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A Proofs

A.1 Proof of (9) :Quadratic form of the Likelihood Function

Let Y0 denote all the measurements from normal ROIs and Y1 that from tumor. Because
measurements from different classes are independent, we have

p(Y|θ) =
1∏
z=0

p(Yz|θ) (A.1)

where
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For written simplicity, we focus on one group and simplify Y z
i , Ψz

i , M
z
i , nzi , µz, and Σz

to Yi, Ψi, Mi, ni, µ, and Σ, correspondingly. Moreover, let Ri = Ψ−1
i with columns means
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Combining measurements from both classes, the likelihood function can be expressed as

p(Y|θ) =
1∏
z=0
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1

2
tr(Σ−1

z S̃
z)}

}
. (A.3)

A.2 Proof of (14): Conditional Predictive Distribution

Let θ1 = {uz,Σz}1
z=0 the collection of mean and covariance parameters, and θ = {θ1, ρ}. The

conditional predictive density follows as

p(YN+1|Y , zN+1, ρ) =

∫
p(YN+1|θ1,Y , zN+1, ρ)π(θ1|Y , zN+1, ρ)dθ1 (A.4)

=
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Given the class indicator zN+1 for the new patient to be predicted, we let Y 0
N+1 = [y0

N+1,1,. . . ,
y0
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N+1
] denote the observables for normal ROIs and Y 1
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tumor, respectively. Applying the quadratic form for the likelihood function derived in Ap-
pendix A.1, it is straightforward to show that
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where rzij is the jth column sum of (Ψz
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−1,
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Notice that values of nzN+1, Ψz
N+1, and czN+1 depend on the group index zN+1 since different

zN+1 may correspond to different numbers of tumor and normal ROIs. Because the prior density
π(θ1) in (10) is a conjugate prior for (A.8), the conditional predictive density may be expressed
in closed form as
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A.3 Proof of (18): Maximization of Marginal Likelihood

First, we derive the conditional marginal likelihood function given correlation parameter ρ

p(Y|ρ) =

∫
p(Y |µ,Σ, ρ)

1∏
z=0

π(µz,Σz|δ,Ωz)dµzdΣz,

where the likelihood p(Y |µ,Σ, ρ) is given in (9) and the prior π(µz,Σz|δ,Ωz) is in (10). By
pluggin in these two functions, we obtain
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Next, we obtain the maximizer of Ωz for a given class z. Omitting the index z, define f(Ω) =
|Ω|

1
2 δ

|Ω+S̃|
1
2 (nz−1+δ)

. Consider the eigenvalue decompositions S̃ = USDSU
T
S and Ω = UΩDΩU

T
Ω ,

where US,UΩ are orthogonal matrices, and DS, DΩ are diagonal matrices with diagonal ele-
ments λS,1 ≥ . . . λS,m > 0, λΩ,1 ≥ . . . λΩ,m > 0 respectively. The results in Fiedler (1971) yield
the following bound
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1
2

(δ+n−1)
. (A.13)

The equality holds when US = UΩ. Moreover, using the Karush-Kuhn-Tucker conditions, it is
easy to show that the maximum of the right hand side of (A.13) is attained when

λΩ,k =
δ

n− 1
λS,k, (A.14)
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for k = 1, . . . ,m. Thus the empirical Bayesian estimate for the hyperparameter Ω conditional
on ρ is

Ω̂ =
δ

n− 1
S̃. (A.15)

B Posterior Inference

Markov Chain Monte Carlo was used to conduct full posterior inference on the CT perfusion
data. Given the posterior density function of ρ, the random walk Metropolis algorithm was used
to generate 25000 posterior samples of ρ using the MCMCmetrop1R function in the R package
“MCMCpack”. Gibbs sampling was then used to generate posterior samples for the mean and
covariance parameters using the conditional posterior distributions given in (13). Fig. A plots
the resultant kernel smooth posterior density for the three correlation structures we’ve consid-
ered. For all the structures, the posterior distribution of ρ is unimodal. Moreover, the model
reflects high interdependence among observables derived from disparate intra-patient ROIs. For
compound symmetry, the posterior distribution of ρ has mean of 0.734 and standard deviation
of 0.048, which suggests the inter-region correlation is 0.734 regardless distance between two re-
gions. For exponential and spherical correlation, the parameter ρ does not reveal the inter-region
correlation strength directly. In fact, for exponential correlation, the posterior distribution of ρ
has mean of 2.04 and standard deviation of 0.441, which suggests that two regions with distance
0.39cm (median distance for CTp data) have correlation 0.826. For spherical correlation, the
posterior distribution of ρ has mean of 2.99 and standard deviation of 0.558, which suggests that
two regions with distance 0.39cm (median distance for CTp data) have correlation 0.834. The
posterior distribution of ρ are provided in Fig. A. The resultant posterior mean vectors of per-
fusion characteristics in normal and tumor regions, for compound symmetry (CS), exponential
(Exp), and spherical (Sph) are provided below

CS : µ̂0 = (4.906, 2.680, 4.381, 2.129,−1.856), µ̂1 = (5.378, 2.730, 3.877, 1.740,−0.805),

Exp : µ̂0 = (4.910, 2.682, 4.380, 2.128,−1.850), µ̂1 = (5.382, 2.733, 3.878, 1.739,−0.806),

Sph : µ̂0 = (4.910, 2.682, 4.380, 2.128,−1.849), µ̂1 = (5.381, 2.733, 3.878, 1.739,−0.806).

C Sensitivity to the Prior Distribution

We run the classification under the compound symmetric structure with three different prior
distributions for ρ, using four predictors without BV. The results are given in Table A. Generally,
the results are similar in different choices of the prior distribution.

D Selection of Predictors

Using different choice of predictors, the results for classification varied, as shown in Table B.
It can be seen that the classification accuracy is improved when adding more predictors up to

4



0.5 0.6 0.7 0.8 0.9

0
2

4
6

8

Compound symmetry

N = 23204   Bandwidth = 0.01

D
en

si
ty

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

Exponential

N = 23204   Bandwidth = 0.08

D
en

si
ty

2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

Spherical

N = 23204   Bandwidth = 0.08

D
en

si
ty

Fig. A: The posterior density for ρ fit to the CT perfusion data when inter-region correlation is
compound symmetric (left), exponential (middle), and spherical (right).

beta(1,1) beta(10, 10) beta(0.2, 0.2)
TPR FPR TPR FPR TPR FPR

mrFB(α = 0.5) 0.96 0.04 0.92 0.04 0.96 0.04
mrFB(α = 0.8) 1.00 0.07 0.96 0.19 1.00 0.04
lda 0.92 0.15 0.92 0.15 0.92 0.15
qda 0.80 0.19 0.80 0.19 0.80 0.19

Table A: Classification results with different prior of the correlation parameter ρ.

4. The results for using all 5 CTp characteristics failed to yield improvement when compared
to results obtained for the selected 4 characteristic. This may be due to the strong correlation
between blood flow and blood volume.

BF BF, PS BF, PS, MTT w.o. BV all 5
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

mrEB(α = 0.5) 0.60 0.26 0.92 0.04 0.96 0.07 0.96 0.04 0.96 0.07
mrEB(α = 0.8) 0.96 0.70 0.96 0.11 0.96 0.15 1.00 0.04 0.96 0.15
lda 0.64 0.22 0.84 0.11 0.80 0.11 0.92 0.15 0.88 0.15
qda 0.52 0.15 0.80 0.15 0.80 0.15 0.80 0.19 0.84 0.22

Table B: classification with the compound symmetric structure using selected predictors.

E Sensitivity to Compound Symmetric Covariance

In this section, we conduct another simulation study to investigate sensitivity to misspecifica-
tion of inter-region correlation, Ψ. Specifically, we evaluated the extent to which classification
performance is diminished for simultaneous classification using compound symmetry, when the
true underlying correlation structure exhibits spatial dependence with exponential decay. In
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BF BF, PS BF, PS, MTT w.o. BV all 5
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

mrEB(α = 0.5) 0.64 0.33 0.96 0.07 0.96 0.04 0.96 0.04 0.96 0.04
mrEB(α = 0.8) 0.96 0.59 0.96 0.11 0.96 0.11 0.96 0.04 0.96 0.15
lda 0.64 0.22 0.84 0.11 0.80 0.11 0.92 0.15 0.88 0.15
qda 0.52 0.15 0.80 0.15 0.80 0.15 0.80 0.19 0.84 0.22

Table C: classification with the spatial structure (power decay) using selected predictors.

the simulation, the mean and covariance parameters are identical to the simulation in Section
5 scenario 2, where we mimic the real CT perfusion data by fixing the covariance matrices for
each group to be their posterior mean estimates. The mean for normal group is also fixed at
its posterior mean µ̂0 under the compound symmetric structure. The mean CTp characteristics
for tumor are specified to reflect a ∆% shift from normal: µ̂0(∆ + 1). Three values of ∆ are
considered: 0, 0.5, and 1. The location of regions are randomly drawn from the unit square
and the average distance between regions is around 0.5. Moreover, three different values of the
decay rate φ, (0.1, 0.7, 1.5) are considered reflecting weak, moderate, and strong average spatial
dependence. The results are shown in Fig. B. When φ = 0.1, the correlation is weak between all
regions, performance for simultaneous classification using compound symmetry is robust to the
misspecification. When φ = 0.7, correlation is highly spatially dependent. For example, correla-
tion for two regions that are 0.1 cm (1 cm) apart attain correlation 0.87(0.18). For this scenario,
assuming compound symmetry diminished performance when compared to exponential as ob-
served by the 1.6% in increased misclassification rate and 1.8% in decreased true positive rate
for out MBR method with α = 0.5 and ∆ = 0. When φ = 1.5, there exists strong correlation
between both nearby and distant regions, the classifier using the compound symmetric structure
yields comparable results with the true exponential model. Generally, results for the simulta-
neous approaches outperform conventional classification methods in the presence of increasing
inter-region correlation regardless of the assumed inter-region correlation, Ψ.

F Software

Software for implementing simultaneous classification as well as the various conventional clas-
sification methods discussed in the paper is included with supplementary materials. The code
was written using statistical software R (R Development Core Team, http://www.r-project.org)
version 3.0.1.
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(a) exponential (b) compound symmetric

Fig. B: Misclassification rate (top row), true positive rate (middle row) and false positive rate
(bottom row) when (a) the exponential structure is fitted; (b) the compound symmetric structure
is fitted. Results for the simultaneous classification by minimizing Bayesian risk (MBR1, α =
0.2, shown by “⊕”; MBR2, α = 0.5, shown by “∗”; MBR3, α = 0.8, shown by “⊗”), and
conventional classification using quadratic discriminant analysis (QDA, shown by “◦”), and
linear discriminant analysis (LDA, shown by “O”) are provided. As the correlation between
ROIs increases, simultaneous MBR yields increasing true positive rate and decreasing false
positive rate, while the conventional methods are static.
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