S3 Text: Connecting Linear Continuous Time SDE Model Pa-
rameters to Those of Discrete SLDS Models

The continuous time analog of Eqn. 1 is given by the following stochastic differential equation (SDE):
dF, =OF(7,)dt + V/20dB,. (5)

In the equation above, F (7) represents the effective force experienced by a molecule located at position
R, ® models the friction matrix, and o is related to the diffusion coefficient [1]. This overdamped Langevin
framework is fairly general, e.g. non-linear and/or time dependent forces can fit to data using this type of
model [1-4]. Note that in the HDP-SLDS, we use F' to denote a fixed matrix, whereas in the overdamped
Langevin equation above, ﬁ(f’) is a vector depending on the instantaneous molecular position. In the
specific linear parametric models considered in this article, each SDE contributing to an SLDS state (or
“mode”) is parameterized by a finite dimensional vector denoted by 6. The parameters contained in 6 and

the remaining terms in Eqn. 5 are defined by the following equations:

F(7) =A + BF (6)
o=C (7)
® =00t /kpT. (8)

In the expressions above, kT represents Boltzmann’s constant multiplied by the system temperature.
The net collection of parameters to be estimated is 6§ = (Zl, B, C, R); a separate 0 is estimated for each
unique SLDS state. In the models considered throughout this article, A is a 2D vector (i.e., Ae R?). B,
C, and R are 2 x 2 real matrices. The local diffusion coefficient, D, is defined by D = C x CT. Physical
interpretations of the other continuous time parameters are presented in Sec. 1.1.1 of the main manuscript
and Ref. [1].

Here we focus on how to map parameters estimated by the HDP-SLDS inference to the continuous time
SDE parameters (e.g., this is useful for when wants to compute overdamped Langevin type parameters
from the HDP-SLDS output). To simply notation, we will work with the following auxiliary quantities:
Q=20CxCT, ;1/ = ﬁ@ﬁ, B = ﬁQB ; the first auxiliary variable is the instantaneous covariance
associated with the continuous time model; the next two auxiliary variables expresses the drift terms of a
linear velocity field.

With the auxiliary variables defined above, we show how to transform some of the output of the
discrete HDP-SLDS inference algorithm computed using observations evenly spaced At time units apart

(i, F,X) into the corresponding SDE parameters (A/,B’,Q). No transformation is required for R since



observations are discrete in both models. The easiest quantity to extract is B’ = z71og,, (F) where log,,, ()
is the principal matrix logarithm (i.e., the inverse of matrix exponential). Given B’ and the rest of the
HDP-SLDS output, one can readily compute A= (—(Id—F)x (B’)_l)_lﬁ where Id denotes the identity
matrix; this relation is another simple consequence of the known solution to the linear SDE [5]. Typically,
one is given continuous time parameters At, @ and B’ and computes the corresponding quantities defining
a discrete observation scenario. That is, one quickly computes F' = exp(AtB’) and uses this to setup the

following matrix equation:

By +x(B) = FQFT - Q. 9)

One can then solve for ¥ using standard control theory tools [6,7]. However, Q and hence C = (%Q)l/ 2

can be readily solved for explicitly given (F,X, B’) since the expression above is linear in Q. Recall F
and X are provided directly by the HDP-SLDS inference and B’ can be computed using the procedure
described above. Symbolic packages such as Mathematica can be exploited to reliably obtain expressions

for Q.
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