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Web-based Supplementary Materials for “Accounting for Uncertainty in

Confounder and Effect Modifier Selection when Estimating Average Causal

Effects in Generalized Linear Models” by Chi Wang, Francesca Dominici,

Giovanni Parmigiani, and Corwin Matthew Zigler

Web Appendix A: Prior and Posterior Distributions of βα
Y

and θ

Assume that the priors of βα
Y

and θ are independent: π(βα
Y

,θ) = π(βα
Y

)π(θ). We have

p(βα
Y

,θ|D) ∝p(Y ,X,V |βαY

,θ)π(βα
Y

,θ)

=p(Y |βαY

,θ,X,V )p(X|βαY

,θ,V )p(V |βαY

,θ)π(βα
Y

,θ)

=p(Y |βαY

,X,V )p(X|V )p(V |θ)π(βα
Y

,θ)

∝[p(Y |βαY

,X,V )π(βα
Y

)][p(V |θ)π(θ)]

∝p(βαY |D)p(θ|D).

By taking integral over βα
Y

and θ on both sides of the formula, we can see that the propor-

tional factor should be equal to 1. Therefore, the posteriors of βα
Y

and θ are independent

p(βα
Y

,θ|D) = p(βα
Y |D)p(θ|D).

Therefore, these two parameters can be sampled separately in a Monte Carlo (MC) algorithm.

For the prior of θ, we assume π(θ) ∝ ΠK
k=1θ

−1
k (Rubin, 1981). The posterior follows a

Dirichlet distribution D(n1, . . . , nK)

p(θ|V ) ∝ ΠK
k=1θ

nk−1
k , (A1)

where nk counts the number of observed V values equal to the kth distinct value of V . Note

that if our goal is to estimate the average causal effect for the whole population, one should

include all observations in the calculation of the posterior of θ. But if the goal is to estimate
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the average causal effect for a certain subpopulation, only the observations belonging to the

subpopulation should be used.

For βα
Y

, we assume by default a uniform prior, though in specific applications one can also

specify informative priors. For example, one can consider a prior βα
Y ∼MVN(0,Σ), where

Σ is a diagonal matrix with entries [{log(100)/4}2, {log(15)/4}2s−21 , . . . , {log(15)/4}2s−2L ],

with s2l the sample variance of the lth predictor in outcome model αY with L (6 2M + 1)

predictors. This prior centers coefficients at zero and concentrates prior mass away from

extreme values that might represent, for example, a log odds ratio with magnitude greater

than log(15) for a 1 standard deviation change in any predictor (in the case of logistic

regression). Specifying an informative prior can be important when sample size is very small

relative to the number of potential confounders, achieving an effect similar to regularizing

the likelihood function to obtain more stable results (Makalic and Schmidt, 2011).

Web Appendix B: Sampling from the Posteriors

Sampling from the posterior of (αX ,αY )

We sample (αX ,αY ) from their joint posterior p(αX ,αY |D) by iteratively sampling from

p(αX |αY , D) and p(αY |αX , D). To sample from each of the two conditional posteriors, we

use the MC3 method (Madigan et al., 1995). Below, we illustrate the MC3 method for

drawing a sample from p(αY |αX , D). Sampling from p(αX |αY , D) is performed similarly.

Define the neighborhood of αY to be all the models in the outcome model space that has

one more or one less main effect or interaction term than αY . Suppose the current Markov

chain is in state (αX(0),α
Y
(0)), we randomly draw a model αY(1) from the neighborhood of αY(0).

The model is then accepted with probability

min

{
1,
p(αY(1)|αX(0), D)

p(αY(0)|αX(0), D)
=
p(Y |αY(1),X,V )

p(Y |αY(0),X,V )
×
p(αY(1)|αX(0))
p(αY(0)|αX(0))

}
. (A2)
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Otherwise, the chain stays in stateαY(0). In equation (A2), the prior odds p(αY(1)|αX(0))/p(αY(0)|αX(0))

can be calculated based on equations (7) and (8) and the Bayes factor can be approximated

by a BIC approximation (Raftery, 1995; Lefebvre et al., 2014)

p(Y |αY(1),X,V )

p(Y |αY(0),X,V )
.
= exp

{
1

2
(BIC1 −BIC0)

}
,

where BIC0 and BIC1 are the BICs from the two outcome models, respectively.

Sampling from the Posteriors of βα
Y

and θ

We sample (βα
Y

,θ) based on their posteriors, then calculate ψ(βα
Y

,θ). Since the posteriors

of βα
Y

and θ are independent, they can be sampled separately. We do not require any re-

sampling on V when obtaining samples of βα
Y

, and thus do not impose extra computational

burden by considering V as random. MC samples of θ can be generated based on equation

(A1). Except in the case where (2) is a normal linear model, the posterior of βα
Y

does not

follow a known distribution. Therefore, we generate samples of βα
Y

based on the Metropolis-

Hastings algorithm. The Metropolis proposal distribution is centered at the current value

of βα
Y

and has variance-covariance matrix equal to a matrix V times a tuning parameter.

When a noninformative prior is assumed, V is the large sample variance-covariance matrix

of the MLEs. When an informative prior is assumed, V is the variance-covariance matrix

estimated from a ridge regression model with penalty specified according to the assumed

informative prior. In our simulations and real data analysis, we used the R MCMCpack

package (Martin et al., 2011) to generate an MCMC sample of βα
Y

from a given model

αY . The tuning parameter was set to have the acceptance rate in the Metropolis-Hastings

algorithm between 20% and 50%.

Web Appendix C: Regression Coefficients for the Two Simulation Scenarios in

the Main Text

[Web Table 1 about here.]
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Web Appendix D: Issues of the Stratification by Propensity Score Method

When Sample Size is Small

When sample size is small, the estimated propensity scores are sparse so that some propensity

strata may need to be merged together. The following table listed the number of times out

of the 500 simulation replicates that merging strata is needed for the stratification method

for the two simulation scenarios in Section 3.

[Web Table 2 about here.]

Web Appendix E: Standardized Bias B Value

Based on true or estimated propensity scores, we calculated the standardized bias B value

(Rubin, 2007) as a measure of the balance between exposure groups for the two simulation

scenarios in the main text of the paper (Web Table 3). Examining B values from the

estimated propensity scores illustrates the difficulty in balancing covariates when there are

a lot of potential confounders and limited number of observations. Values of B calculated

using the estimated propensity score are much larger than those calculated using the true

propensity score. The results illustrate that the data are simulated so that covariates could be

balanced, but the difficulty in estimating the propensity score leads to difficulty in balancing

covariates.

[Web Table 3 about here.]

Web Appendix F: Propensity Score Stratum-Specific Average Causal Effect for

the Real Data

[Web Table 4 about here.]
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Web Appendix G: Methods Comparison Based on Random Sub-Sampling the

Real Data

[Web Table 5 about here.]

Web Appendix H: Simulation Results When There are Both Continuous and

Binary Potential Confounders and There are Correlations Among Potential

Confounders

In this section, we use simulation studies to evaluate the performance of BAC when the

potential confounders are a) correlated; and b) a mixture of binary and continuous variables.

We simulated W1, . . . ,W50 from multivariate normal distribution MVN(0,Σ), where Σ =

(σij)50×50 and σij = 0.7|i−j|. Let Vm = Wm, for m = 1, 3, 5, . . . , 49, and Vm = I{Wm > 0},

for m = 2, 4, 6, . . . , 50. The set of potential confounders includes V1 to V50. Binary exposure

and binary outcome variables were generated from

logit{E(Xi|V i)} =δ1V1i + δ2V2i + δ3V3i + δ4V4i + δ5V5i + δ6V6i + δ7V7i + δ8V8i,

logit{E(Yi|Xi,V i)} =βXXi + β1V1i + β2V2i + β3V3i + β4V4i + β5V5i + β6V6i + β7V7i + β8V8i,

where δ0 = −1, β0 = −1.25, and δ1 = . . . = δ8 = βX = β1 = . . . = β8 = 0.5. We generated

500 independent simulation replicates for each sample size n = 100, 150, 300, or 500. Results

are summarized in Web Table 6. BAC performs well under this simulation scenario. The ACE

estimate is virtually unbiased and the RMSE is smaller than that based on the full model.

The posterior inclusion probabilities (PIPs) for the 50 potential confounders are shown in

Web Figure 1. Although true confounders and noise variables are correlated, BAC is able to

distinguish them and assign large PIPs only to true confounders. Interestingly, continuous

confounders (V1, V3, V5 and V7) tend to have higher PIPs than binary confounders (V2,

V4, V6 and V8). This may due to the difference in the range of variable values. In this

simulation scenario, continuous confounders were generated from normal distributions so

that their values have a much wider range than that for binary confounders. Therefore,
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those continuous confounders tend to have a larger impact on the exposure and the outcome

values.

[Web Table 6 about here.]

[Web Figure 1 about here.]

Web Appendix I: An Alternative BAC Prior on (αX ,αY ) When There are

Interactions Between Confounders and the Exposure in Absence of Main

Effects

In practice, a confounder may interact with the exposure to affect the outcome in absence

of its main effect. Rather than using equation (8), one may consider the following prior on

(αX ,αY ), which does not restrict the main effect term to be included whenever an interaction

is included in the outcome model.

P (max{αYm, αYm+M} = 1|αXm = 1)

P (max{αYm, αYm+M} = 0|αXm = 1)
= ω,

P (αYm = 1|αXm = 0)

P (αYm = 0|αXm = 0)
=
P (αYm+M = 1|αXm = 0)

P (αYm+M = 0|αXm = 0)
= 1,

P (αXm = 1|max{αYm, αYm+M} = 0)

P (αXm = 0|max{αYm, αYm+M} = 0)
=

1

ω
,
P (αXm = 1|max{αYm, αYm+M} = 1)

P (αXm = 0|max{αYm, αYm+M} = 1)
= 1,

(A3)

where m = 1, . . . ,M . This prior increases the chance for either the main effect or the

interaction term for a potential confounder to be included in the outcome model if the

variable is in the exposure model. It also increases the chance for a potential confounder to

be excluded from the exposure model if neither its main effect nor its interaction term is in

the outcome model.

To evaluate the performance of this prior as compared to the prior in equation (8), we

considered a simulation scenario similar to the second simulation scenario in the main text

of the paper, except that V1 and V3 have no main effect (β1 = β3 = 0).We first examine PIPs

for the 50 potential confounders and the 10 potential interaction terms. The PIPs based on

the prior in equation (A3) are shown in Web Figure 2. For the two variables (V1 and V3) that
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have interactions with X but do not have main effects on Y , their main effect terms have very

low PIPs while their interaction terms have very high PIPs. In contrast, for the variable (V5)

that has both main effect and interaction terms, both terms have very high PIPs. The results

suggest that the prior proposed in equation (A3) is able to correctly identify interactions in

absence of main effects. As a comparison, the PIPs based on the prior in equation (8) are

shown in Web Figure 3. For all the three variables (V1, V3 and V5), both the main effect

and the interaction terms have very high PIPs. Therefore, using the prior in equation (8)

leads to high PIPs of main effect terms for variables which only have interactions with the

exposure but do not have main effects. Next, we compare the estimation of ACE. Based

on both priors, the coverage probabilities of 95% credible intervals are close to the desired

value. But the sample standard error (SEE) based on the prior in equation (8) is slightly

larger than that based on the prior in equation (A3). This is due to the fact that the prior

in equation (8) makes BAC much more likely to include the main effect terms of V1 and V3

in the model and therefore adds more noise to the inference.

[Web Table 7 about here.]

[Web Figure 2 about here.]

[Web Figure 3 about here.]

Web Appendix J: Simulation Results When the Outcome Model is Misspecified

BAC depends on the assumption that the outcome is linearly associated with confounders

through a generalized linear model. In this section, we use simulations to evaluate the

performance of BAC when the outcome model is misspecified. We considered a scenario

which has exponential, cubic, reciprocal, and log terms of confounders in the outcome model.



8 Biometrics, 000 0000

More specifically, the data were generated from the following models

logit(P (Xi = 1|Vi)) =δ0 + δ1V1i + δ2V2i + δ3V3i + δ4V4i

logit(P (Yi = 1|Xi, Vi)) =β0 + βXXi + β1 exp{V1i}+ β2V
3
2i +

β3
V3i

+ β4 log V4i,

where δ0 = −4, β0 = −3, δ1 =, . . . = δ4 = βX = 0.5, β1 = β2 = 0.1, β3 = β4 = 1,

and V1i, . . . , V4i were independently generated from Uniform(0.1, 4). The set of potential

confounders contains V1 to V4 as well as 46 other variables independently generated from

Uniform(0.1, 4). Results from 500 replications for sample size 100, 150, 300, or 500 are shown

in Web Table 8.

[Web Table 8 about here.]

The bias in the ACE estimation based on BAC appears to be very small. The RMSE based

on BAC is smaller than those based on propensity score methods. To further explore the

impact of outcome model misspecification on ACE estimation, which is based on predicted

values from the model, we plotted the predicted outcome values from the true outcome

model against two misspecified models for each of the four true confounders (Web Figure 4):

one misspecified model includes that true confounder but assumes linear associations (left

panel); and the other misspecified model excludes that true confounder (right panel). The

figure shows that excluding a true confounder has a larger impact on predicted values than

misspecifiying the functional form of a true confounder. As shown in Web Figure 5, BAC is

able to identify the true confounders and assign high probabilites for including them in the

outcome model. Therefore, the bias appeares to be small although the inference is based on

assuming linear associations in the outcome model. Furthermore, the ability of BAC to focus

inference on a reduced set of factors that are true confounders offer efficiency gains relative to

propensity score methods. BAC is designed primarily to identify the true confounders, and

in doing so sacrifices some ability to avoid model misspecification by virtue of its reliance on

a parametric model. The ability to identify the real confounders from a high dimensional set
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of potential confounders is arguably more essential than guarding against misspecification

of the functional form.

[Web Figure 4 about here.]

[Web Figure 5 about here.]

Web Appendix K: Simulation Results Comparing BAC with the Method

Proposed By Schneeweiss et al. (2009)

In this section, we compare BAC to the method proposed by Schneeweiss et al. (2009) based

on simulation studies. Because the method by Schneeweiss et al. (2009) only deals with the

situation where the exposure, the outcome, and all potential confounders are binary, we

considered the following simulation scenario that is under such situation. We considered 50

potential confounders (V1 to V50) independently generated from Bernoulli(0.5). The exposure

and outcome variables were generated from

logit{E(Xi|V i)} =δ0 + δ1V1i + δ2V2i + δ3V3i + δ4V4i + δ5V5i + δ6V6i + δ7V7i + δ8V8i + δ9V9i,

logit{E(Yi|Xi,V i)} =β0 + βXXi + β1V1i + β2V2i + β3V3i + β4V4i + β5V5i + β6V6i + β7V7i + β8V8i

+ β9V9i + β10V10i + β11V11i + β12V12i,

where δ0 = −2.4, β0 = −3.45, δ1 = δ2 = δ3 = β1 = β4 = β7 = β10 = 1, δ4 = δ5 = δ6 = βX =

β2 = β5 = β8 = β11 = 0.5, and δ7 = δ8 = δ9 = β3 = β6 = β9 = β12 = 0.1.

We considered two variations of the method proposed by Schneeweiss et al. (2009): one

takes the top 10 variables (k = 10) ranked by the method and includes them in the outcome

model; and the other includes the top 20 variables (k = 20) in the model. Simulation results

are presented in Web Table 9 and Web Figure 6. BAC provides unbiased estimate of the

ACE with standard error smaller than that from the full model. In contrast, the method

proposed by Schneeweiss et al. (2009) underestimates the standard error when sample size

is small, and thus yields lower coverage probability than the desired value 0.95. Although
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the coverage probability improves with increased sample size, the standard error of their

estimator is larger than that from BAC and is close to that from the full model.

[Web Table 9 about here.]

[Web Figure 6 about here.]

Web Appendix L: Methods Compared Under Each Simulation Scenario

Web Table 10 lists the methods we compared under each simulation scenario.

[Web Table 10 about here.]
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Web Figure 1. Marginal posterior inclusion probabilities of the 50 potential confounders
in the simulation scenario presented in Web Appendix H, where there are both continuous
and binary confounders and they are correlated.



13

●
● ●●

●
●

●●

●

●

●●
●●

●
●
●●●●

●●

●
●●●●

●
●●●●

●
●
●
●●●

●
●●●

●●●●

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n = 100

Index of Variable

P
os

te
rio

r 
In

cl
us

io
n 

P
ro

ba
bi

lit
y ● ●

●

●

●

●

confounders with main effects
noise variables
true interaction terms
noise interaction terms

● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●

0 10 20 30 40 50 60
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

n = 150

Index of Variable

P
os

te
rio

r 
In

cl
us

io
n 

P
ro

ba
bi

lit
y

● ●

●

●

● ●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n = 300

Index of Variable

P
os

te
rio

r 
In

cl
us

io
n 

P
ro

ba
bi

lit
y

● ●●●

● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●

●●●●●●●●

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n = 500

Index of Variable

P
os

te
rio

r 
In

cl
us

io
n 

P
ro

ba
bi

lit
y

● ●●●

Web Figure 2. Marginal posterior inclusion probabilities of the 50 potential confounders
and 10 potential interaction terms in the simulation scenario presented in Web Appendix
I, where there are interactions between confounders and the exposure in absense of main
effects. Results are based on BAC with the prior in equation (A3).
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Web Figure 3. Marginal posterior inclusion probabilities of the 50 potential confounders
and 10 potential interaction terms in the simulation scenario presented in Web Appendix
I, where there are interactions between confounders and the exposure in absense of main
effects. Results are based on BAC with the prior in equation (8).
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Web Figure 4. Predicted outcome values based on the true model vs. misspecified models
for the simulation scenario presented in Web Appendix J, where the outcome model contains
non-linear terms of confounders. Two misspecified models were considered for each of the
four true confounders: a model includes that true confounder but assumes linear association
(Left Panel), and a model excludes that true confounder (Right Panel).
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Web Figure 5. Marginal posterior inclusion probabilities of the 50 potential confounders
in the simulation scenario presented in Web Appendix J, where the outcome model contains
non-linear terms of confounders.
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Web Figure 6. Marginal posterior inclusion probabilities of the 50 potential confounders
in the simulation scenario presented in Web Appendix K.
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Web Table 1
Regression coefficients for the two simulation scenarios in the main text

First simulation scenario Second simulation scenario
Exposure Outcome Exposure Outcome

model model model model
δ1 1 βX 0.5 δ0 −1.5 βX 0.5
δ2 1 β1 1 δ1 0.5 β0 0.5
δ3 1 β2 0.5 δ2 0.5 β1 0.5
δ4 0.5 β3 0.1 δ3 0.5 β2 0.5
δ5 0.5 β4 1 δ4 0.5 β3 0.5
δ6 0.5 β5 0.5 δ5 0.5 β4 0.5
δ7 0.1 β6 0.1 δ6 0.5 β5 0.5
δ8 0.1 β7 1 β6 0.5
δ9 0.1 β8 0.5 β∗7 −0.5

β9 0.1 β∗8 −0.5
β10 1 β∗9 −0.5
β11 0.5
β12 0.1

*: coefficients for interaction terms
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Web Table 2
Number of times out of the 500 simulation replicates that merging strata is needed for the stratification method for

the two simulation scenarios in Section 3

Needed to merged Needed to merged
into less than 5 strata into a single stratum
PSF PSS PSF PSS

First Simulation n = 100 497 485 440 460
Scenario n = 150 255 129 8 9

Second Simulation n = 100 478 427 330 379
Scenario n = 150 142 60 20 5
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Web Table 3
Standardized bias B values calculated based on estimated propensity socres (PSF , PSS, and twang) and true

propensity scores (True PS) for the two simulation scenarios in the main text of the paper. Results are averaged over
500 replicates.

Scenario One Scenario Two
Estimated PS True PS Estimated PS True PS

PSF PSS twang PSF PSS twang

n = 100 1.72 1.67 4.68 0.90 1.59 1.53 4.75 0.56
n = 150 1.68 1.52 4.14 0.90 1.50 1.29 4.23 0.58
n = 300 1.32 1.18 3.41 0.90 1.08 0.92 3.50 0.57
n = 500 1.14 1.05 2.92 0.89 0.90 0.79 3.08 0.58
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Web Table 5
Estimation of ACE from samples generated by randomly selecting 0.5%, 1%, or 2% of the brain tumor Medicare data

full PSF PSS PSRF PSRS twangN twangF twangS BACN BACI

model

Sample 0.5% BIAS 0.002 —– —– —– —– 0.008 0.025 0.008 —– 0.007
of the data SEE 0.147 —– —– —– —– 0.100 0.122 0.100 —– 0.089
(n = 75) SSE 0.120 —– —– —– —– 0.089 0.114 0.089 —– 0.078

RMSE 0.120 —– —– —– —– 0.089 0.117 0.089 —– 0.078
CP 0.99 —– —– —– —– 0.95 0.99 0.95 —– 0.97

Sample 1% BIAS 0.005 0.004 0.002 0.013 0.001 0.005 0.010 0.005 0.000 0.001
of the data SEE 0.080 0.075 0.077 0.147 0.091 0.074 0.082 0.074 0.069 0.067
(n = 150) SSE 0.076 0.085 0.078 0.137 0.127 0.063 0.076 0.063 0.070 0.061

RMSE 0.077 0.085 0.078 0.137 0.127 0.063 0.077 0.063 0.070 0.061
CP 0.97 0.91 0.95 0.96 0.84 0.98 0.98 0.98 0.94 0.96

Sample 2% BIAS 0.003 0.003 0.002 0.003 0.006 0.005 0.002 0.005 0.002 0.005
of the data SEE 0.054 0.053 0.053 0.091 0.054 0.054 0.055 0.054 0.050 0.048
(n = 300) SSE 0.050 0.052 0.051 0.065 0.066 0.045 0.052 0.045 0.048 0.045

RMSE 0.050 0.052 0.051 0.065 0.066 0.045 0.052 0.045 0.048 0.045
CP 0.96 0.95 0.96 0.99 0.89 0.98 0.98 0.98 0.96 0.96

For each method, the estimated ACEs from randomly selected samples were compared to the ACE estimate from the

whole dataset, which serves as the “true” ACE value. “—–” indicates results are unavailable.
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Web Table 6
Estimation of ACE for the simulation scenario presented in Web Appendix H, where there are both continuous and

binary confounders and they are correlated.

true full BACN BACI

model model

n = 100 BIAS 0.005 0.064 —– 0.033
SEE 0.107 0.282 —– 0.083
SSE 0.105 0.221 —– 0.079
RMSE 0.105 0.230 —– 0.086
CP 0.94 0.99 —– 0.94

n = 150 BIAS 0.006 0.071 —– 0.024
SEE 0.082 0.196 —– 0.069
SSE 0.084 0.174 —– 0.074
RMSE 0.084 0.188 —– 0.078
CP 0.94 0.99 —– 0.92

n = 300 BIAS 0.002 0.006 0.006 0.009
SEE 0.055 0.092 0.055 0.054
SSE 0.053 0.061 0.054 0.049
RMSE 0.053 0.061 0.054 0.050
CP 0.95 0.98 0.95 0.96

n = 500 BIAS 0.002 0.004 0.005 0.007
SEE 0.042 0.049 0.043 0.042
SSE 0.041 0.045 0.042 0.040
RMSE 0.041 0.045 0.042 0.041
CP 0.96 0.95 0.95 0.95

“—–” indicates results are unavailable.
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Web Table 7
Estimation of ACE for the simulation scenario presented in Web Appendix I, where there are interactions between

confounders and the exposure in absense of main effects.

true full BACN

model model prior in prior in
equation (8) equation (A3)

n = 100 BIAS 0.072 —– 0.196 0.004
SEE 0.639 —– 1.092 1.062
SSE 0.547 —– 0.844 0.826
RMSE 0.551 —– 0.866 0.825
CP 0.96 —– 0.97 0.97

n = 150 BIAS 0.057 0.179 0.088 0.061
SEE 0.496 27.001 0.582 0.577
SSE 0.510 0.793 0.570 0.564
RMSE 0.513 0.812 0.577 0.567
CP 0.94 0.99 0.95 0.94

n = 300 BIAS 0.008 0.013 0.024 0.034
SEE 0.323 0.480 0.360 0.348
SSE 0.323 0.384 0.341 0.337
RMSE 0.322 0.384 0.341 0.338
CP 0.93 0.97 0.95 0.95

n = 500 BIAS 0.007 0.022 0.041 0.040
SEE 0.247 0.299 0.264 0.256
SSE 0.246 0.271 0.253 0.249
RMSE 0.246 0.272 0.256 0.252
CP 0.95 0.95 0.96 0.95

“—–” indicates results are unavailable.
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Web Table 8
Estimation of ACE based on the simulation scenario presented in Web Appendix J, where the outcome model

contains non-linear terms of confounders.

true PSF PSS PSRF PSRS twangN twangF twangS BACN BACI

model

n = 100 BIAS 0.007 0.174 0.175 0.048 0.057 0.109 0.053 0.089 —– 0.038
SEE 0.080 0.097 0.096 0.241 0.113 0.101 0.110 0.104 —– 0.079
SSE 0.083 0.110 0.108 0.211 0.183 0.076 0.098 0.116 —– 0.077
RMSE 0.083 0.206 0.205 0.216 0.192 0.133 0.111 0.146 —– 0.086
CP 0.94 0.53 0.53 0.99 0.68 0.87 1.00 0.83 —– 0.93

n = 150 BIAS 0.002 0.048 0.038 0.021 0.043 0.104 0.037 0.063 —– 0.020
SEE 0.064 0.095 0.090 0.205 0.097 0.085 0.091 0.081 —– 0.068
SSE 0.065 0.137 0.124 0.197 0.142 0.059 0.077 0.091 —– 0.069
RMSE 0.065 0.145 0.130 0.198 0.149 0.120 0.085 0.110 —– 0.072
CP 0.93 0.78 0.79 0.96 0.79 0.85 1.00 0.84 —– 0.93

n = 300 BIAS 0.002 0.020 0.017 0.009 0.037 0.096 0.016 0.025 0.006 0.009
SEE 0.045 0.072 0.068 0.188 0.066 0.062 0.062 0.054 0.051 0.052
SSE 0.046 0.075 0.066 0.121 0.100 0.043 0.064 0.062 0.051 0.049
RMSE 0.046 0.077 0.068 0.121 0.106 0.105 0.066 0.067 0.052 0.050
CP 0.94 0.92 0.93 1.00 0.76 0.72 0.98 0.89 0.94 0.96

n = 500 BIAS 0.002 0.013 0.011 0.025 0.031 0.086 0.004 0.006 0.007 0.004
SEE 0.034 0.053 0.050 0.109 0.055 0.051 0.047 0.040 0.040 0.040
SSE 0.034 0.046 0.043 0.082 0.079 0.035 0.041 0.042 0.038 0.037
RMSE 0.034 0.048 0.045 0.086 0.085 0.093 0.041 0.042 0.039 0.037
CP 0.94 0.96 0.98 0.98 0.77 0.65 0.97 0.94 0.95 0.97

“—–” indicates results are unavailable.
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Web Table 9
Estimation of ACE with comparison to Schneeweiss’s method based on the simulation scenario presented in Web

Appendix K.

true full Schneeweiss’s method BACN BACI

model model k = 10 k = 20

n = 100 BIAS 0.006 0.056 0.010 0.001 —– 0.006
SEE 0.110 0.260 0.086 0.090 —– 0.082
SSE 0.106 0.223 0.124 0.149 —– 0.087
RMSE 0.106 0.229 0.124 0.149 —– 0.087
CP 0.95 1.00 0.82 0.74 —– 0.94

n = 150 BIAS 0.002 0.025 0.008 0.002 —– 0.002
SEE 0.085 0.197 0.078 0.079 —– 0.075
SSE 0.083 0.132 0.095 0.107 —– 0.076
RMSE 0.083 0.134 0.096 0.107 —– 0.076
CP 0.94 1.00 0.87 0.85 —– 0.94

n = 300 BIAS 0.001 0.002 0.005 0.003 0.001 0.002
SEE 0.058 0.071 0.061 0.062 0.056 0.056
SSE 0.055 0.060 0.060 0.065 0.055 0.052
RMSE 0.055 0.060 0.060 0.065 0.055 0.052
CP 0.96 0.98 0.96 0.95 0.97 0.97

n = 500 BIAS 0.001 0.002 0.003 0.002 0.000 0.001
SEE 0.044 0.048 0.048 0.050 0.043 0.043
SSE 0.043 0.046 0.047 0.048 0.044 0.042
RMSE 0.043 0.046 0.047 0.048 0.044 0.042
CP 0.95 0.96 0.94 0.95 0.94 0.95

“—–” indicates results are unavailable.
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