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Web Appendix A: Inverted Pareto Distribution

Here we discuss the inverted Pareto distribution as it has been defined as the prior dis-

tribution for the smoothing parameter τ . Compared to the standard Gamma prior, the

inverted Pareto distribution achieves a degree of flexibility in skewness. The inverted Pareto

distribution Ip(a, b) has pdf,

π(τ |a, b) =
a

b
(
τ

b
)a−1, for a > 0, 0 < τ < b.

The skewness of inverted Pareto distribution can be adjusted through parameter a: it is

uniform distribution on (0, b) when a = 1, puts its mass on small values when a < 1 and

puts its mass on large values when a > 1. See Web Figure 1 for the density with several

different values of a.
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Web Appendix B: Specification of Mixture Prior

We elicit the prior by intersecting the Gamma distribution and the inverted Pareto distribu-

tion at a pre-specified cut-point. This cut-point provides the best separation of the non-linear

and linear components defined by small and large values of τ respectively; and was chosen

through simulation studies on a variety of test functions. In order to allow for uncertainty

of this choice, we allow for overlapping between the two distributions such that the MCMC

sampler has the ability to sample (with positive probability) from one distribution or the

other.

Two datasets were generated for this purpose: one is completely linear and the other is

completely non-linear. Then we fit our nDAG model to both datasets and plot the kernel

density estimation of the MCMC samples of smoothing parameter τ in Web Figure 2 from

which we observe the cut-point is around 30.

For the parameter b of the inverted Pareto distribution which controls the range of τ , we

choose it to be large enough so that the fitted curve is practically linear for any τ greater

than b (Morrissey et al., 2011).

The resulting mixture prior is presented in Web Figure 3.

Web Appendix C: Posterior Inference

Our major interest is in the network parameters, γgj, and the smoothing parameters, τgj,

that are in the posterior distribution, π(τg, γg|yg). We therefore integrate out the spline

coefficient, βgj, the constant term, µg and the error precision, λg, from the full likelihood to

obtain the marginal log-likelihood:

p(yg|τg, γg) ∝ |Pγg |1/2|Ag|−1/2(1n
′Bg1n + κµ)−1/2(ag + bλ)

−(aλ+n/2),
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where 1n is a column vector of ones, γg = (γg1, . . . , γgG)′, Ag = Xγg
′Xγg + Pγg , Bg =

In − XγgAg
−1Xγg

′, In is the identity matrix, ag = 1
2

{
yg
′Bgyg − (yg

′Bg1n)2

1n
′Bg1n+κµ

}
, the block

diagonal matrix Pg = diag(τg1K, τg2K, . . . , τgGK), Xγg is the submatrix of X corresponding

to the columns j, for which γgj = 1, and Pγg is the submatrix of Pg with the jth block, for

which γgj = 1. The ordering of the nodes in the graph implies γgj = 0 for all j ≥ g. Then

the posterior distribution π(τg, γg|yg) is expressed as

π(τg, γg|yg) ∝ p(yg|τg, γg)

g−1∏
j=1

π(γgj|ρ)π(τgj|φgj, γgj)π(φgj|ω, γgj).

Below we briefly describe the MCMC algorithm implemented to sample from the posterior

distribution π(τg, γg|yg).

SAMPLING SCHEME

Since the posterior distribution π(τg, γg|yg) is analytically intractable, we construct an

MCMC sampler to obtain a posterior sample of the parameters τgj and γgj. Moreover,

since the parameter space of the binary variables γgj is enormous, it is impractical to com-

pute the explicit posterior probabilities for all possible subsets. Instead, we use stochastic

search variable selection (SSVS) and Gibbs sampling (George and McCulloch, 1993) to ex-

plore the posterior distribution of the models.

The MCMC consists of two parts: (I) A Metropolis-Hastings (M-H) step for network

parameter γg = {γgj}Gj=1, smoothing parameter τg = {τgj}Gj=1 and mixture indicator φg =

{φgj}Gj=1 and (II) a Gibbs sampler for parameters ρ and ω. To obtain a good mixing of the

chain, we accomplish the M-H step in three intermediate steps: (A) sampling γg, τg and φg;

(B) sampling τg and φg; and (C) sampling τg.

For g = 1, . . . , G, at each iteration:

(A) Update τ , γ and φ jointly (between-model move). This involves sampling the indi-

cator variable γ. For that, we randomly choose j from set [g−] = {1, . . . , g − 1} and change
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the value of γgj to γ∗gj, either from 0 to 1 or 1 to 0. If γ∗gj = 1, then we propose τ ∗gj and

φ∗gj from the log-normal and Bernoulli distributions, respectively. We accept (γ∗gj, τ
∗
gj, φ

∗
gj)

according to the M-H acceptance ratio,

αγ,τ =
p(yg|τ ∗g , γ∗g)π(γ∗gj|ρ)π(τ ∗gj|φ∗gj, γ∗gj)π(φ∗gj|ω, γ∗gj)q(τgj|γgj)q(φgj|γgj)q(γgj|γ∗gj)
p(yg|τg, γg)π(γgj|ρ)π(τgj|φgj, γgj)π(φgj|ω, γgj)q(τ ∗gj|γ∗gj)q(φ∗gj|γ∗gj)q(γ∗gj|γgj)

,

where q(·|·) is a generic notation for the proposed densities.

(B) Update τ and φ. Here we want τ to be updated more often as it is continuous and

therefore has a much bigger parameter space than that of a discrete parameter. So in the

next two steps, we perform within-model moves for the parameter τ . The first step is to

update τ and φ together, since τ has a mixture prior that depends on the parameter φ.

Similarly to what we have done for γ, we randomly choose j from {j : γgj 6= 0} and switch

φgj to φ∗gj, either from 0 to 1 or 1 to 0. For the parameter τgj, we propose its candidate τ ∗gj

from the log-normal distribution with the mean equal to τgj. We accept (τ ∗gj, φ
∗
gj) according

to the ratio

ατ =
p(yg|τ ∗g , γg)π(τ ∗gj|φ∗gj, γgj)π(φ∗gj|ω, γgj)q(τgj|τ ∗gj, γgj)q(φgj|φ∗gj, γgj)
p(yg|τg, γg)π(τgj|φgj, γgj)π(φgj|ω, γgj)q(τ ∗gj|τgj, γgj)q(φ∗gj|φgj, γgj)

.

(C) Update τ . Here we update τ alone, using the random walk Metropolis-within-Gibbs

algorithm. We propose τ ∗gj from the log-normal distribution with mean τgj and accept it

with

ατ =
p(yg|τ ∗g , γg)π(τ ∗gj|φgj, γgj)q(τgj|τ ∗gj, γgj)
p(yg|τg, γg)π(τgj|φgj, γgj)q(τ ∗gj|τgj, γgj)

,

for each j ∈ {j : γgj 6= 0} sequentially.

(D) Update ρ. We implement a simple Gibbs step to draw ρ∗ from Beta(∑
j<g γgj + aρ,

∑
j<g(1− γgj) + bρ).

(E) Update ω. Likewise, we apply a simple Gibbs step to draw ω∗ fromBeta(
∑

j<g I(φgj =

1) + aω,
∑

j<g I(φgj = 0) + bω).
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Upon completion, the sampling scheme results in a list of visited models based on the

indicator variables. A simple approach for model selection is to select edges whose posterior

inclusion probability (i.e., the marginal posterior probability of γgj = 1) is higher than a

pre-specified threshold. A popular threshold is 0.5, which results in the so-called median

probability model (Barbieri and Berger, 2004). Marginal posterior probabilities can be ap-

proximated by the fraction of time each γgj is visited by the Markov chain.

An alternative approach, which we use in this paper, is to pick the model with the highest

(joint) posterior probability based on the MCMC samples. This approach is not commonly

used since, in several applications, a stochastic search results in several models with very

similar posterior probabilities. By contrast, in our applications we have observed that the

highest probability model is clearly identified, i.e., its posterior probability is much higher

than that of the second model in the ranking. We speculate that this desirable feature is

due to the greater flexibility of our approach. The two approaches would coincide in many

cases, for example, when there is a model with a posterior probability considerably higher

than those of the other models (a model with a posterior probability higher than 0.5 is a

special case). In our case, we observe a very good agreement between these two approaches.

ESTIMATION AND PREDICTION

Given τg and γg, we derive the conditional posterior distribution of the parameters not

sampled in the MCMC algorithm, namely the spline coefficients βgj, the intercept µg, and

the precision λg. The precision parameter has the following posterior distribution,

λg|yg, τg, γg ∼ Gamma(aλ +
n

2
, bλ + bg),

where

bg =
1

2
y′gDyg +

1

4
y′gDXγg(−1

2
X′γgDXγg −

1

2
Pγg)−1X′γgDyg, D = In −

1n1′n
n+ κµ

.
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The constant term and spline coefficients are multivariate normal:

αg|yg, λg, τg, γg ∼ N(µαg ,T
−1
αg

),

where

αg =

 µg

βg

 , Zγg =

(
1n Xγg

)
, Cg =

 κµ 0

0 Pγg

 ,

µαg = (Z′γgZγg + Cg)−1Z′γgyg, Tαg = λg(Z
′
γgZγg + Cg).

Posterior inference on αg, e.g. estimation of αg under a squared error loss, can be performed

through Monte Carlo integration. The posterior expected value of αg is

E[αg|yg] ≈ 1

N

N∑
i=1

µαg(τg
(i), γg

(i)),

where τg
(i), γg

(i) are N posterior samples drawn from the MCMC procedure.

Suppose we observe a new set of data y∗1, . . . ,y
∗
g−1 with sample size m. Let X∗g be

the spline design matrix of y∗1, . . . ,y
∗
g−1 and X∗γg be the same matrix given γg and let

Z∗γg = (1m X∗γg). Then the predictive distribution of new observations y∗g given τg, γg is a

multivariate student’s t-distribution with mean

µ∗g = {Im − Z∗γg(Z∗′γgZ
∗
γg + Z′γgZγg + Cg)−1Z∗′γg}

−1Z∗γg(Z∗′γgZ
∗
γg + Z′γgZγg + Cg)−1Z′γgyg;

hence, by Bayesian model averaging over the high-probability model (Raftery et al., 1997;

Hoeting et al., 1999), the mean of the predictive distribution can be approximated by

E[y∗g|yg,X
∗
g] ≈ 1

N

N∑
i=1

µ∗g(τg
(i), γg

(i)).
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Web Appendix D: Simulated Examples of Single Re-

gression

In addition to the full network analysis in section 5, we conduct another simulation study

for variable selection under single nonlinear regression setting. In this example, we generate

49 predictor variables independently from the standard uniform [0, 1] distribution. After

standardizing each predictor, a response variable then has the following functional form:

y = 2 + 3x1 − 4x2
2 − exp(x3) + 4 cos

(
4πx4

7

)
+ 2 sin

(
8πx5

7

)
+ ε, (1)

where ε ∼ Nn(0, σ2In). Hence, the true model contains only the first five variables.

The hyperparameters setting is the same as in section 5. We run an MCMC algorithm

with 20, 000 iterations, in which the first 2, 000 iterations are considered as a “burn-in”

period for both methods. We conduct 50 simulations for each method.

In the simulated true model, we have one linear function and four nonlinear functions:

quadratic, exponential, cosine (with approximately one period within the data range), and

sine (with approximately two periods within the data range) functions. We randomly choose

one simulation and plot the reconstructions for the nMixDAG after adjusting for the mean.

This plot appears in Web Figure 4, with the solid curves representing the true curves and

the dashed curves the estimated curves. The 95% credible bands are also plotted as dotted

lines. The performance of the reconstruction is quite reasonable, as the true curves and the

estimated curves pretty much lie on top of each other and the true curves are contained in

the credible bands. The quality of the reconstructions of the nDAG is almost identical to

that of the nMixDAG (plot not shown).

We vary the sample sizes (n = 150, 200, 250) and error variances (σ2 = 4, 16) to explore

the performance of SSVS, nDAG, nMixDAG, spikeSlabGAM and SpAM under different

signal-to-noise settings. We tabulate the results in Web Table 1 where the true positive
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rate (TPR), the false discovery rate (FDR), the false negative rate (FNR=1-TPR) and

mean squared prediction error (MSPE) are reported. The linear method SSVS is apparently

not competitive with all the nonlinear approaches in terms of both prediction and variable

selection and nMixDAG is always slightly better than nDAG. Although the difference is not

substantial, spikeSlabGAM is the best in prediction. For instance, when n = 200, σ2 = 16,

the average MSPE of nMixDAG, spikeSlabGAM and SpAM are 21.161, 19.994 and 26.079,

respectively. In terms of variable selection, generally, SpAM has the highest TPR yet at

the price of unreasonable FDR (around 70%). On the other hand, although nMixDAG has

lower TPR than spikeSlabGAM and SpAM, it has 0 FDR for all settings. For example, when

n = 250, σ2 = 16, nMixDAG has an average 0.804 TPR and 0 FDR while spikeSlabGAM has

0.980 TPR and 0.279 FDR, and SpAM has 1.000 TPR and 0.733 FDR. The trade-off between

TPR and FDR shows that our method nMixDAG is more parsimonious than spikeSlabGAM

and SpAM.

Web Appendix E: GBM Data Analysis

In section 6, we analyzed the TCGA-based GBM gene expression data using our proposed

model nMixDAG. TCGA provides microarray-based gene expression data for a large cohort of

hundreds of GBM tumor specimens (241 in our case study) (TCGA, 2008). Newly-diagnosed

glioblastomas are selected retrospectively from biospecimen repositories and further reviewed

and processed through TCGA Biospecimen Core Resource to ensure less than 50% necrosis

and more than 80% tumor nuclei for RNA extraction. Each qualified biospecimen is assayed

using three platforms: Affymetrix U133A, Affymetrix Exon 1.0 ST and custom Agilent 244K,

from which messenger RNA (mRNA) expression profiles are generated. Subsequently, the

mRNA expression profiles are integrated into a single estimate of relative gene expression

for each gene and for each sample. The heat map of marginal posterior inclusion probability

for the edge between each pair of genes is shown in Web Figure 5 from which the sparsity of
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our model is evident. Also, the marginal probabilities appear separated, i.e. either close to

0 or 1, which suggests the highest probability model in our application is clearly identifiable.

In addition, as kindly suggested by the anonymous associate editor, we include more

genes in our real data analysis. We focus on the full RTK/PI3K signaling pathway1 instead

of the frequently mutated genes from the three core pathways, which consists of 195 genes.

Despite the dimension being much higher and having run the same length of chains, we

found strong evidence of convergence for all parameters: the PSRFs for τ (95% of τ values

ranging from 1.000 to 1.0966), ρ (=1.000) and ω (=1.000) are close to 1 and the correlations

of posterior probabilities for γ and φ are 0.911 and 0.971, respectively. Totally, we found 463

connections and 91 of them are nonlinear. While some connections are well studied: e.g. Ras

activates PI3K family (Yan et al., 1998), some have not been fully understood, especially

the nonlinear regulations listed In Web Tables 5, 6, 7. They are ordered by the degree of

nonlinearity. We find 8 hub genes are: PTK2, ITGA3, KDR, SYK, PRLR, SOS2, PDPK1

and HSP90AB1. Two of them, KDR and PDPK1, were previously detected as driver genes

for GBM in the literatures (TCGA, 2008; Cerami et al., 2010). The other 6 newly found hub

genes might be potential GBM driver genes which need to be validated through biological

experiment. We also apply the spikeSlabGAM to this dataset for comparison. The difference

in WAIC between nMixDAG and spikeSlabGAM is substantial (103559 vs 211571), which

again indicates nMixDAG has higher prediction power.

Web Appendix F: Markov Equivalence Class

Our model is defined based on a prior ordering of the nodes. Without a prior ordering, we

cannot distinguish two DAGs within the same Markov equivalence class (MEC) in which

all DAGs have the same conditional independence assertions. If we ignore this aspect, we

would define a computational inefficient approach that will never discriminate two Markov

equivalent DAGs. More importantly, for (linear) Gaussian DAG, if the parameter priors are

1http://www.genome.jp/kegg/
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carefully chosen, the marginal likelihood is equivalent for Markov equivalent DAGs (Geiger

and Heckerman, 2002). However, since our proposed DAG models are nonlinear, two Markov

equivalent DAGs can represent different sets of distributions. In our work the ordering of

the nodes is naturally obtained for the pathway information. Here we discuss the amount

of prior information needed to discriminate two Markov equivalent DAGs when the prior

ordering of the nodes is not available.

One possible way is to discriminate Markov equivalent graphs by adopting an informative

prior based on the number of common edges between the proposed network and the reference

network. However, it is not as straightforward as it appears. Consider the following example

in Web Figure 6. Suppose the graph on the left panel is the reference network. The two

graphs in middle and on the right are Markov equivalent and they have the same number of

common edges with the reference graph. Hence the proposed prior would fail to distinguish

between these two. In practice, the amount of prior biological information needed to dis-

criminate two Markov equivalent DAGs is commensurate to the amount of the information

needed to define an ordering of the model.

Another possible way to avoid repeatedly analyzing Markov equivalent DAGs is inspired

by Andersson et al. (1997). They suggest to treat each MEC as a single model through

essential graph, the union of all the graphs within the same MEC. There is a one-to-one

relationship between MEC and its essential graph. Therefore, working with the MEC space

could be a feasible and effective approach (Chickering, 2002). However, this approach does

not help solve the issue of discriminating Markov equivalent DAGs either.
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Web Figure 1: The inverted Pareto distribution with b = 10 and a = 0.5 (red), 1 (cyan), 1.5
(black), 3 (blue).

0 100 200 300 4000

2

4

6x 10−3

0 100 200 300 4000

2

4

6x 10−3

Web Figure 2: Specification of mixture prior. Kernel density estimation of the smoothing
parameter τ . The blue curves correspond to linear fit while the red curves correspond to
non-linear fit.
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Web Figure 3: Gamma and Pareto distributions are plotted on different scales with their
densities defined by the y-axis on the left and right sides, respectively. The solid curve is
the Gamma density; the dashed curve is the inverted Pareto density. The red dot is the
intersection of the two densities if they were plotted on the left y-axis scale.
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Web Figure 5: GBM data. The heat map of marginal posterior inclusion probability for
each pair of genes. The darker the color, the higher the probability.
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Web Figure 6: Markov equivalence class. Example of indistinguishable Markov equivalent
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Web Figure 7: Receiver operating characteristic curves for one simulation from scenario 3.
The solid curve represents nMixDAG; the dashed curve represents spikeSlabGAM; and the
dotted curve represents SpAM.

Web Table 1: Single regression. Operating characteristics for SSVS, nDAG, nMixDAG,
spikeSlabGAM and SpAM are calculated under different sample sizes and error variances.
The bold numbers indicate the best performance. The standard error for each statistic is
given in the parentheses.

Scenario SSVS nDAG nMixDAG spikeSlabGAM SpAM
n = 250 TPR 0.452(0.097) 0.988(0.048) 1.000(0.000) 1.000(0.000) 1.000(0.000)
σ2 = 4 FDR 0.073(0.133) 0.000(0.000) 0.000(0.000) 0.133(0.135) 0.735(0.096)

FNR 0.548(0.097) 0.012(0.048) 0.000(0.000) 0.000(0.000) 0.000(0.000)
MSPE 27.533(5.263) 6.089(2.312) 5.800(2.667) 4.691(0.904) 6.860(1.592)

n = 250 TPR 0.412(0.110) 0.800(0.057) 0.804(0.086) 0.980(0.061) 1.000(0.000)
σ2 = 16 FDR 0.077(0.159) 0.000(0.000) 0.000(0.000) 0.279(0.162) 0.733(0.090)

FNR 0.588(0.110) 0.200(0.057) 0.196(0.086) 0.020(0.061) 0.000(0.000)
MSPE 39.278(6.952) 20.090(3.875) 19.882(3.805) 18.833(3.446) 23.193(4.824)

n = 200 TPR 0.352(0.095) 0.740(0.093) 0.732(0.096) 0.940(0.093) 0.980(0.061)
σ2 = 16 FDR 0.128(0.187) 0.000(0.000) 0.000(0.000) 0.271(0.198) 0.692(0.112)

FNR 0.648(0.095) 0.260(0.093) 0.268(0.096) 0.060(0.093) 0.020(0.061)
MSPE 40.952(7.829) 21.320(4.566) 21.161(4.522) 19.994(3.855) 26.079(5.464)

n = 150 TPR 0.292(0.101) 0.644(0.123) 0.652(0.113) 0.880(0.114) 0.912(0.108)
σ2 = 16 FDR 0.142(0.226) 0.000(0.000) 0.000(0.000) 0.366(0.166) 0.681(0.097)

FNR 0.708(0.101) 0.356(0.123) 0.348(0.113) 0.120(0.886) 0.088(0.108)
MSPE 41.446(8.593) 24.057(9.382) 23.152(8.470) 20.977(3.682) 26.939(4.916)
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Web Table 2: Simulated networks. The average operating characteristics for nMixDAG
with dimension G = 50, 100, 150, 200. The standard error for each statistic is given in the
parentheses.

Methods
Dimension AUC5% AUC TPR TPR linear TPR nonlinear FDR

50 0.718(0.036) 0.879(0.019) 0.618(0.027) 0.730(0.029) 0.514(0.040) 0.023(0.021)
100 0.721(0.025) 0.867(0.012) 0.591(0.023) 0.670(0.031) 0.518(0.037) 0.005(0.008)
150 0.697(0.022) 0.854(0.011) 0.586(0.023) 0.686(0.039) 0.493(0.033) 0.001(0.003)
200 0.669(0.024) 0.840(0.012) 0.582(0.019) 0.715(0.023) 0.459(0.033) 0.004(0.009)

Web Table 3: Simulated networks. Sensitivity analysis on the hyper-prior of the parameter
ρ. Three different values of parameters (aρ, bρ) are tested.

Prior (aρ, bρ) = (2, 2) (aρ, bρ) = (0.5, 0.5) (aρ, bρ) = (2, 3) (aρ, bρ) = (3, 2)
AUC5% 0.718(0.036) 0.703(0.033) 0.715(0.039) 0.721(0.032)

AUC 0.879(0.019) 0.870(0.017) 0.878(0.019) 0.881(0.019)
TPR 0.618(0.027) 0.610(0.028) 0.618(0.028) 0.625(0.027)

TPR linear 0.730(0.029) 0.725(0.029) 0.728(0.034) 0.743(0.029)
TPR nonlinear 0.514(0.040) 0.503(0.043) 0.516(0.040) 0.517(0.039)

FDR 0.023(0.021) 0.034(0.029) 0.038(0.026) 0.036(0.026)

Web Table 4: Simulated networks. Sensitivity analysis of the hyper-prior on the smoothing
parameter τ . Four different sets of parameters (aτ , bτ ) and (kτ , θτ ) are tested.

Prior
(aτ , bτ ) = (1.5, 400) (aτ , bτ ) = (3, 600) (aτ , bτ ) = (2, 500) (aτ , bτ ) = (1.5, 300) (aτ , bτ ) = (1.5, 400)

(kτ , θτ ) = (3, 2) (kτ , θτ ) = (3, 5) (kτ , θτ ) = (3, 4) (kτ , θτ ) = (1, 5) (kτ , θτ ) = (3, 1)
AUC5% 0.718(0.036) 0.718(0.034) 0.720(0.034) 0.709(0.036) 0.701(0.033)

AUC 0.879(0.019) 0.878(0.019) 0.881(0.019) 0.875(0.018) 0.870(0.018)
TPR 0.618(0.027) 0.620(0.027) 0.623(0.030) 0.619(0.028) 0.611(0.029)

TPR linear 0.730(0.029) 0.735(0.030) 0.740(0.033) 0.736(0.033) 0.731(0.033)
TPR nonlinear 0.514(0.040) 0.514(0.042) 0.515(0.044) 0.510(0.041) 0.500(0.042)

FDR 0.023(0.021) 0.034(0.024) 0.031(0.024) 0.038(0.027) 0.039(0.025)
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Web Table 5: GBM data analysis. The top 30 of 91 Nonlinear regulations (from column
Source to column Target) identified by nMixDAG. They are ordered by the nonlinearity
measure defined as the posterior probability p(φ = 1|Y), which is shown in the last column.

Target Source Nonlinearity
ITGB7 IL7R 0.9987
GNB1 JAK1 0.9980
IL2RG IL2RB 0.9976

PPP2R5E PPP2R5C 0.9944
CDK4 MDM2 0.9930

MAPK1 PPP2R3A 0.9926
TLR2 CSF1R 0.9898

MAP2K2 PKN1 0.9875
IL2RB SYK 0.9861
GYS2 PRLR 0.9860
KRAS PTK2 0.9825
RAF1 PTK2 0.9776
G6PC3 FOXO3 0.9724
PCK1 PTEN 0.9714

YWHAH YWHAZ 0.9669
CASP9 ITGA3 0.9657
SGK3 PTK2 0.9652

HSP90B1 PDPK1 0.9623
YWHAB RAC1 0.9622
CSF3R SYK 0.9591
PIK3R2 PIK3R1 0.9500
PPP2CB RAC1 0.9489
PPP2R5C HSP90AA1 0.9392

FOXO3 JAK1 0.9303
RPS6KB2 JAK1 0.9222

SGK3 IFNAR1 0.9164
HSP90AA1 RAC1 0.9163

ITGA8 FLT1 0.9101
CHUK EIF4E 0.9073

MAP2K1 RPS6 0.9063

16



Web Table 6: GBM data analysis. The middle 30 of 91 Nonlinear regulations (from column
Source to column Target) identified by nMixDAG. They are ordered by the nonlinearity
measure defined as the posterior probability p(φ = 1|Y), which is shown in the last column.

Target Source Nonlinearity
PIK3CB GNGT1 0.8784
IL2RA CSF1R 0.8742
ITGB6 PRLR 0.8728
CCNE2 PKN1 0.8726

PPP2R3C NRAS 0.8716
YWHAZ PPP2CA 0.8598

GNB2 GNB1 0.8593
SYK CSF1R 0.8592

FASLG GYS2 0.8448
MAPK1 YWHAH 0.8410
PPP2CB SYK 0.8395

SYK TLR2 0.8267
EIF4E2 EIF4E 0.8001

PPP2R5D HSP90AB1 0.7987
CREB3L2 GSK3B 0.7985

EIF4B INSR 0.7961
MAPK3 EIF4B 0.7923

MYB CCNE2 0.7686
EIF4E2 EIF4EBP1 0.7576
JAK1 INSR 0.7507

PPP2R1A HSP90AB1 0.7466
BRCA1 RPS6KB1 0.7463
PKN1 AKT1 0.7462
CDC37 HSP90AB1 0.7434
CREB1 HSP90AB1 0.7415
PIK3CG SYK 0.7351
PDPK1 IGF1R 0.7337

IL4R PDGFRB 0.7302
PPP2CA HSP90AB1 0.7232
ITGA5 KIT 0.7111
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Web Table 7: GBM data analysis. The last 31 of 91 Nonlinear regulations (from column
Source to column Target) identified by nMixDAG. They are ordered by the nonlinearity
measure defined as the posterior probability p(φ = 1|Y), which is shown in the last column.

Target Source Nonlinearity
PRKACA AKT1 0.6960

GNB5 IL4R 0.6911
MAP2K2 PPP2R1A 0.6859
CCNE2 GNG4 0.6813
MCL1 RPS6KB1 0.6636

MAP2K1 YWHAH 0.6598
CCNE1 CDK2 0.6477
IKBKB PTK2 0.6465
GSK3B PDPK1 0.6320
PIK3R3 EDG4 0.6167

BCL2L11 CASP9 0.6111
CCNE2 CDK2 0.6105

PPP2R2B IL4R 0.5877
RBL2 PDPK1 0.5800

CASP9 MAPK3 0.5749
PPP2R2A PTK2 0.5692

IL4R CSF1R 0.5689
EIF4E NRAS 0.5682

PIK3CG P2RY5 0.5672
EIF4EBP1 NRAS 0.5592

HRAS GNB2 0.5589
HSP90AB1 GNB1 0.5584
PPP2R5C PPP2R3C 0.5549

GSK3B RAF1 0.5486
GNG4 GNB5 0.5460

PPP2R5B BCR 0.5400
PDPK1 RAC1 0.5317

HSP90AB1 PIK3CA 0.5293
HSP90AA1 SOS2 0.5287

IL4R TLR2 0.5262
BCL2L11 GNG13 0.5152
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