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S5 Text: Bayesian Prior Values

To enforce a symmetric positive definite matrix (required for a valid covariance) for both R and ⌃, Fox et

al. [1] exploited the properties of inverse Wishart prior distributions for these matrix parameters. The

inverse Wishart distribution is denoted by IW (⌫, ) where  is a positive definite “scale matrix” and ⌫ is

a real number greater than p � 1 where p is the dimension of  . This distribution is over matrices; if

X ⇠ IW (⌫, ) then E[X] =  /(⌫ � p� 1). This distribution was used by Fox et al. due, in part, to the

computational convenience it permits in Bayesian computations.

For R,  was set to R̂⇥(⌫�p�1) where R̂ is either a subjective prior or data-driven prior; the nature of

the prior for each plot is specified in the Results. Multiplication by the factor ⌫�p�1 ensures that the mean

of the inverse Wishart is consistent with the specified R̂. ⌫ was set to 1000 (this setting was used in the HDP-

SLDS toolbox http://www.stat.washington.edu/~ebfox/software/HDPHMM_HDPSLDS_toolbox.zip).

For the inverse Wishart over ⌃,  was selected using both data-driven discrete diffusion coefficient

discussed in Text S1 and subjective priors. For the latter, the prior mean ⌃
o

was used (see last paragraph

of this section for the matrix value). Inconsistency between the assumed inverse Wishart prior distribution

and data were mitigated by setting ⌫ = 10 (this value allowed substantial dispersion around the ⌃ prior).

Fox et al. used the so-called matrix normal inverse Wishart prior for the joint prior over F and

⌃ [1]; this distribution is denoted by MN (M,V,L) (the marginal posterior of ⌃ is the standard inverse

Wishart discussed above). If F ⇠ MN (M,V,L) then vec(F ) ⇠ N
�
vec(M), L�1 ⌦ V

�
where N (µ, S), is

a generic multivariate normal with mean µ and covariance S, vec(·) is the standard vectorization operator

(stacking elements of a matrix into a single column) and ⌦ denotes the matrix Kronecker product. Hence

M specifies the average F drawn in the prior and the variance about this mean value can be adjusted

by suitably setting L (a free parameter) for a given ⌃
o

(see Ref. [1] for the explicit relationship). In

our applications, M = ( 0.9 0
0 0.9 ) and the standard deviation around the diagonal components of M was

tuned to 0.15; these values readily handle pure diffusion (i.e., F is the identity matrix and ~µ is zero)

and “confined” diffusion parameter regimes (the priors assumed cover the “confined” regimes studied

in Ref. [2]). For the prior over ~µ, a Gaussian with mean zero and a diagonal covariance with 1002nm2

on each diagonal entry was used (this value was motivated by the observed variation in the chromatid

trajectories analyzed).

The parameter K used in “weak limit approximation” [1, 3] truncation reduces the infinite state space

model to a finite state space (this parameter is denoted by K
z

in the HDP-SLDS toolbox mentioned

above and denoted by L in Refs. [1, 3]). The truncation affords several computational MCMC sampling

advantages over other approximations of the infinite dimensional HDP [3]. Recall that Fig. S2 illustrates

that this truncation does not introduce systematic bias (hence precise tuning for this parameter is not a
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major concern), so we used K = 10 as our default setting for this parameter; this value is much higher

than the expected number of resolvable states in the experimental SPT trajectories we analyzed here.

We also carried out a sensitivity analysis to many of the other default “concentration” hyperparameters

and confirmed results stated by the original authors in Ref. [4], namely segmentation results are not

substantially affected by the concentration parameters. Hence, the remaining sampling and data generating

parameters were left unchanged from the default settings in the publicly available HDP-SLDS toolbox.

The simulations studied in this work were generated using these priors to randomly generate data discretely

observed every �t = 0.455s (corresponding to the net experimental frame rate of 22 frames/s).

In the large scale simulations cases studied, the parametric forms of the priors and parameter settings

not discussed below were identical to those discussed above. Except instead of using data-driven priors,

we used the fixed matrices ⌃
o

= diag([2.2 ⇥ 10�4, 2.5 ⇥ 10�4])[µm2] and R
o

= diag([402, 402])[nm2] as

the prior means over the discrete process and measurement noise, respectively (recall diag(·) denotes

the square diagonal matrix formed by the arguments). These values were selected by analyzing a large

population of chromatid trajectory segments. Dispersion around these states in the HDP simulations

were determined by the sampling parameters and prior distributions discussed above. The parameter

determining the variance of ~µ in the DGP was set to Id ⇥ 2002nm2 (slightly larger than the assumed

prior dispersion). In the HDP-SLDS analyses of the large scale simulation trajectories, all priors matched

the data generating process (DGP) unless otherwise explicitly specified in the text.

Note that we also considered putting a “diffuse” prior on the ⌫ for both ⌃ and R. However, it was

observed that doing so substantially increased the variability of the MCMC sampling. Techniques aiming

towards putting a better “non-subjective” prior over both ⌃ and R would be interesting future research

directions. We emphasize that the base measure parameters determining the posterior and prior values of

R, ⌃, F significantly affected segmentation results in the SPT applications studied.
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