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S3 Text: Connecting Linear Continuous Time SDE Model Pa-

rameters to Those of Discrete SLDS Models

The continuous time analog of Eqn. 1 is given by the following stochastic differential equation (SDE):

d~rt =�~

F (~rt)dt+
p
2�dBt. (5)

In the equation above, ~F (~r) represents the effective force experienced by a molecule located at position

R, � models the friction matrix, and � is related to the diffusion coefficient [1]. This overdamped Langevin

framework is fairly general, e.g. non-linear and/or time dependent forces can fit to data using this type of

model [1–4]. Note that in the HDP-SLDS, we use F to denote a fixed matrix, whereas in the overdamped

Langevin equation above, ~

F (~r) is a vector depending on the instantaneous molecular position. In the

specific linear parametric models considered in this article, each SDE contributing to an SLDS state (or

“mode”) is parameterized by a finite dimensional vector denoted by ✓. The parameters contained in ✓ and

the remaining terms in Eqn. 5 are defined by the following equations:

~

F (~r) =~

A+B~r (6)

� =C (7)

� =��

T
/kBT. (8)

In the expressions above, kBT represents Boltzmann’s constant multiplied by the system temperature.

The net collection of parameters to be estimated is ✓ ⌘ (~A,B,C,R); a separate ✓ is estimated for each

unique SLDS state. In the models considered throughout this article, ~A is a 2D vector (i.e., ~A 2 R2). B,

C, and R are 2⇥ 2 real matrices. The local diffusion coefficient, D, is defined by D ⌘ C ⇥ C

T. Physical

interpretations of the other continuous time parameters are presented in Sec. 1.1.1 of the main manuscript

and Ref. [1].

Here we focus on how to map parameters estimated by the HDP-SLDS inference to the continuous time

SDE parameters (e.g., this is useful for when wants to compute overdamped Langevin type parameters

from the HDP-SLDS output). To simply notation, we will work with the following auxiliary quantities:

Q ⌘ 2C ⇥ C

T, ~A
0
⌘ 1

2kBT Q~

A, B0 ⌘ 1
2kBT QB; the first auxiliary variable is the instantaneous covariance

associated with the continuous time model; the next two auxiliary variables expresses the drift terms of a

linear velocity field.

With the auxiliary variables defined above, we show how to transform some of the output of the

discrete HDP-SLDS inference algorithm computed using observations evenly spaced �t time units apart

(~µ, F ,⌃) into the corresponding SDE parameters (~A
0
,B0,Q). No transformation is required for R since
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observations are discrete in both models. The easiest quantity to extract is B0 = 1
�t logm(F ) where logm(·)

is the principal matrix logarithm (i.e., the inverse of matrix exponential). Given B

0 and the rest of the

HDP-SLDS output, one can readily compute ~

A

0
=

�
� (Id�F )⇥ (B0)�1

��1
~µ where Id denotes the identity

matrix; this relation is another simple consequence of the known solution to the linear SDE [5]. Typically,

one is given continuous time parameters �t, Q and B

0 and computes the corresponding quantities defining

a discrete observation scenario. That is, one quickly computes F = exp(�tB

0) and uses this to setup the

following matrix equation:

B

0⌃+ ⌃(B0)T = FQF

T �Q. (9)

One can then solve for ⌃ using standard control theory tools [6, 7]. However, Q and hence C = ( 12Q)1/2

can be readily solved for explicitly given (F ,⌃, B0) since the expression above is linear in Q. Recall F

and ⌃ are provided directly by the HDP-SLDS inference and B

0 can be computed using the procedure

described above. Symbolic packages such as Mathematica can be exploited to reliably obtain expressions

for Q.
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