99786  0.99852  0.99614  0.99805    MVD  0.98738  0.99634  0.99668  0.99694  0.99718  0.99672  0.99790  0.99603  0.99417  0.99806    SSeq-M  0.12844  0.13741  0.13775  0.13801  0.03430  0.03384  0.03502  0.03315  0.03129  0.03518    SSeq-V  0.10093  0.10990  0.11024  0.11050  0.10439  0.10393  0.10511  0.10324  0.10138  0.10527    SSeq-D  0.09409  0.10305  0.10340  0.10365  0.17622  0.17576  0.17694  0.17507  0.17321  0.17710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MV     | 0.98984 | 0.99126 | 0.99421  | 0.99495 | 0.99661                        | 0.99662         | 0.99826     | 0.99848            | 0.99627                        | 0.99985         |
| ND  0.00110  0.00011  0.00110  0.00100  0.00000  0.00111  0.00100  0.00000  0.00110  0.00000  0.00000  0.00011  0.00000  0.00000  0.000110  0.00000  0.00000  0.000110  0.00000  0.00000  0.000110  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.0000000  0.000000000000  0.0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MD     | 0.98745 | 0.99666 | 0.00421  | 0.00400 | 0.00001                        | 0.99683         | 0.00020     | 0.00040            | 0.99656                        | 0.99775         |
| ND  0.00100  0.00000  0.00000  0.00120  0.00120  0.00120  0.00120  0.00120  0.00120  0.00120  0.00120  0.00120  0.00120  0.00120  0.00120  0.00120  0.00120  0.00120  0.00120  0.00120  0.00120  0.00120  0.00120  0.00120  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.00100  0.001000  0.001000  0.001000  0.001000  0.001000  0.001000  0.0010000  0.0010000  0.0010000  0.0010000  0.000000  0.000000  0.000000  0.0000000  0.00000000000  0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VD     | 0.98766 | 0.99626 | 0.99635  | 0.99648 | 0.00000                        | 0.99609         | 0.99786     | 0.99852            | 0.99614                        | 0.99805         |
| SSeq-M  0.12844  0.13741  0.13775  0.13801  0.03430  0.03384  0.03502  0.03315  0.03129  0.03518    SSeq-V  0.10093  0.10990  0.11024  0.11050  0.10439  0.10393  0.10511  0.10324  0.01138  0.10527    SSeq-D  0.09409  0.10305  0.10340  0.10365  0.17622  0.17576  0.17694  0.17507  0.17321  0.17710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MVD    | 0.98738 | 0.99634 | 0.000668 | 0.99694 | 0.00718                        | 0.99672         | 0.00700     | 0.99603            | 0.99417                        | 0.99806         |
| SSeq M  0.1224  0.1314  0.1314  0.1301  0.03430  0.0354  0.03502  0.03513  0.03129  0.03518    SSeq-V  0.10093  0.10990  0.11024  0.11050  0.10439  0.10393  0.10511  0.10324  0.10138  0.10527    SSeq-D  0.09409  0.10305  0.10365  0.17622  0.17576  0.17694  0.17507  0.17321  0.17710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SSec-M | 0.12844 | 0.137/1 | 0.13775  | 0.13801 | 0.03/10                        | 0.0338/         | 0.03502     | 0.033003           | 0.03120                        | 0.03518         |
| Seq 7 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1055 0.1 | SSeq-V | 0.12044 | 0 10000 | 0.11094  | 0.11050 | 0.00400                        | 0.10303         | 0.00002     | 0.10394            | 0.10138                        | 0.10527         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SSeq-D | 0.09409 | 0.10305 | 0 10340  | 0 10365 | 0.17622                        | 0.17576         | 0.17694     | 0.10024<br>0.17507 | 0.17321                        | 0.17710         |

TABLE 16. Negative predictive values (NPV) of all combinations of individual callers, followed by SomaticSeq workflow. M: MuTect/Indelocator. V: VarScan2. J: JointSNVMix2. S: SomaticSniper. D: VarDict with relaxed filters. SSeq-M/V/J/S/D are the differences (improvement) in NPV between 5-tool SomaticSeq and individual callers without Somatic-Seq. The first four columns represent the four DREAM Challenge Stage 3 (DC3) settings. The last six columns represent the six *in silico* titration settings.

| SNV       | DC3A  | -     |       | DC3B  |       |       | DC3C  |       |       | DC3D  |       |       |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Features  | 5     | 10    | 20    | 5     | 10    | 20    | 5     | 10    | 20    | 5     | 10    | 20    |
| Recall    | 0.843 | 0.915 | 0.926 | 0.798 | 0.855 | 0.923 | 0.727 | 0.830 | 0.865 | 0.663 | 0.740 | 0.817 |
| Precision | 0.933 | 0.977 | 0.989 | 0.929 | 0.969 | 0.990 | 0.936 | 0.976 | 0.991 | 0.909 | 0.961 | 0.988 |
| F1 score  | 0.886 | 0.945 | 0.956 | 0.858 | 0.908 | 0.955 | 0.818 | 0.897 | 0.924 | 0.767 | 0.839 | 0.894 |
| INDEL     |       |       |       |       |       |       |       |       |       |       |       |       |
| Recall    | 0.674 | 0.773 | 0.810 | 0.593 | 0.705 | 0.767 | 0.589 | 0.676 | 0.752 | 0.440 | 0.563 | 0.642 |
| Precision | 0.845 | 0.941 | 0.951 | 0.817 | 0.930 | 0.985 | 0.822 | 0.936 | 0.987 | 0.805 | 0.923 | 0.984 |
| F1 score  | 0.750 | 0.849 | 0.875 | 0.687 | 0.802 | 0.862 | 0.686 | 0.785 | 0.853 | 0.569 | 0.699 | 0.777 |

TABLE 17. Reduced feature set in DREAM Challenge (DC3) cross validations. For easy comparison purposes, the SNV  $F_1$  scores for the full feature set are 0.964, 0.958, 0.932, and 0.905 for DC3A, DC3B, DC3C, and DC3D, respectively. For INDEL  $F_1$  scores, they are 0.874, 0.868, 0.855, and 0.788. (Table 13).



FIGURE 1. The average  $F_1$  scores vs. the number of tools. The gain in accuracy with each addition is the greatest when the data are the mostchallenging (i.e., DC3D and  $N_{2.5}T_{15}$ ), and the least when the data are the simplest (i.e., DC3A and  $N_0T_{50}$ ). There is also a diminishing return as you add more and more tools.

| SNV            | DC3A  | DC3B  | DC3C  | DC3D  | $N_0T_{50}$      | N <sub>2.5</sub> T <sub>50</sub> | $N_0T_{25}$ | $N_{2.5}T_{25}$ | N <sub>0</sub> T <sub>15</sub> | $N_{2.5}T_{15}$ |
|----------------|-------|-------|-------|-------|------------------|----------------------------------|-------------|-----------------|--------------------------------|-----------------|
| True Positives |       | 1     | 1     |       | $\mathbf{F}_{1}$ | Score                            | 1           | 1               | 1                              | 1               |
| 0              | 0.241 | 0.237 | 0.226 | 0.216 | 0.116            | 0.116                            | 0.115       | 0.114           | 0.106                          | 0.097           |
| 10             | 0.908 | 0.858 | 0.863 | 0.748 | 0.845            | 0.823                            | 0.753       | 0.712           | 0.571                          | 0.487           |
| 20             | 0.926 | 0.875 | 0.878 | 0.814 | 0.889            | 0.873                            | 0.844       | 0.762           | 0.601                          | 0.604           |
| 50             | 0.940 | 0.913 | 0.897 | 0.856 | 0.920            | 0.910                            | 0.895       | 0.860           | 0.678                          | 0.669           |
| 100            | 0.941 | 0.925 | 0.912 | 0.869 | 0.930            | 0.919                            | 0.909       | 0.892           | 0.747                          | 0.722           |
| 200            | 0.948 | 0.939 | 0.919 | 0.884 | 0.938            | 0.933                            | 0.922       | 0.914           | 0.774                          | 0.749           |
| 500            | 0.956 | 0.947 | 0.925 | 0.893 | 0.950            | 0.943                            | 0.936       | 0.918           | 0.808                          | 0.772           |
| 1000           | 0.959 | 0.952 | 0.928 | 0.898 | 0.952            | 0.952                            | 0.948       | 0.940           | 0.830                          | 0.795           |
| cross validate | 0.964 | 0.958 | 0.932 | 0.905 | 0.955            | 0.952                            | 0.946       | 0.942           | 0.823                          | 0.805           |
| MuTect         | 0.789 | 0.671 | 0.745 | 0.614 | 0.400            | 0.312                            | 0.389       | 0.302           | 0.331                          | 0.244           |
| VarScan*       | 0.573 | 0.562 | 0.434 | 0.413 | 0.514            | 0.514                            | 0.345       | 0.342           | 0.053                          | 0.048           |
| SomaticSniper* | 0.770 | 0.758 | 0.607 | 0.594 | 0.607            | 0.604                            | 0.512       | 0.508           | 0.177                          | 0.173           |
| JointSNVMix    | 0.558 | 0.530 | 0.459 | 0.431 | 0.189            | 0.179                            | 0.184       | 0.172           | 0.133                          | 0.121           |
| VarDict        | 0.690 | 0.605 | 0.607 | 0.498 | 0.448            | 0.359                            | 0.442       | 0.341           | 0.363                          | 0.296           |
|                |       |       |       |       | Ι                | Recall                           |             |                 |                                |                 |
| 0              | 0.961 | 0.942 | 0.892 | 0.851 | 1.000            | 1.000                            | 0.995       | 0.985           | 0.917                          | 0.830           |
| 10             | 0.865 | 0.778 | 0.807 | 0.628 | 0.818            | 0.805                            | 0.650       | 0.603           | 0.442                          | 0.359           |
| 20             | 0.892 | 0.791 | 0.798 | 0.703 | 0.907            | 0.849                            | 0.784       | 0.659           | 0.465                          | 0.475           |
| 50             | 0.899 | 0.849 | 0.820 | 0.761 | 0.913            | 0.910                            | 0.841       | 0.794           | 0.542                          | 0.544           |
| 100            | 0.900 | 0.867 | 0.845 | 0.778 | 0.929            | 0.925                            | 0.860       | 0.836           | 0.618                          | 0.632           |
| 200            | 0.908 | 0.891 | 0.853 | 0.800 | 0.933            | 0.934                            | 0.882       | 0.875           | 0.654                          | 0.678           |
| 500            | 0.922 | 0.904 | 0.864 | 0.812 | 0.944            | 0.943                            | 0.899       | 0.915           | 0.699                          | 0.692           |
| 1000           | 0.927 | 0.912 | 0.868 | 0.821 | 0.944            | 0.936                            | 0.920       | 0.898           | 0.733                          | 0.703           |
| cross validate | 0.937 | 0.923 | 0.875 | 0.832 | 0.947            | 0.936                            | 0.917       | 0.903           | 0.721                          | 0.684           |
| 871            |       |       |       |       | Pr               | ecision                          |             |                 |                                |                 |
| 0              | 0.138 | 0.135 | 0.129 | 0.124 | 0.061            | 0.061                            | 0.061       | 0.060           | 0.056                          | 0.051           |
| 10             | 0.955 | 0.956 | 0.926 | 0.925 | 0.874            | 0.842                            | 0.893       | 0.867           | 0.807                          | 0.756           |
| 20             | 0.962 | 0.978 | 0.977 | 0.968 | 0.871            | 0.899                            | 0.913       | 0.902           | 0.851                          | 0.829           |
| 50             | 0.985 | 0.989 | 0.991 | 0.979 | 0.926            | 0.910                            | 0.956       | 0.937           | 0.905                          | 0.867           |
| 100            | 0.986 | 0.992 | 0.991 | 0.984 | 0.932            | 0.912                            | 0.963       | 0.957           | 0.942                          | 0.840           |
| 200            | 0.992 | 0.993 | 0.995 | 0.988 | 0.944            | 0.932                            | 0.967       | 0.957           | 0.949                          | 0.837           |
| 500            | 0.993 | 0.994 | 0.996 | 0.991 | 0.956            | 0.943                            | 0.977       | 0.922           | 0.957                          | 0.873           |
| 1000           | 0.992 | 0.995 | 0.996 | 0.991 | 0.961            | 0.969                            | 0.977       | 0.986           | 0.956                          | 0.913           |
| cross validate | 0.992 | 0.997 | 0.996 | 0.994 | 0.963            | 0.969                            | 0.978       | 0.985           | 0.959                          | 0.978           |
| T.P. fraction  | 0.138 | 0.135 | 0.129 | 0.124 | 0.061            | 0.061                            | 0.061       | 0.060           | 0.056                          | 0.051           |

TABLE 18. Reduced size of training data set for SomaticSeq SNVs. Size is defined by the number of true positives. The final row (T.P. fraction) is the fraction of true positives in the training data for each data set, i.e., for DC3A (DREAM Challenge Stage 3, Setting A), the fraction of true positives is 0.138. Thus, when there are 10 true positives, the total training data consisted of 10/0.138 = 73 calls (of which 10 are true positives and 63 are false positives). 0 means no SomaticSeq training. F<sub>1</sub> score of the individual tools are included for easy comparison. \* Author-recommended false positive filters are applied to SomaticSniper and VarScan outputs.

| INDEL          | DC3A  | DC3B  | DC3C  | DC3D  | $N_0T_{50}$      | $N_{2.5}T_{50}$ | $N_0T_{25}$ | $N_{2.5}T_{25}$ | $N_0T_{15}$ | $N_{2.5}T_{15}$ |
|----------------|-------|-------|-------|-------|------------------|-----------------|-------------|-----------------|-------------|-----------------|
| True Positives |       |       |       |       | $\mathbf{F}_{1}$ | Score           |             |                 |             |                 |
| 0              | 0.339 | 0.320 | 0.310 | 0.277 | 0.155            | 0.154           | 0.139       | 0.134           | 0.123       | 0.082           |
| 10             | 0.774 | 0.741 | 0.748 | 0.672 | 0.712            | 0.677           | 0.645       | 0.582           | 0.483       | 0.263           |
| 20             | 0.819 | 0.781 | 0.786 | 0.698 | 0.777            | 0.748           | 0.713       | 0.594           | 0.553       | 0.419           |
| 50             | 0.846 | 0.811 | 0.820 | 0.731 | 0.831            | 0.810           | 0.778       | 0.688           | 0.556       | 0.425           |
| 100            | 0.860 | 0.835 | 0.831 | 0.750 | 0.849            | 0.836           | 0.794       | 0.727           | 0.660       | 0.480           |
| 200            | 0.868 | 0.846 | 0.838 | 0.764 | 0.863            | 0.859           | 0.810       | 0.755           | 0.707       | 0.512           |
| 500            | 0.873 | 0.857 | 0.844 | 0.775 | 0.885            | 0.887           | 0.834       | 0.777           | 0.732       | 0.554           |
| 1000           | 0.877 | 0.863 | 0.848 | 0.781 | 0.911            | 0.906           | 0.856       | 0.798           | 0.753       | 0.561           |
| cross validate | 0.874 | 0.868 | 0.855 | 0.788 | 0.912            | 0.910           | 0.844       | 0.793           | 0.786       | 0.562           |
| Indelocator    | 0.202 | 0.110 | 0.048 | 0.023 | 0.729            | 0.382           | 0.064       | 0.017           | 0.001       | 0.000           |
| VarScan        | 0.218 | 0.211 | 0.124 | 0.115 | 0.390            | 0.390           | 0.184       | 0.182           | 0.020       | 0.018           |
| VarDict        | 0.707 | 0.635 | 0.619 | 0.525 | 0.408            | 0.319           | 0.393       | 0.296           | 0.311       | 0.165           |
|                |       |       |       |       | Ι                | Recall          |             |                 |             |                 |
| 0              | 0.847 | 0.791 | 0.762 | 0.667 | 0.979            | 0.976           | 0.871       | 0.764           | 0.765       | 0.497           |
| 10             | 0.732 | 0.673 | 0.658 | 0.562 | 0.625            | 0.593           | 0.529       | 0.443           | 0.360       | 0.158           |
| 20             | 0.754 | 0.687 | 0.693 | 0.573 | 0.695            | 0.664           | 0.595       | 0.441           | 0.412       | 0.277           |
| 50             | 0.786 | 0.721 | 0.727 | 0.605 | 0.773            | 0.739           | 0.668       | 0.547           | 0.491       | 0.277           |
| 100            | 0.801 | 0.746 | 0.736 | 0.620 | 0.796            | 0.771           | 0.684       | 0.588           | 0.516       | 0.324           |
| 200            | 0.809 | 0.760 | 0.739 | 0.638 | 0.807            | 0.811           | 0.709       | 0.623           | 0.571       | 0.353           |
| 500            | 0.812 | 0.768 | 0.744 | 0.644 | 0.828            | 0.829           | 0.739       | 0.649           | 0.601       | 0.392           |
| 1000           | 0.818 | 0.772 | 0.747 | 0.650 | 0.864            | 0.855           | 0.765       | 0.673           | 0.626       | 0.397           |
| cross validate | 0.807 | 0.776 | 0.754 | 0.656 | 0.864            | 0.864           | 0.747       | 0.668           | 0.688       | 0.399           |
|                |       |       |       |       | Pr               | ecision         |             |                 |             |                 |
| 0              | 0.212 | 0.201 | 0.195 | 0.175 | 0.084            | 0.084           | 0.075       | 0.067           | 0.067       | 0.044           |
| 10             | 0.822 | 0.824 | 0.866 | 0.834 | 0.828            | 0.788           | 0.826       | 0.848           | 0.734       | 0.788           |
| 20             | 0.895 | 0.904 | 0.908 | 0.893 | 0.881            | 0.857           | 0.890       | 0.912           | 0.841       | 0.857           |
| 50             | 0.915 | 0.928 | 0.940 | 0.924 | 0.898            | 0.895           | 0.931       | 0.927           | 0.907       | 0.910           |
| 100            | 0.927 | 0.947 | 0.956 | 0.950 | 0.909            | 0.913           | 0.946       | 0.953           | 0.916       | 0.927           |
| 200            | 0.936 | 0.955 | 0.969 | 0.953 | 0.928            | 0.913           | 0.945       | 0.956           | 0.928       | 0.934           |
| 500            | 0.944 | 0.969 | 0.974 | 0.973 | 0.952            | 0.954           | 0.957       | 0.967           | 0.935       | 0.946           |
| 1000           | 0.945 | 0.977 | 0.980 | 0.980 | 0.964            | 0.963           | 0.972       | 0.979           | 0.945       | 0.956           |
| cross validate | 0.952 | 0.985 | 0.986 | 0.985 | 0.966            | 0.961           | 0.971       | 0.940           | 0.917       | 0.951           |
| T.P. fraction  | 0.212 | 0.201 | 0.195 | 0.175 | 0.084            | 0.084           | 0.075       | 0.067           | 0.067       | 0.044           |

TABLE 19. Reduced size of training data set for SomaticSeq INDELs. Size is defined by the number of true positives. The final row (T.P. fraction) is the fraction of true positives in the training data for each data set, i.e., for DC3A (DREAM Challenge Stage 3, Setting A), the fraction of true positives is 0.138. Thus, when there are 10 true positives, the total training data consisted of 10/0.212 = 47 calls (of which 10 are true positives and 37 are false positives). 0 means no SomaticSeq training. F<sub>1</sub> score of the individual tools are included for easy comparison.

18



FIGURE 2. The  $F_1$  scores vs. number of features. The gain in accuracy diminishes after around top 20 features with the most predictive values. The detailed data are presented in Table 17.



FIGURE 3. (a) Mean base quality score in tumor is often the most important feature in the machine learned classifier. Sequencing errors occur more frequently than somatic mutations. Thus, a variant call based on poor base quality is more likely a sequencing error than a true somatic mutation. (b) Number of mismatches reported by VarDict. The vast majority of the true somatic mutations have one mismatch in the read: the variant base itself. (c) Root-mean-square mapping quality (MQ) score of the tumor reads. MQ is a strong predictor, showing that almost all true somatic mutations have MQ above 57. (d) z-score of base quality rank sum between the reference and alternate reads in tumor reads. It is a measure of base quality bias between the reference and alternate reads. This is a weaker predictor than BQ, but also holds value as large-magnitude z-scores are enriched with false positives comparing to z-scores close to 0. All figures here are generated from Stage 3 of DREAM Challenge data.



FIGURE 4. The first of 1000 decision trees from the combined data set of DREAM Settings A and B. T\_MQ denotes the root mean square mapping quality score of the tumor.



FIGURE 5. The  $F_1$  scores vs. size of the training data set (number of true positives). The gain in accuracy diminishes as the size increases. The detailed data are presented in Table 18. For comparison, the best individual tool's  $F_1$  scores were 0.789 (MuTect), 0.624 (MuTect), 0.607 (SomaticSniper) and 0.296 (VarDict) for DC3A, DC3D,  $N_0T_{50}$ , and  $N_{2.5}T_{15}$ , respectively.



FIGURE 6. The  $F_1$  scores vs. size of the training data set (number of true positives) for INDELs. The gain in accuracy diminishes as the size increases. The detailed data are presented in Table 19. For comparison, the best individual tool's  $F_1$  scores were 0.707 (VarDict), 0.525 (VarDict), 0.729 (Indelocator), and 0.165 (VarDict) for DC3A, DC3D,  $N_0T_{50}$ , and  $N_{2.5}T_{15}$ , respectively.



FIGURE 7. CADD rankscores for all SNVs reported by SomaticSeq for (a) COLO829 and (b) CLL1.