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Web Appendix A

Coverage of Posterior Predictive Intervals

In the first posterior predictive check, we create pointwise 95% posterior predictive ranges for

the log parasite profiles for each individual at each of that individual’s measurement times.

We then assess what fraction of the actually observed log parasite counts fall within these

ranges. If this number deviates substantially from 0.95, it would be an indication that our

model does not adequately fit the data.

Our data set has a grand total of 1394 uncensored parasite counts. We created posterior

predictive intervals at each of these 1394 observations based on our posterior samples. Of

these 1394 uncensored parasite counts, 1330 (or 95.4%) of the posterior predictive intervals

created with nominal coverage of 95% actually captured the observed data points. This

shows that our predictive intervals come very close to attaining their nominal coverage rates,

providing assurance that the model based inference presented in this paper is not misguided.

Posterior Predictive Check for Serial Correlation

Our model assumes that our observations are not serially correlated within an individual’s

decay profile. To test the validity of our assumption with respect to this data set, we perform

a posterior predictive check on the cross moments of our residuals, E[rtrs], t 6= s for each

observed combination of measurement time, where this expectation is over individuals. After

obtaining our posterior predictive distribution, we calculate the residuals from each of our

simulated data sets relative to the posterior mean fits, ri = ỹi−(ŷi|β̂i, α̂i, δ̂`i , δ̂τi ). We calculate

residuals in this manner because this is also how we define the residuals for our observed

data, thus ensuring that the predictive data sets and the actual data can be fairly compared.

For each posterior predictive data set and for each individual within those data sets, we

calculate cross products of residuals within an individual, with each cross product corre-

sponding to a pair of times {s, t}. We then look across individuals and group the residuals



2 Biometrics, Month Year

into sets corresponding to the same pairs of observation times, and take the average for each

of these groups. This results in values r(t)r(s) for each combination of time values for each of

our data sets. When we consider the values of r(t)r(s) across posterior predictive data sets, we

are left with a “null” distribution for each pair of time values. We then compute the actual

residuals and residual cross moments from our true data, and see where the cross moments

from our data set lie relative to their corresponding null distribution.

In our data set, we had 171 distinct pairs of observation times, hence resulting in 171

hypothesis tests. We found that 165 of them failed to reject the null hypothesis of model

correctness. Though 6 rejections is not far from what would be expected even if the null were

true due to the number of hypothesis tests being performed, four of them occurred in pairs of

measurement times that were very close to one another (time pairs {0, 12}, {0, 18}, {6, 24}).

It is our belief that these correlations arise mainly from our approximations of the transition

between lag and decay phases by a piecewise linear function, whereas the true transition

is probably somewhat smoother.. This belief is strengthened by the fact that this serial

correlation did not persist beyond the beginning of the decay profiles; that is, at later time

points once the lag phases have completed (which are in the regime of interest to antimalarial

researchers) there is no evidence of serial correlation.

Web Appendix B

Propriety of Posterior Distribution

We want to show that the posterior that results from our prior specification is proper. As we

have placed proper priors on the change points and the probabilities of lag and tail phases

(a mixture of a point mass with a bounded uniform, and Beta(1, 1) respectively), the joint

prior on θ1 = [{δ`i , δτi }, π`, πτ ] is proper. We also know that given values for θ1, the posterior

distribution on the rest of the parameters will also be proper, as this is the posterior from
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a hierarchical model with priors on the hyperparameters chosen to avoid impropriety (i.e.,

to avoid the issue described in Hobert and Casella (1996)). Letting y denote our data and

letting θ2 = [{αi, βi},γ,η, σ2
α, σ

2
β, σ

2
ε ], this means that the distribution θ2|y, θ1 is proper for

any y ∈ Y , θ1 ∈ Θ1. Finally, note that our priors on θ1 and θ2 are independent.

To show that the distribution θ1, θ2|y is almost always proper, we need to show that

p(y) =
∫

Θ1×Θ2
f(y|θ1, θ2)p(θ1, θ2) dθ <∞. We focus on

∫
Y p(y) dy:

∫
Y
p(y) dy =

∫
Y

∫
Θ1

∫
Θ2

f(y|θ1, θ2)p(θ1, θ2) dθ2 dθ1 dy

=

∫
Y

∫
Θ1

∫
Θ2

f(y|θ1, θ2)p(θ1)p(θ2) dθ2 dθ1 dy Prior Independence of θ1, θ2

=

∫
Θ1

p(θ1)

∫
Y

∫
Θ2

f(y|θ1, θ2)p(θ2) dθ2 dy dθ1 Tonelli’s Theorem

=

∫
Θ1

p(θ1)

∫
Y

∫
Θ2

f(θ2|y, θ1)p(y|θ1) dθ2 dy dθ1 Defn of Conditional Density

=

∫
Θ1

p(θ1)

∫
Y
p(y|θ1) dy dθ1 Propriety of θ2|y, θ1

=

∫
Θ1

p(θ1) dθ1

= 1 Propriety of Prior on θ1

Hence, p(y) must be finite except on a set of measure 0, meaning that the posterior distri-

bution is almost always proper

Web Appendix C

Gibbs Sampler

We use a Gibbs Sampler to simulate from our posterior distribution. As shorthand, we use

rest to denote the set of all parameters and data excluding those being sampled. Let N

denote the total number of individuals in our data set, and let ni denote the number of time

observations for individual i. We proceed as follows:
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Sample Censored Observations

As discussed in Section 1 of the manuscript, there are individuals whose counts are left

censored at a particular observation time due to the data collection process. At this point

in the Gibbs sampler, note that we have the vector [αi, βi, δ
`
i , δ

τ
i ] for each individual. Hence,

we know the expected value of the individual’s log parasite count at a censored time tij.

Define the modified observation time, zij as

zij =



δ`i tij < δ`i

tij δ`i 6 tij 6 δτi

δτi tij > δτi

Sampling the latent true count given the censoring threshold simply requires sampling from

a truncated normal, with truncation at the censored value, call it ζ.

log(yij)|rest ∼ N (αi − βizij, σ2
ε )× 1{yij < ζ}

Sample {αi, βi}|rest

We begin by sampling the individual level slopes and intercepts for the profile trajectories,

given all other information. Note that at this point in the Gibbs sampler we know where

the lag and tail phases, and hence can explicitly describe the modified time points for this

iteration. Suppose we have ni modified time points, {zi1, ..., zini
} for individual i.

Since we have placed priors on {log(αi), log(βi)} we do not have conjugacy of the posterior

distribution. To sample from the joint posterior {αi, βi}, we instead use an independent jump

Metropolis-Hastings algorithm. As a proposal distribution, we use the posterior distribution

that would have been generated if we used a normal prior with first and second moments

equal to those of the lognormal. To be more explicit, let α∗i and β∗i denote the proposed

intercepts and clearance rates. Then, we define our jumping distribution:

Q(α∗i , β
∗
i |rest) = f(yi|α∗i , β∗i , rest)π∗(α∗i , β∗i |rest)
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where f(yi|α∗i , β∗i , rest) is the likelihood for observing the vector of counts yi:

f(yi|α∗i , β∗i , rest) ∝ exp

{
− 1

2σ2
ε

ni∑
j=1

(log(yij)− (α∗i − β∗i zij))2

}
and π∗(·) is our normal approximation to the lognormal prior π(·):

π∗(α∗i , β
∗
i |rest) ∝ exp

{
− (α∗i − exp{ηXi + 0.5σ2

α})2

2(exp{σ2
α} − 1) exp{2ηXi + σ2

α}

}
× exp

{
−

(β∗i − exp{γXi + 0.5σ2
β})2

2(exp{σ2
β} − 1) exp{2γXi + σ2

β}

}

Note that we’ve constructed Q(α∗i , β
∗
i ) such that it is a mulitvariate normal, and that it

mimics the effect of the lognormal priors. Once we sample from this jumping distribution,

we accept the proposal {α∗i , β∗i } with probability:

P(Accept) = min

{
1,
p(α∗i , β

∗
i |rest)

p(αi, βi|rest)
Q(αi, βi|rest)
Q(α∗i , β

∗
i |rest)

}
= min

{
1,
f(yi|α∗i , β∗i , rest)π(α∗i , β

∗
i |rest)

f(yi|αi, βi, rest)π(αi, βi|rest)

× f(yi|αi, βi, rest)π∗(αi, βi|rest)
f(yi|α∗i , β∗i , rest)π∗(α∗i , β∗i |rest)

}
= min

{
1,
π(α∗i , β

∗
i |rest)

π(αi, βi|rest)
π∗(αi, βi|rest)
π∗(α∗i , β

∗
i |rest)

}
We found that this step was highly efficient in practice, and required minimal thinning to

result in nearly iid draws.

Sample {δ`i , δτi }|rest

Let `i denote the index of the last point in time during a lag phase for the ith individual,

and let τi denote the index of the last time point during a decay phase (that is, the time

point before a tail phase begins) for that individual. To sample the change point between

lag and decay phase for each individual, we begin by considering the posterior measure of

the collection of sets Ai = {{0}, (0, ti1], (ti1, ti2], ..., (ti,τi , δ
τ
i ]} via numerical integration for

each individual. Explicitly, let g(y|x, δτi , rest) denote the likelihood of the observed counts

for individual i given δ`i = x and given the other parameters (denoted by rest). Then, we
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calculate the following for each Aik ∈ Ai

I(Aik) =


(1− π`)g(yi|0, δτi , rest) Aik = {0}

π`
∫
x∈Aik

g(yi|x, δτi , rest)p`(x|δτi , rest) dx Aik 6= {0}

Given our priors specifications, p`(x|δτi ) takes on the following form:

p`(x|δτi , rest) =
1

x

φ((log(x)− a)/c)

Φ((log(δτi )− a)/c)
1{x < δτi },

where φ(·) and Φ(·) are the PDF and CDF respectively of a standard normal. I(·) thus

represents the posterior measure of each set (up to a constant that is the same for each

set) given the other parameters. After normalizing the integrals to get probabilities, we then

select one of these intervals with probability equal to the respective measure. If the singleton

zero is selected, we are done; otherwise, we use rejection sampling within the sampled interval

to arrive at our change point with a uniform proposal distribution.

For this rejection sampling, let [a, b] be the interval selected above. The sampling proceeds

as follows:

(1) Find M = maxx∈[a,b] g(yi|x, δτi , rest)p`(x|δτi , rest)

(2) Draw u ∼ U [0, 1]

(3) Draw v ∼ U [a, b]

(4) Set δ`i = v if u 6 g(yi|v, δτi , rest)p`(v|δτi , rest)/M ; else, return to step (2)

Sampling the change point between the decay and tail phase is very similar. We first

consider the posterior measure of the sets {(δ`i , ti,`i+1], (ti,`i+1, ti,`i+2], ..., [ti,ni−1, ti,ni
), {ti,ni

}}.

If we sample the right endpoint, we are done; otherwise, we again use rejection sampling.

Sample a, b, c2, d2|rest

Let L = {i : δ`i 6= 0}, and let T = {i : δτi 6= tini
}. We then use an independent Metropolis

hastings algorithm to sample a, b, c2, d2. We demonstrate it here with a and c2. To begin,
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given a value of c2 we propose a value of a as follows:

a∗|c2, rest ∼ N

(
(|L|/c2 + 1/0.25)−1(

∑
i∈L

log(δ`i )/c
2 + log(6)/0.25), (|L|/c2 + 1/0.25)−1

)

If we did not have the constraint that δ`i < δτi ∀i, the sampling would simply be a Gibbs

sampler and hence the above proposal would be accepted with probability 1. To account for

the truncation, we accept the above with the following probability:

P(Accept) = min

{
1,
∏
i∈L

Φ((δτi − a)/c)

Φ((δτi − a∗)/c)

}

This probability ends up being extremely close to one, as lag and tail phases tend to occur

far from each other.

Now, given a value of a, we propose c2 as follows:

(c2)∗|a, rest ∼ IG

(
|L|
2
,

∑
i∈L(log(δ`i )− a)2

2
+ 1

)
This proposal is accepted with the following probability:

P(Accept) = min

{
1,
∏
i∈L

Φ((δτi − a)/c)

Φ((δτi − a)/c∗)

}

The sampling of b and d2 follows in an analogous fashion.

Sample {γ,η}|rest

To sample γ, note that we have conjugacy and that our hyperprior on γ is flat. Let β̃ denote

the vector of clearance rates [β1, ..., βN ]. Our Gibbs step is as follows:

γ|rest ∼ N
(

(XTX)−1XT log(β̃), σ2
β(XTX)−1

)
Similar argument leads to the following sampler for η:

η|rest ∼ N
(
(XTX)−1XT log(α̃), σ2

α(XTX)−1
)
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Sample {σ2
α, σ

2
β, σ

2
ε}|rest

Sampling the variances σ2
α and σ2

β is simple, as our priors on these parameters result in

conjugate posteriors:

σ2
α|rest ∼ IG

(
N

2
− 1,

1

2
|| log(α̃)− ηX||22

)
σ2
β|rest ∼ IG

(
N

2
− 1,

1

2
|| log(β̃)− γX||22

)
Sampling σ2

ε is also straightforward for the same reason:

σ2
ε |rest ∼ IG

(∑N
i=1 ni
2

,
1

2

N∑
i=1

ni∑
j=1

(log(yij)− (αi − βizij))2

)

Sample {π`, πτ}|rest

To sample the probabilities of having a lag phase and a tail phase, let L =
∑N

i=1 1{δ`i 6= 0}

and T =
∑N

i=1 1{δτi 6= ti,ni
}. These simply count the number of profiles that had lag and tail

phases. Then, our posterior distributions are as follows:

π`|rest ∼ Beta(1 + L, 1 +N − L)

πτ |rest ∼ Beta(1 + T, 1 +N − T )

Web Appendix D

Bias Due to Sparse Number of Measurement Times

We first recreate the simulation study conducted in Section 3.1 of the manuscript with n = 20

individuals instead of n = 60 individuals, but with all other aspects of the simulation study

unchanged. Recall that the true slope coefficient for the covariate xi should be 0, as xi was

simply random noise.

When using the standard two stage analysis, the average estimated slope coefficient for

xi was 0.759 with a standard deviation of 0.502, demonstrating a concentration around a

spuriously positive value. The estimated mean squared error for the two-stage method in
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this simulation is 0.83. For each simulation, we also computed 95% confidence intervals for

the true slope using a t interval based on the two-stage method. We found that of the 1000

confidence intervals constructed, 69.6% actually captured the true slope of 0. Hence, these

intervals based on the two-stage procedure fail to match their coverage guarantee.

Within each iteration, we also used the Bayesian method to calculate clearance rates

and estimate the slope coefficient for a regression of xi on the clearance rates. In the 1000

simulations, the average posterior mean for the slope coefficient was -0.125 with a standard

deviation of 0.72, resulting in a mean squared error of 0.59. This represents a reduction

in mean squared error by 29% relative to the two-stage procedure. We also computed

95% credible intervals for this slope coefficient in order to assess their frequentist coverage

properties. We found that of the 1000 intervals constructed, 96% captured the true mean of

0. Hence, these credible intervals have much better coverage properties than the confidence

intervals resulting from the two-stage method. Hence, not only does the Bayesian procedure

produce shorter intervals, but it also produces intervals with valid coverage due to the lack

of bias in slope estimation.

Behavior of Estimators with a Sufficient Number of Measurement Times

We now reproduce the simulation studies of Section 3.2 of the manuscript with n = 20

instead of n = 60, but with all other aspects left unchanged. Table 1 presents the results of

our simulation studies with reduced sample size. We found that in all three scenarios, the

Bayesian estimator outperformed the standard two-stage estimator in terms of bias, mean

squared error, coverage of intervals, and length of intervals. The mean squared errors for the

slope estimate produced by the two-stage procedure were 0.00527, 0.00632, and 0.0244 for

Simulation scenarios 1, 2, and 3. For the Bayesian procedure, the mean squared errors in

these three scenarios were 0.00429, 0.00469, and 0.00813. Once again, the performances are
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very similar when lag and tail phases are absent; however, when the they are present, the

Bayesian procedure provides an improvement.

[Table 1 about here.]

Web Appendix E

Comparing Uniform and Log-Normal Priors on Changepoints

As was described in Section 2.2, the general form of our prior distribution on the changepoints

is a mixture of a point mass (at time 0 for lag phases and time tini
for tail phases) and

a continuous distribution on the feasible points. Although uniform priors are commonly

employed in changepoint problems, we decided to use the log-normal distribution for the

continuous portion. Hierarchical log-normal priors allow for different hazard rates at differ-

ent time values and sharing of information between the observed clearance profiles while

restricting the changepoints to take on positive values. The log-normal distribution also has

its mode away from the boundary and can accommodate a long right tail, which is often

found in studying time to event quantities.

To assess the impact of this choice, we conducted the simulation studies of Section 3.2

using both the uniform and log-normal priors. In addition, we repeated the data analysis of

Section 4 under both distributions.

Simulation Studies

Table 2 presents the results of the simulation studies of Section 3.2 under both the log-

normal and uniform distributions. We found that when lag and tail phases were truly absent,

the uniform prior performed better. This is in part due to the fact that the uniform prior

appears to induce “sparser” fits than does the log-normal. Many trajectories that the uniform

identifies as having no lag or tail phase are identified by the log-normal as having extremely

short (but nonzero) lag and tail phases. On the other hand, the log-normal specification
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outperforms the uniform when lag and tail phases are present. Some trajectories which the

log-normal correctly identified as having a short lag or tail phase were instead identified as

having no lag phase. The log-normal specification also allows for shrinkage estimation, which

can be beneficial in reducing loss in estimation.

[Table 2 about here.]

Data Analysis

We analyzed the data set described in Section 4 using both the uniform and log-normal

priors. For this data set the estimated slopes of the covariates of interest on the log half-lives

were virtually identical, as is shown in Table 3. By looking at the individual fits, we are able

to shed further light onto the relative merits of the log-normal prior versus the uniform prior

on the changepoints.

[Table 3 about here.]

Figure 1 shows the fits for an individual that appears to have a small lag phase. The

log-normal prior identifies this apparent lag-phase in the vast majority of posterior samples,

whereas the uniform identifies that no lag phase is present in over 50% of posterior samples.

The log-normal prior resulted in a median clearance rate for this individual of 0.162, with

a 95% credible interval of [0.141, 0.187]. The uniform prior resulted in a median clearance

rate for this individual of 0.152, with a 95% credible interval of [0.135, 0.180].

Figure 2 shows the fit for an individual that appears to only have a decay phase. The

uniform prior identifies the lack of lag phase in the vast majority of samples, whereas the

log-normal prior estimates a median changepoint between lag and decay phases of 0.61 hours.

We found that the identification of a short lag phase by the log-normal resulted in virtually

no difference in the posterior distribution of this individual’s clearance rate. The log-normal

prior resulted in a median clearance rate for this individual of 0.107, with a 95% credible



interval of [0.0961, 0.120]. The uniform prior resulted in a median clearance rate for this

individual of 0.106, with a 95% credible interval of [0.0946, 0.119].

[Figure 1 about here.]

[Figure 2 about here.]

Web Appendix F

To assure ourselves that we have reached stationarity and have thinned sufficiently, we

examined trace plots and autocorrrelation plots both before and after burn in and thinning.

[Figure 3 about here.]
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Figure 1. Posterior log parasitemia profile and posterior distribution of changepoint between lag and decay

phase for an individual using a log-normal (top) and uniform (bottom) prior for the changepoints between phases.
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Figure 2. Posterior log parasitemia profile and posterior distribution of changepoint between lag and decay

phase for an individual using a log-normal (top) and uniform (bottom) prior for the changepoints between phases.
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Figure 3. Diagnostic plots of values over time and ACF plots before burn in and thinning (left) and after burn

in and thinning (right) for select domain points. The traceplots before burn in and thinning display three different

chains with different starting values overlaid on top of one another.
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Table 1
Results from the simulation studies of manuscript Section 3.2 with n = 20. In all three simulation studies, the true

value of γ2, the average log difference in clearance rates between the two simulated populations, was
log(0.25/0.15) ≈ 0.511. In each simulation study, 1000 data sets of size n = 20 were drawn according to that
simulation’s data generative model. From left the right, the columns represent the average value and standard

deviation of the two-stage estimator across simulations; the average value and standard deviation of the Bayesian
estimator across simulations; the percentage reduction in average loss (under squared error loss) attained by using
the Bayesian estimator; the proportion of 95% intervals from the two-stage method that capture the true difference
in means and length of those intervals; and the proportion of 95% intervals from the Bayesian method that capture

the true difference in means and the length of those intervals

Ê[γ̂TS2 ] Ê[γ̂B2 ] % Red in Avg. Loss P̂[γ2 ∈ CITS95%] P̂[γ2 ∈ CIB95%]
(SD) (SD) Using Bayes (Length) (Length)

Simulation 1 0.526 0.529 18.4% 95.8% 96%
π` = πτ = 0 (0.071) (0.063) (0.289) (0.287)

Simulation 2 0.491 0.525 25.7% 94.2% 96.0%
π` = 0.5, πτ = 0 (0.077) (0.067) (0.323) (0.314)

Simulation 3 0.561 0.538 66.7% 94.2% 95.6%
π` = πτ = 0.25 (0.148) (0.086) (0.628) (0.375)
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Table 2
Results from the simulation studies of Section 3.2 under log-normal and uniform priors on changepoints. In all three

simulation studies, the true value of γ, the average log difference in clearance rates between the two simulated
populations, was γ = log(5/3) ≈ 0.511. Simulation studies were conducted with n = 60 individuals.

Ê[γ̂LN2 ] Ê[γ̂U2 ] MSELN/MSEU P̂[γ2 ∈ CI95%(LN)] P̂[γ2 ∈ CI95%(U)]
(SD) (SD) (Length) (Length)

Simulation 1 0.523 0.515 1.10 95.2 94.8%
π` = πτ = 0 (0.037) (0.037) (0.145) (0.145)

Simulation 2 0.515 0.520 0.83 94.0% 94.1%
π` = 0.5, πτ = 0 (0.038) (0.041) (0.152) (0.169)

Simulation 3 0.523 0.525 0.97 94.1% 93.5%
π` = πτ = 0.25 (0.041) (0.041) (0.167) (0.170)
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Table 3
Estimates and Intervals for the Effect of Covariates on Log Half-Lives

Log-Normal Prior Uniform Prior
Estimate 2.5% 97.5% Estimate 2.5% 97.5%

Intercept 1.58 0.823 2.33 1.58 0.815 2.38
Sex (1 if Male) 0.191 0.01 0.370 0.185 -0.001 0.369
Age Group (1 if < 21) -0.015 -0.145 0.116 -0.011 -0.14 0.115
Kravanh or Veal Veng (1 if Yes) -0.007 -0.134 0.127 -0.008 -0.138 0.122
Hemoglobin E (1 if Yes) 0.108 -0.004 0.219 0.104 -0.004 0.207
α-thalassaemia (1 if Yes) -0.066 -0.200 0.063 -0.064 -0.194 0.070
G6PD Deficient (1 if Yes) -0.001 -0.090 0.087 -0.001 -0.088 0.084
Log Initial Parasite Density 0.021 -0.054 0.091 0.021 -0.053 0.092
Year (1 if 2010) 0.044 -0.086 0.172 -0.072 0.179 0.095
Parasite Group (1 if Group 1) 0.150 0.028 0.280 0.140 0.0134 0.267
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