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S2 Text: Control Simulation Results

Figure S1 displays a simulated 2D trajectory with multiple state changes. The known states as well as a

representative draw from the posterior state assignments are displayed. The HDP-SLDS segmentation

was able to identify subtle changes in the dynamics when the measurement noise prior was precisely

prescribed. The average normalized Hamming distance (i.e., the number of incorrect state assignments

divided by the total number of time series entries where a Hamming distance of 0 indicates a perfect

match and a distance of 1 indicates no correct assignments) measured in the posterior when the exact

prior was used for segmentation was 0.2285 for this trajectory. Contrast this to the average Hamming

distance of 0.4068 obtained when the prior for R was misspecified. Here, the true measurement noise was

40nm for both X and Y , but the misspecified prior assumed a measurement noise prior mean of 20nm.

Although this is just one trajectory, results shown later and in Ref. [1] illustrate that an improperly tuned

R can adversely affect state segmentation. In what follows, the phrase “Hamming distance” will refer to

the average normalized Hamming distance computed using the known truth and the HDP-SLDS output.

Note that the vbSPT method of Ref. [2] was only able to infer 2 states even if we allowed the model to

consider a model using the correct number of distinct dynamical states (7 in this simulation). However,

the comparison is not entirely fair since many of the state changes are induced by changes in F and

~µ. The current version of vbSPT does not account for variations induced by changing force fields or

inhomogeneous diffusion coefficients; the vbSPT method also ignores the statistical effects of measurement

noise (accurately modeling this noise is shown here and in Ref. [1] to be important to HDP-SLDS’s

segmentation accuracy by large scale simulations). This example is shown to illustrate the importance

of a “properly-tuned” prior in an HDP-SLDS analysis aiming at state segmentation. The example also

shows the accuracy one can obtain if position dependent force fields and measurement noise are properly

accounted for by the underlying dynamical models driving the likelihood function.

In Fig. S2, we show results from a batch of multiple simulations where trajectories were simulated to

precisely match the conditions assumed by the HDP-SLDS. The resulting data was then analyzed using

the HDP-SLDS segmentation. For a baseline, we computed the median Hamming distance (computed

over 104 MCMC samples) for a situation where the priors, model and data generating process were all in

perfect agreement (i.e., a highly idealized situation); the model and sampling parameters are provided in

Text S5. The histogram of the aforementioned median distances extracted from the posterior of 1000

independent simulated trajectories are labeled as “Reference Hamming Distance” in the bottom panel of

Fig. S2 (note: each of the 1000 trajectories were analyzed by 104 MCMC iterations and the HDP-SLDS

performance for each trajectory was summarized by the median Hamming distance observed over the

MCMC). We then reanalyzed the same set of trajectories by tweaking two different HDP-SLDS parameters
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(the same trajectory realizations were reanalyzed to avoid variability in results induced by different random

number streams). First we modified the hyperparameter determining the mean of R (the baseline had

a mean R which was a diagonal matrix having a standard deviation of 40nm for both entries and the

modified parameters was again diagonal, but had a standard deviation of 20nm for both components).

The top panel shows the Hamming distance computed under this new prior condition on the y-axis. In

this scatterplot, the x�coordinate corresponds to the Reference Hamming distance computed and the

y�coordinate displays the Hamming distance computed with the same underlying trajectories, but the

“bad prior” (each scatterplot point corresponds to a different trajectory). This plot quantifies how a subtle

misspecification of R can substantially degrade the performance of the HDP-SLDS segmentation. Note

that the next set of results demonstrates how even in the long trajectory setting (i.e., large data), artifacts

induced by “bad prior” cannot be readily corrected for by the evidence in observational data alone.

The red circles in Fig. S2 correspond to a correctly specified R, but altering the HDP-SLDS sampling

parameter K from 10 to 40. Although the HDP-SLDS allows the number of states, K, to tend to infinity,

Fox et al. use a weak limit approximation which imposes an upper-bound on the number of permissible

states [3]. In the baseline, K was set to 10, which was greater than the number of unique states observed

in the simulated trajectories. The typical recommendation for selecting this parameter in HDP-SLDS

modeling is to make K larger than the number of expected states. Inflating K to 40 did not result in a

systematic worsening of the results relative to the baseline, though increasing the parameter did increase

the variability of the computed Hamming distances (i.e., K does not induce “bias” into the computed

Hamming distance whereas the base measure parameter R does in this example, but the spread about the

mean increased). For users unsure on the number of statistically distinguishable latent states contained

in the data of interest, the K result displayed is encouraging, but the base measure sensitivity can be

problematic.

Next we probe the sensitivity of hyperparameters determining R further by showing results obtained

when studying a long 2D trajectory (see top panel of Fig. S3). When the prior precisely matches the R

used in the simulation, the temporal state segmentation is nearly perfect (the median Hamming distance

inferred is close to zero). However, when two heuristics are used for specifying R, the Hamming distance

jumps to over 0.33 (i.e., there are three statistically distinct states which persist for a long time, but the

poorly tuned prior cases only identify the first two states). The first heuristic is from Fox et al. (see

Appendix of Ref. [3]); the second heuristic mimics a prior which a SPT subject matter expert might

provide; for this heuristic prior, we assumed a mean effective measurement noise standard deviation of

20nm and we label this case as “SPT Heuristic Prior” in the plots (note that in many SPT applications,

measurement noise is under-estimated or ignored all together [4, 5]). The heuristic of Fox et al. (labeled
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as “Fox et al. Heuristic Prior”) encounters problems since SPT data often contains large thermal and

measurement noise, but the data was subjected to (known and simulated) measurement noise having a

standard deviation of 40nm. Note the new prior labels use all other default settings discussed in Text S5.

Although there is a wide body of literature [6,7] for computing theoretical lower bounds for localization

noise limits (a major contribution to the effective measurement noise, R), the actual measurement noise

often deviates substantially from these computable bounds due to a variety of factors which are often

unavoidable when one studies in vivo motion [4,5]. Fortunately, a poorly specified prior is readily identified

by goodness-of-fit hypothesis testing [5]. For example, when using the “SPT Heuristic Prior” discussed

above, the misspecification of R leads to rejection of the model inferred directly from the HDP-SLDS

method even when the conservative Bonferroni correction [8] is used to adjust for multiple testing (p-values

< 1 ⇥ 10�12 were observed; see Results section for hypothesis testing information). Using the “Fox et

al. Heuristic Prior” to compute the prior mean of R (see Appendix of Ref. [3]) leads to even larger

rejection when plugging in the HDP-SLDS parameter estimates obtained (p-values less than machine

double precision are computed) since the measurement noise is even further off in this case. For example,

the true value for the simulation measurement noise is 40nm for each component, but the heuristic of

Ref. [3] results in a posterior mode of 222.14nm for the Y component of the localization precision. This

biased measurement noise estimate is the main cause for the small p-value (note also that this over

estimate of a component of R also degrades SPT-SLDS segmentation). When the parameter estimates, ✓̂,

are obtained using the correct prior (i.e., a prior computed using the known mean of the data generating

process), no rejection occurs and the diffusion coefficients and other kinetic parameters are consistently

estimated. The results obtained when one divides the original time series shown in Fig. S3 into six

uniformly spaced windows and applies the scheme discussed in the first paragraph of Text S1 are displayed

in Fig. S4.

In Fig. S5, we confirm that “sticky parameter” [3] can be inferred from the data even if state

transitions are short lived and highly transient. The spikes in the X time series (green) are meant to

mimic “background flashes” in the fluorescent signal. These flashes were introduced periodically at every

100th observation. The HDP-SLDS analysis outlined in Text S1 was still able to create a new state for

this periodically occurring signal while retaining high accuracy in the segmentation.
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