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S4 Text: Dirichlet Distribution and Mixture Models

Dirichlet distributions are multivariate extensions of the beta distribution [2]. The beta distribution’s

support is the interval [0, 1] and its density is given by:

p(x;↵1,↵2) =
�(↵1 + ↵2)

�(↵1)�(↵2)
x↵1�1(1� x)↵2�1. (10)

The beta distribution is conjugate to the Bernoulli distribution and is commonly used as a prior for

the probability of “success” in scenarios where the outcome can be one of two events in Bayesian inference

(e.g., heads or tails in coin flipping trials). The Dirichlet distribution generalizes this idea to the scenario

where the outcome can be more than two events. For example, the Dirichlet distribution can be used to

help infer the probability of each face on a die; one can assume a fair die as a prior (each event has equal

probability) and then use the observations of die rolls to infer the probability of each face through the

posterior (i.e., use data to determine if the die is actually fair). The density of the more general Dirichlet

is shown in Eqn. 11. The Dirichlet distribution is conjugate to the multinomial and it belongs to the

exponential family of conjugate priors. The aforementioned feature simplifies posterior computations and

has partially contributed to the Dirichlet’s popularity in Bayesian analysis [1–3].

A K�dimensional random vector ~x is said to be Dirichlet distributed, parameterized by a vector

~↵ = (↵1, . . . ,↵K) with ↵i > 0 8 i, if its distribution can be written as [2]:

p(x;↵1,↵2, . . .↵K) ⇠ Dir(↵1, . . .↵K) :=

�(
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↵i)
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i (1�
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xi)
↵K�1. (11)

The sum over K � 1 components ensures that the sum of the ~x’s components is one (hence it is a valid

candidate state transition probability in an HMM setting). Assuming a Dirichlet distribution as a prior

allows many nice explicit posterior distribution computations (crucial to a full Bayesian analysis) [2], but

such priors also allow one to readily formulate “mixture models” [4]. These types of models are relevant

because they allow a formal mechanism for assigning ✓ values to each discrete state, i.e., it provides one a

mechanism to assign a dynamical structure to each state. This results in a collection of variables {✓z}Kz=1

describing the dynamics and measurement noise statistics of the observed trajectory.

A Dirichlet process results when one allows K to be infinite [1, 3–5]. In Dirichlet process settings,

one typically assumes that ✓z ⇠ H(⇥), i.e., the state vector is drawn from a continuous distribution

H(⇥) where ⇥ is a vector of hyperparameters required to specify the so-called “base measure”H [1, 2].

Even though K is infinite and H comes from a continuous distribution, it can be shown that when one
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models each row of a transition matrix as a draw from a Dirichlet process, that each realization contains

a countably infinite number of states ✓z with probability one [2, 6]. The transitions characterized by state

i are denoted by the countable infinite dimensional transition vector ~⇡(i). The technical problem that

arises is that ~⇡(i) and ~⇡(j) have zero probability of having identical ✓’s associated with their respective

(countably infinite) states in a “Dirichlet mixture model” when i 6= j and H is continuous. Hence the

probability of returning to a state after exit is zero. This feature complicates using a Dirichlet process

in HMM modeling since there is no “sharing” of states between different rows of the transition matrix.

The Hierarchical Dirichlet Process (HDP) [3] was designed to overcome this particular problem; the

HDP framework allows ~⇡(i) and ~⇡(j) to share a common set of ✓’s in their components despite H being

continuous [3]. The number of states and the transition probabilities can be inferred from the posterior [5].

However, the HDP does not have a mechanism for encouraging state persistence or “self-transitions”;

this complicates state identification and estimation in situations where the underlying state remains

the same for a relatively long block of time (a common situation in SPT, animal behavior, and target

maneuvering [1]). Fox et al. [1] developed the “sticky” HDP-SLDS which adds a hyperparameter designed

to promote state persistence through modifying the measures sampled from the HDP. Note that the

hyperparameter is learned from the observed time series and the method is surprisingly robust to the

assumed initial value of the prescribed “sticky” hyperparameter.
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